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ABSTRACT 

In In this paper, we introduce two 

convergent Monte Carlo algorithms for 
optimizing complex stochastic systems. The 

first algorithm, which is applicable to to 

regenerative processes, operates by 

estimating finite differences. The second 
method is of Robbins-Monro type and is 
applicable to to Markov chains. The algorithm 

is driven by derivative estimates obtained 

via a likelihood ratio argument. 

1. 1. INTRODUCTION 

Our goal, in this paper, is to to develop 

Monte Carlo algorithms that are capable of 
optimizing complex stochastic systems. By 

appropriately modifying classical stochastic 
approximation procedures, we are able to to 
produce algorithms which are provably 
convergent. 

Specifically, we consider the problem of 

optimizing the steady-state of a regenerative 
stochastic process with respect to to a 
continuous decision parameter. We offer, in 

Section 2, 2, a stochastic approximation 

algorithm for solving such problems, and 

specialize the procedure to to Markov chains in 
Section 3. 3. The proposed algorithm, while 

convergent under quite reasonable hypotheses, 
involves estimation of derivatives via finite 
differences. Since derivative estimation via 

finite differences is quite "noisy", one 
would anticipate that the algorithm converges 

rather slowly. 

We therefore consider, in Section 4, 4, a 
Robbins-Monro procedure which directly 
estimates the derivative without passing to to a 

finite-difference approximation. In In order to to 

obtain such a derivative estimator, we find 

It It necessary to to impose additional Markov 

structure on on the problem. We offer 
concluding remarks in Section 5. 5. 

:2. :2. STEADY-STATE OPTIMIZATION OF RRGRNRRATIVR 
.SYSTEMS 

Let X = {X(t) : : t > 01 01 be a real- 
,valued (possibly) delayed regenerative 

,process with regeneration times T(O) < T(1) 
<... . . Set T(-1) = 0 0 and let 

*i 
= X(s)ds 

Ti = ,;;:1,) IX(s)ids 

5. 1 
= T(i) - T(i-1) . . 

It It is well known (see SMITH (1955)) that if 

E(P1 + tl) < -, then X is ergodic, in the 
sense that there exists a finite 
(deterministic) constant s such that 

$ $ ,k X(s)ds + a a.s. 

as t t + D. The steady-state limit a can be 
expressed as a ratio of expectations: 

a = ml/Et1 . . 

Consequently, the estimation of the steady- 
state of a regenerative process can be viewed 
as a special case of the ratio estimation 
problem. 

Motivated by this discussion, we shall 
now proceed to to describe a stochastic 
optimization algorithm for the general ratio 
estimation problem. The goal, roughly 

speaking, will be to to minimize a over some 
bounded open interval A; the probability 
distribution of the numerator and denominator 
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random variables (r.v. '6) is dependent on the 

decision variable 8. 

More specifically, assume A= 

(-a/Z, n/2). (Note that any optimization 

problem over (a,b) with a < b can be 

transformed into an optimization problem 

over A by suitably re-parameterizing the 

decision variable 8.) The goal is to solve: 

(2.1) 

where 

that: 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

min a(e) 
erll 

a(e) = u(e)/ll(e). We will assume 

u(e) = EY(e), a(0) = ET(~) when 

W(e), T(e)) has a distribution 

from which deviates can be generated, 

for e 6 A 

r(8) # 0 for e E A 

u(*). et*) are twice continuously 

differentiable over A 

the derivatives u(k)(.), Q(k)(.) 

(k = 0,1,2,) are bounded over A 

a'(e*) = 0 has a unique root 8* z A 

and a is minimized there. 

The assumptions (2.2) - (2.6) are, of 

course, of the kind that commonly appear in 

the analysis of deterministic optimization 

algorithms for solving nonlinear programming 

problems. Since we are proposing to use 

Monte Carlo methods to solve the optimization 

problem (2.1). it will be necessary to impose 

an additional "probabilistic" hypothesis on 

the distribution of (Y(e). T(e)). 

(2.7) sup E(Y2(e) + ~~(8)) < m . 
can 

With (2.7) in hand. we can develop a 

stochastic approximation algorithm which 

converges to the minimizer 8* associated 

with (2.1). We first recall that the 

standard stochastic approximation methods are 

formulated in terms of a decision variable x 

which is uncontrained, in the sense that R 

is the corresponding parameter set. In order 

to transform R into A, we use the 

transformation: 

(2.8) 9 = arc tan X , 

A l R. (Relation (2.8) explains why it is 

convenient to choose A = (-n/2,n/2)).) Set 

E_(X) = u_(x)/a(x) where 

u(X) = u(arc tan X) 

a(a) = atarc tan X) . 

It is obvious that if one solves 

(2.9) min a(1) , 
Ad 

then the minimizer X* to (2.9) corresponds 
* 

(uniquely) to e , and 9 
* 

can be retrieved 

from (2.9) by setting 8* = arc tan X*. We 

shall therefore henceforth work with the 

optimization problem (2.9), in which the 

decision variable x is unconstrained. 

Because of the strict monotonicity of 

the arc tan function and assumption (2.61, it 

follows that X* is the unique root of 

(2.10) h(A) = u_'(A);(A) - u_(a)a'(x) . 

Thus, our goal can be re-expressed as: Find 

the unique root x* of h(e). 

Since assumption (2.1) provides unbiased 

estimators Y(9) (r(0)) only for function 

values u(8) (e(e)) (and not for derivatives 

of " and ~1, it is necessary to consider 

finite-difference approximations for the 

derivatives appearing in h. Then, for c 

small, 

u_'(x) - c 
-1 

tu_t x+c) - u(x)1 

” c -ltgx+c) - 2(x)1 

so that 

(2.11) h(A) = c-lcu_(A+c)$X) - $(X+c)~(A)l . 

35; 
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We will drive our stochastic approximation 

algorithm with a Monte Carlo version of the 
right-hand side of (2.11). Let 

Y(1) = Y(arc tan 1) 

T(A) = r(arc tan A) . . 

Suppose that (Yl(h+c), ~l(a+c)) and 

(y_,(A), gA1) are independent variates 
generated from the distributions of 

(Y_(X+c), :(A+c)) and (Y_(A), T(A)), 
respectively. Set 

n=c -lCy_l(A+chl(A) - ~l(x+c)y_l(A)l - 

Because of the independence of the two pairs 

of variates, it is immediate that En is 
precisely the right-hand side of (2.11). 
Consequently, we shall use r.v.'s of the form 

r( to to drive our proposed Monte Carlo optimi- 

zation algorithm. 

Specifically, our algorithm shall take 
the form: 

1.) Choose A0 E R. 

2.) Given X,0 generate (independently 

of the past) (xn+l(an + cn+l), 
-cn+l(xn + cn+l)) and (Y,,+l(X,), 

Tn+l ('n)) independently from the 

distributions of (x(X, + cn+l), 

r(X + cn+p -n and (Y_( Xn), 

Toin)lr respectively, where 

EC n n :n :n al) is a sequence of 
positive constants decreasing to to 
zero. 

3.1 3.1 Set 

nn+l 
= C~:lcYn+l(Xn + Cn+l)~~+l(Xn) 

- Xn+ltAn) .&+l(ln + 'n+l)l 

4.) Then, let 

(2.12) xn+1 = 1n 1n - an+lnn+l 

where (an : : n n > 1) is a sequence 
of positive deterministic constants 

satisfying 

F ar, = m, F ai q: OD, 5 5 ancn ( a, 
n=l n=l n=l 

; 2 
n=l 

ai/c, ( - . . 

5.) Go to to 2.). 

‘Note that, as expected, the iteration 

(2.12) shows that &+1 will tend to to be 
smaller (larqer) than the "current" value ln 

if h(A,) is positive (negative). This is 
clearly the behavior required, in order that 

> m converge to to a point X* at which 
h(x*+) > 0, 0, n(A*-) < 0. 0. These latter 
conditions on on h(A*) essentially dictate 

that X* is a local minimizer of a. We can 
now state our convergence result. 

(2.14). THEOREM. Under assumptions (2.2) - 

(2.71, A, + A* a.s. as n n + OD, where I\* 
is the solution of (2.9). 

For a proof, see Appendix 1. 1. Reasonable 
choices for {a,), {c,) are an = a/n (a>O). 

'n = c/n114 (c>O). 

3. FINITE I~IFPERRNCE ALGORITHMS FOR WARKOV 

CHAINS 

Our gOill, in thia section, is to to apply 
the finite difference algorithm of Section 2 2 
to to the steady-state optimization of Markov 

chains. 

For e E A = (-n/2,a/2), let P(e) be 
an irreducible dxd stochastic matrix. 

Since p(e) is irreducible and finite, it 
follows that P(e) has a unique stationary 

distribution 77(e) satisfying 

(3.1) n(e)tP(e) = n(e) - t t 

(We follow the convention that all d-vectors 
are written as column vectors.) Suppose that 

f(e) is a performance function in which 

f(9.i) denotes the cost incurred by the 
chain in state i, over one unit of time, 
when driven by P(0). If X = {Xn : : n n > 0) 
is a Markov chain evolving under P(e), then 
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+ Ii; f(tV$) + u(e) Pe a.8. 

tpe is the probability on on the path-space of 
X induced by P(e)) where a(0) is the 
deterministic constant 

(3.2) a(e) = 1 n(e,i)f(e.i) . . 
id 

(S is the state space of X.1 The goal here 

is to to obtain a version of the algorithm 
stated in Section 2, 2, that is capable of 
solving: 

(3.3) min a(e) . . 
BCA 

Before proceeding further, it should be 
observed that deterministic non-Monte Carlo 
algorithms are available for solving (3.3). 
One could, for example, apply a mathematical 
programming algorithm based on on function 

evaluations of a(9). Each function 
evaluation would involve solving (3.1) 
subject to to n(ejte = 1 1 (e is the vector 
consisting entirely of l's), followed by 

computation of the inner product (3.2). 
Because of the intrinsic slow convergence of 
Monte Carlo algorithms relative to to standard 
nonlinear programming procedures, one would 

expect that a deterministic procedure of the 

type described above would be preferable to to a 
Monte Carlo algorithm. This is a reasonable 
expectation when function evaluations aren't 

too too expensive. However, for large d, d, 

finding a(e) is computationally intensive 
and Monte Carlo procedures become attractive. 

The assumptions that we shall require on on 

P(e) and f(e) are as follows: 

(3.4) P(e) is irreducible for e c A. 

(3.5) P(a), f(a) are twice continuously 

differentiable on on C-n/2, n/23. n/23. 

(3.6) s'(e*) = 0 0 has a unique root 0* E A 
and a is minimized there. 

(3.7) There exists a state i E S such that 
P(e.k,i) is positive for 

e c C-x/2. x/21, k c S. 

In In order to to apply the regenerative 
methodology of Section 2, 2, it is necessary to to 
observe that for all 8 8 6 6 hr X ie regenera- 

tive under PB with regeneration times 

consisting of the sequence of times IT(n) : : 
n n 2 2 0) on on which i is hit. Consequently, 

a(e) = m(e)/Ez(e) 

where 

T(e)-1 
Y(B) = 1 1 

k=O 
f(e.xk(e)) 

7(e) = T(e) 

l-(e) = inf{k > 1 1 : : Xl,(e) = i) 

and X(e) is a Markov chain on on S evolving 

under P(8), with X,(O) = i. We can now 
apply the algorithm of Section 2 2 to to solving 

(3.3). 

ALGORITHM A: 
1. 1. Choose e. e A. 

2. 2. Given %* generate a trajectory of 

xte,), with initial condition Xo(Bn) = 

L, L, until the first hitting time of i. 

Set 

T( en)-1 
Y = n+l 1 1 

k=O 
f(en.xk(en)) 

'n+l = Tie,) 

T(en) = inf{k > 1 1 : : Xk(en) = iI. 

3. 3. Given Onr generate a trajectory of 

X(eA)t with initial condition X0(8;) = 
i, until the first hitting time of i, 

where 8' n n = arc tan(tan (en) + n n l/4). 

Set 

T(e;)-1 

'A+1 = 1 1 
k=O 

flen,x,(en)) 

$+1 = T(e;) 

T(en) = inf{k > 1 1 : : Xk(el;) = i). 

350 350 
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4. 4. Compute 

“n+l = n 1/yy* 
n+l ‘n+l - yn+l'l;+l' 

5. 5. Compute 

e n+l = arc tan[tan (en) - (l/n)nn+ll 

6. 6. Go to to 2. 2. 

Theorem 2.14 2.14 can be applied to to obtain a 

convergence result for this algorithm. 

(3.8) THEOREM. Under (3.4) - (3.73, the 

0,‘s produced by Algorithm A converge a.s. 

to to e*, where 9 9 
* solves (3.3). 

For a proof, see Appendix 2. 2. Note that 
assumptions (3.41, (3.51, and (3.7) are easy 

to to check. Hypothesis (3.6) is more implicit, 
but rather typical of assumptions commonly 

imposed in the analysis of nonlinear 
programming procedures. 

4. 4. A ROBBINS-MORRO ALGORITFIM FOR 
OE'TIMIRATIOR OF IWtRUOV CFJAINS 

Our goal is to to solve (3.3) by applying a 
stochastic approximation algorithm which 
replaces the finite difference approximation 
appearing in (2.10) by an unbiased Monte 

Carlo estimator of the derivative. The 
expectation is that the convergence rate of a 
derivative-driven algorithm should be 
considerably faster than that associated with 

a finite difference estimator. 

In In order to to accomplish this task, we 
shall require unbiased estimators for the 

terms u_'(X). a'(n) appearing in (2.10). 

Recall that in the Markov chain context of 
interest here, 

the dserivatives. This will require recasting 
the way in which we view the Markov chain's 
dependence on on 8. 8. 

Specifically, we have so far 

(implicitly) viewed the dependence in terms 
of constructing a different process X(0) 
for each 9 E A. Another way to to approach the 

problem is tn tn view the Markov chain in terms 
of a single process X whose distribution on on 

path-space depends on on 9. 9. To make this 
rigorous, let R = s x s x . . . . . . . . and let F 

be the associated product u-field. Let X = 

IX, : : n n >O] be the co-ordinate process 
defined by X,(W) = or.,, where w = 

( wo'wl,..-) is a typical element of n. n. 

Note that for each e l A, the transition 

matrix P(0) induces a probability Pg on on 

Pe{Xo = io, X1 = il,...,X, 

(4.1) 6. 6. i,i OP 
(e,i,,i,) g== P 

the path-space (n,F) via: 

= in) = 
(erin-l,in) ' 

In In order to to apply the likelihood 

it is convenient to to assume that: 

ratio idea, 

(4.2) r(e) = ((j,k) : : P(e,j,k) ) 01 01 is 
independent of B, for 6 6 c A. 

Assumption (4.2) allows one to to multiply and 
divide by P(eO,j,k) in (4.1) to to obtain 

Pe{Xo = io,...,Xn = in) = 

(4.3) Ee 
0 0 

{L(n,B,Bo); X0 = io,...,Xn = inI 

where 

n-l P(e.\,xk+l) 
L(n,e,e,) = n 

k=O p'eO'Xk'xk+lr 

u(e) = m(e) is the "likelihood ratio" associated with X. 
An easy argument, based on on the observation 

r(e) = ET(B) that T=inf{n >l:X,=ij is a stopping 

time, shows that 

where Y(e), r(e) are r.v.'s formed by 

simulating x(e) over one regenerative (4.4) ~(8) = E Y(f(e))L(T,e,eo) 

cycle. We shall apply likelihood ratio 80 80 

techniques to to obtain a suitable estimator of where 

360 
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T-l 
Y(g(e)) = 1 1 gb,X,) - 

k=O 

If one formally differentiates (4.4) by 
interchanging the derivative and expectation, 
one obtains 

(4.5) 

where 

= Ee + 
0 

E 
eO 

T-1 
= 1 

k=O p(eO'xk'xk+l) 

The right-hand side of (4.5) can be used to to 
obtain Monte Carlo estimates of u'(e); a 
similar estimator exists for a(e) (set 
f(e) 3 3 1 1 in (4.5)). To justify the inter- 

change we require that: 

(4.6) P(s), ft.1 are continuously 
differentiable over C-n/2, n/21. 

initial condition X - 1, 1, 
firat hitting time o”f -* 

until the 
* . . 

1. Set 

T n+l -1 
Y n+l = I I 

k=O 
f(en,Xk' 

T n+l = inf{k > 1 1 : : 7 7 = i) 

-1 
D n+l = Tn;l + 

k=O T 
n+l 

Y 1 1 
-l 

n+l . . k=O p(en'xk'xk+l) 

T n+l 
E 

= Tn+l l I 

-l P' ( en,Xk#~+l 1 1 
n+l k=O P(en,xk,xk+ll ' 

3. 3. Repeat Step 2 2 with an independent 

trajectory, obtaining yr;+10 T;+ln DA+1* 

BI;+1* 
4. 4. Compute 

nn+l = (2 + 2 2 tan2en~-'CDn+lT;+1 + DI;+lTn+l 

-E n+lYt;+l - E' n+lYn+l 3 3 . . 

5. 5. Compute 

e n+l = arc tan [tan (enI - (l/nIan+13 . . 

(4.7) P (0) is irreducible, for 8 8 E A.. 

The hypotheses (4.21, (4.61, (4.7) are easily 
checked, in most applications. Unfortunate- 

ly. in order to to obtain an (easy) convergence 

proof for our stochastic approximation 
algorithm, we shall also need the more 

implicitly stated: 

(4.8) = 0 0 has a unique root e* E A 
and a is minimized there. 

We can now state our stochastic approximation 
derivative-based algorithm. 

ALGORITHM B: 
1. 1. Choose 90 90 c A, i E S. 

2. Given enn generate a trajectory of X 
with transition matrix P(e,) and 

6. Go to 2. 

A convergence result is also available 
for this algorithm. 

(4.9) THEOREM. Assume (4.2) and (4.6) - 
(4.8). Then, the sequence en produced by 

Algorithm B converges a.8. to to 0*, where 8 8 
* 

solves (3.3). 

See Appendix 3 3 for a proof. 

Note that because of the independence of 
the observations generated in Step 2 2 and 3. 3. 

Err n+l = h(e,) where h h is the function 
defined by (2.10). Because the stochastic 
approximation procedure described here 
attempts to to find a zero of h h using unbiased 
estimators of h(en), this algorithm is of 
Robbins-Monro type. 

3Gl 
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find that 5. 5. cO~cLusIoLp 

We have discussed two optimization 
algorithms in this paper. The first 

algorithm, which requires only regenerative 
structure, involves finite-differences and is 
expected to to be rather slowly convergent. The 
second algorithm, by exploiting Markov 

structure, uses derivative estimates, and is 

of Robbins-Monro type. More work is needed 
in this area, particularly empirical investi- 

gations. 
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APPENDIX 1: 1: PROOF OF TEEORRM 2.14 2.14 

We will apply a convergence theorem due 
to to Metivier and Priouret (1984). Observe 
that 

A n+l = A n n - an+lh(Xn) + an+lSn+l - an+lEn+l 

where 

B n+l = h( An) - &[u_( hn+cn+l )_e( An) 

- ~(x&(a,+cn+,)l 

‘n+l 
= 

'n+l - c ,:, ,:, cu_ ( hn+cn+l 1 1 a ( An 1 1 

- $an)f(xn+cn+l)l . . 

To apply Theorem C of [2], [2], we observe that 
the monotonicity of the arc tan function and 
(2.6) imply that 

dx 
dt= -h(x(t)) 

has the unique equilibrium point h* and the 
domain of attraction of A* is R. We now 

need to to verify that 6, 6, + 0 0 a.8. as n n + -. 

By using Taylor's expansion to to two terms, we 

*n+l = - 
=n+l =n+l 
2 C$“(r,+1)~(x,) 

- u,( ap( 

where En+1 lies between xn and xn + 

Cn+l' Now, 

u,,(x) = ull(arc tan x) - u'(arc tan x)(2x) 

(1 + x2)2 
. . 

Since uw(arc tan x), tan x1 are 

uniformly bounded in x (see (2.5)). it 
follows that u"( l ) is a bounded function. 

A similar argument shows that i"(*) is 
bounded. The boundedness of u u and I I (see 
(2.5)) therefore implies the existence of a 

deterministic constant R such that 

Thus, 8, 8, + 0 0 a.s. as n n + (D. 

To verify (H2) of Theorem C of [Z], 
observe that the sequence {en : : n n > 1) 
constitute martingale differences, and apply 

Doob's inequality. The proof is complete if 
we can show that suptl AnI : : n n > O} O} < 0~ a.s. 

The quasimartingale argument given on on p. 143 143 
of L23 L23 is valid here also because of (2.13) 
and 

2 2 
Enn+l [sup E(Y2(0) + r2(e))12 . . 

erh 

The conditi.ons of Theorem C being in force, 
we may conclude that a,., + h* as n n + -. 

FLPPRNDIX 2: 2: PROOF OF THEORRM 3.8 3.8 

We just need to to check that the hypo- 
theses (3.4) - (3.7) translate into (2.2) - 

(2.71, in this problem setting. Of course, 

(2.2) ia immediate. For (2.3), observe that 

T(8) > 1 1 a.~. for all 0, 0, so i(O) > 1. 1. We 
refer to to Appendix 3 3 for a proof of (2.4) - 

(2.5). (The proof given there for the first 
derivative easily extends to to the second 
derivative.) Assumptions (2.6) and (3.6) are 

382 382 
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identical, leaving (2.7) to to be validated. 
Let 

6 6 = inf{P(e,k,i) : : 13 13 z A, k c S) . . 

Since P(.,k,i) is continuous over 
[-n/2,n/23 (see (3.5)), it follows from the 

positivity condition (3.7) and the finiteness 
of s that 6 6 > 0. 0. Since 

P[Xn+l (0) # # i I I Xn(e)) = 1 1 - P(e.Xn(B),i) 

<l-6, 

it is evident that 

PCT(e) > n) = PIX1(e) # # i,...,Xn(e) # # i) 

c (1 - a)" . . 

Clearly, tY(e)l < nf(e)lT(e) (If(e)! = 
max(lf(e,i)l : : i c S)), so 

E(Y2(e) + r2(e)) c (tf(e)n2 + l)ET'(e) 

< 2(lf(e),2 + 1) ; ; n n PIT(e) > n) 
n=l 

c 2(nf(e)n2 + 1) y n(l-61-1 
n=l 

(see p. 44 44 of Chung (1974)). Since if(e)1 c 

sup[!f(e,k)l : : e c A, k c S) < = (use (3.5) 
and the finiteness of S), (2.7) follows 
easily. 

AePRNDIX 3: 3: PROOF OF TFEEOREU 4.9 4.9 

We first need to to verify that the inter- 

change of derivative and expectation required 

to to obtain (4.5) is valid. To do do this, we 
start by showing that T has a moment 

generating function which converges in a 
neighborhood of zero. 

First, let r = r(e) and observe that 

by (4.6) 

inf(P(e,j,k) : : e E A) = R(j,k) > 0 0 

precisely when (j,k) l I'. Hence, by (4.7), 

P(9) > R 

for all e E hr where R is irreducible. 

(Irreducibility is a notion which makes sense 

for any non-negative matrix.) Since R is 

irreducible, it follows that 

(R + R2+...+Rd) 

is a strictly positive matrix. Thus, it is 

evident that 

inf{ T P'(e,j,k) : : e E A) > 0 0 
e=l 

for all pairs (j,k) s S x S. For any i E S, 

the finiteness of S implies that 

d d 
inf{ 1 1 Pa(e,k,i) :erA,krS}=6,0 

a=1 

and hence, for a c d, d, 

Pe{T c d d 1 1 X0) > Pe{Xe = i 1 1 X0) 

= P"(e,Xo,i) 

so 

P,{T < d d 1 1 X0) > max{P'(e,k,i) : : k E S) 

a 6/a . 

It It follows that 

P,{T > kd) c (1 - 6/d)' , , 

and hence T has a moment generating 

function which converges for arguments t t 

such that t t < -an(l - 6/d). 

To justify the interchange, we will show 
that the difference quotients 

h-l[Y(f(BO+h))L(T.Bo+h,eO~ - Y(f(eo))I 

are dominated by an integrable r.v. By the 

mean value theorem, the difference quotient 
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equals the proof, we need to to verify condition (RMS) 

of C21 and show h( l 1 1 is continuous. To 

Y(f'(n))L(T,n,eo) + Y(f(n))L'(T, nr eo) . . obtain (RMS), note that 

b&i < !fr . . T,+l 
Clearly, 

'Dn+l' 
2 2 < If'1 l Tn+l + If!.lp'l l Tn+l 

jY(f'(n))t < If'! l T 

IY(f(n))l < If! l T 

where If'1 = sup{\f'(erk)\ : : e E A, k < S), 
llfl = sup{!f(e.k)l : : 6 6 6 6 A, k c S) are 
finite, by (4.6). Also, 

rl.0,) < r(l-~)~ 

where 

c(h) = "a"('~ : : 18 18 - e,l < h, h, 

(i,j) E r1 

and 

L'(T,n,eO) 6 6 ~p'l l T l 9th) 
T 

; ; 

Ip'n = supZP'(e,i,j)/P(eo,i,j) : : e z n n , , 

(i, j) l r1 . . 

By (4.6). up'8 < - and cp(h) + 1 1 as h h t t 0. 0. 

so, our difference quotients are dominated by 

l T + lfn . . lp'l . . T2)1p(hjT . . 

Since T has a convergent $.mment generating 

function, it is evident that the above T.V. 
is integrable for h h sufficiently small (use 
the fact that q(h) + 1). proving the 

required domination. Hence, u(*) is 

differentiable, with the derivative repre- 
sented by the right-hand side of (4.5). A 

similar argument shows II( 9) is different- 
iable (set f(9) a 1). 

We now wish to to apply the results of 
Section 1I.F of 121, 121, in order to to obtain con- 
vergence of the algorithm itself. Assump- 

tions (RMl) - (RM4) are automatic. To finish 

IE n+l i < Ip'i . . T;+l 

so 

2 2 
~,s,+~ * 32(1 + lfl2 + If'1 2 2 22 22 

+ ) 

- T&+1 I4 

where T;1+1 is an independent copy of T,+l. 

ThUS, the variance of n n is bounded above if 

4 4 supE"T X0. 
9 9 

which follows since the tail of T is 

uniformly bounded in 8: 8: 

4 EBT <4 i n3d3(l - a/d) , , n-l 
n=l 

proving (RM5). 

We finish by observing that the 

continuity of h h follows from showing u, u, 

U'r a. e' are continuous. But an easy 

dominated c:onvergence argument, using the 
bounds on on Y, T. D, E already shown, 

provides the required proof, completing the 
argument. 
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