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ABSTRACT

We investigate the application of the likelihood ratio method

(LRM) for sensitivity estimation when the relevant density

for the underlying model is known only through its charac-

teristic function or Laplace transform. This problem arises

in financial applications, where sensitivities are used for

managing risk and where a substantial class of models have

transition densities known only through their transforms. We

quantify various sources of errors arising when numerical

transform inversion is used to sample through the character-

istic function and to evaluate the density and its derivative,

as required in LRM. This analysis provides guidance for

setting parameters in the method to accelerate convergence.

1 INTRODUCTION

Stochastic simulation is used widely in the financial industry

for the pricing and hedging of options and other derivative

securities. Under standard conditions, the price of a deriv-

ative security can be represented as the expectation of its

discounted payoff. A typical pricing simulation involves

simulating paths of the underlying asset or assets, evaluating

the discounted payoff on each path, and averaging over the

paths.

Such simulations are often used as much for hedging

as for pricing, and hedging requires calculation of sensitiv-

ities of prices with respect to model parameters, including

the initial values of the underlying assets. For sensitivity

calculations, the likelihood ratio method (LRM) (or score

function methd) is attractive when the payoff is discon-

tinuous in the parameters. To fix ideas, let V (X) denote

a (discounted) payoff, which is a function of the random

variable X , and suppose X has a density gθ depending on

a parameter θ . The key LRM identity is

d

dθ
Eθ [V (X)] = Eθ [V (X)

ġθ (X)

gθ (X)
], (1)
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with Eθ denoting expectation with respect to gθ , and ġθ

denoting the derivative of gθ with respect to the parameter θ .

When this identity holds (as it does under mild regularity

conditions), the expression inside the expectation on the

right provides an unbiased estimator of the sensitivity on

the left. We will write this estimator as V (X)Sθ (X) with

Sθ (x) = ġθ (x)/gθ (x)

the score function.

The application of (1) requires evaluation of the density

gθ and its derivative, and this can limit the scope of the

method. Here we investigate the application of LRM when

the density is not explicitly available but is known through its

characteristic function or through its Laplace transform. This

problem arises for broad classes of models used in financial

applications, including models driven by Lévy processes

(see, e.g., Cont and Tankov 2004) and the affine class of

jump-diffusion models studied in Duffie et al. (2000).

An example of a Lévy-driven model is one that models

the price of the underlying asset through a process ST =
S0 exp(aT + XT ), in which XT is the time-T value of a

Lévy process with X0 = 0, and S0 and a are constants.

A Lévy process has stationary independent increments, so

its increments have infinitely divisible distributions; such

distributions are often specified through their characteristic

functions, via the Lévy-Khinchine formula (as in, e.g., Sato

1999, p.37). An extensively studied case of a Lévy-driven

model is the Variance Gamma model; in the notation of

Madan, Carr and Chang (1998), with parameters ρ,ν , and

θ , the Laplace transform of XT is given by

Lvg(t) = E[e−tXT ] =

(

1

1+θνt −ρ2νt2/2

)T/ν

(2)

for t in a neighborhood of the origin. There is no closed-form

expression for the density of XT .

We analyze a method in which numerical transform

inversion (the Fourier series method of Abate and Whitt
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1992) is used both to sample through a Laplace transform (or

characteristic function) and to compute an LRM estimator.

We quantify various sources of errors in order to provide

guidance for setting parameters to accelerate convergence.

There are general methods for sampling from transforms

(see Devroye 1981) and specific methods for specific dis-

tributions that do not require numerical inversion, but these

do not address the problem of evaluating the score function.

In separate work, we investigate alternatives to numerical

transform inversion based on approximations to the score

function; a side benefit of the method we discuss here is

that it can serve as a benchmark for approximations.

The rest of this paper is organized as follows. In Section

2, we specify a sampling method in which we precompute

a table of values of the cumulative distribution function

(CDF); this involves discretization and truncation of the

domain of the CDF. In Section 3, we review the method

of Abate and Whitt (1992) and discuss its application to

our problem. Section 4 summarizes the error in calculating

prices, and Section 5 does the same for price sensitivities.

We illustrate the results numerically in Section 6. We outline

a proof of our error analysis in an appendix; complete proofs

of all our results will be provided in a full-length article.

2 OUTLINE OF THE METHOD

For simplicity, we limit our discussion to scalar X in (1).

Let Gθ denote the CDF associated with gθ . Our first task is

to sample X from Gθ when the distribution is known only

through a transform. We will accomplish this by tabulating

values of Gθ (x) calculated through numerical transform

inversion, and then using the table to generate samples. We

could restrict ourselves to working with the characteristic

function; there is little practical difference between shifting

the integration contour to invert a characteristic function and

working directly with the Laplace transform in the complex

plane, so we present the inversion steps using the latter.

The two-sided Laplace transform of a function f is given

by

L f (t) =
∫ ∞

−∞
e−tx f (x)dx,

where t = σ + iω is a complex variable. This transform

is two-sided because the lower limit of integration is −∞
rather than zero. For background on two-sided Laplace

transforms, see Widder (1941), Chapter VI.

For the transform Lgθ
of gθ , we suppose that the region

of convergence includes an interval (σl ,σu), where σl < 0

and σu > 0. By Widder (1941), p.242, Theorem 5b, we

have LGθ
(t) = Lgθ

(t)/t for Re(t) ∈ (0,σu), and we have

LḠθ
(t) =−Lgθ

/t for Re(t)∈ (σl ,0) and Ḡθ = 1−Gθ . Under
9

mild condition on gθ ,

Lġθ
=
∫ ∞

−∞
e−tx ∂

∂θ
gθ (x)dx

=
∂

∂θ

∫ ∞

−∞
e−txgθ (x)dx =

∂

∂θ
Lgθ

. (3)

We assume that the region of convergence of Lġθ
also

includes (σl ,σu).
Using numerical transform inversion, we can approxi-

mate the value of Gθ (x) at any x. We will build an approx-

imation Ĝθ to the function Gθ by inverting the transform

at a fixed set of x values and interpolating between these

values. In more detail, we calculate Ĝθ as follows:

1. Pick a grid on the x-axis: {x j, j ∈ J} where J

is a finite index set, x j − x j−1 = δ for j ∈ J. Let

jmin = min{ j ∈ J} and xmin = x jmin
. Define jmax

and xmax accordingly.

2. Let G j denote the approximation to Gθ (x j) calcu-

lated through numerical transform inversion. Set

Gmin ≡ G jmin
≈ 0 and Gmax ≡ G jmax ≈ 1.

3. For any x ∈ [x j−1,x j], use piecewise linear inter-

polation to get Ĝθ (x):

Ĝθ (x) =
x− x j−1

δ
G j +

x j − x

δ
G j−1. (4)

4. For x < xmin, let Ĝθ (x) = 0; for x > xmax, let

Ĝθ (x) = 1.

We defer the selection of δ , xmin and xmax for later discussion.

To ensure that Ĝθ is monotone increasing, we require G j ≥
G j−1, for all j ∈ J. While this is not automatically guaranteed

because of numerical error in transform inversion, we will

enforce this property in the method of the next section.

We denote by X̂ a random variable with distribution

Ĝθ (x). The density of X̂ is denoted by ĝθ (x) and equals

dĜθ (x)/dx, which is a piecewise constant function:

ĝθ (x) =

{

(G j −G j−1)/δ , if x ∈ [x j−1,x j), j ∈ J;

0, if x < xmin or x > xmax.
(5)

We sample from Ĝθ (x) as follows:

1. Generate U ∼U[0, 1].

2. Find the index j such that G j−1 ≤U < G j.

3. Set

X̂ =
Uδ + x j−1G j − x jG j−1

G j −G j−1
. (6)

By sampling from Ĝθ (x), we can estimate Eθ [V (X̂)],
with Eθ indicating that X̂ ∼ Ĝθ . In order to estimate the

sensitivity Eθ [V (X̂)Ŝθ (X̂)], where Ŝθ (x) = ˙̂gθ (x)/ĝθ (x) and
33
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˙̂gθ (x) = ∂ ĝθ (x)/∂θ , we compute ˙̂gθ (x) as follows:

˙̂gθ (x) =

{

(Ġ j − Ġ j−1)/δ , if x ∈ [x j−1,x j), j ∈ J;

0, if x < xmin or x > xmax,
(7)

where Ġ j ≈ Ġθ (x j) is calculated through numerical inversion

of the transform of Ġθ . So, as we compute each G j to

construct the approximation Ĝθ , we also compute Ġ j in

order to be able to evaluate ˙̂gθ (x).
Once these values are computed and stored, sampling

is easy and fast, so the key question is the quality of the

approximation; i.e., the difference between Eθ [V (X̂)] and

Eθ [V (X)], and the difference between Eθ [V (X̂)Ŝθ (X̂)] and

Eθ [V (X)Sθ (X)]. These differences have several sources,

including numerical errors in transform inversion and dis-

cretization errors in the approximation Ĝθ . In the next

section, we discuss transform inversion and the associated

error analysis.

3 THE FOURIER-SERIES METHOD FOR

LAPLACE INVERSION

Abate and Whitt (1992) defined and analyzed a Fourier-

series inversion formula for the one-sided Laplace transform,

and we follow their approach. Extending it to the two-sided

case (see Cai, Kou and Liu 2007) yields, for a function f

and its two-sided Laplace transform L f ,

f (x) =
eσx

π

∫ ∞

0

[

Re[L f (σ + iω)]cos(ωx)

−Im[L f (σ + iω)]sin(ωx)
]

dω. (8)

We abbreviate this formula as f (x) = Ix(L f ).
Employing the trapezoidal rule to numerically evaluate

the infinite integral in (8) with a step size h gives

Ih
σ ,x(L f ) =

heσx

2π
L f (σ)+

heσx

π

∞

∑
k=1

[

Re[L f (σ + ikh)]cos(khx)

−Im[L f (σ + ikh)]sin(khx)
]

, (9)

where σ can be any point in (σl ,σu) and can be chosen to

depend on x.

As in Abate and Whitt (1992), we truncate the infinite

sum in (9); let I
N,h
σ ,x (L f ) denote the truncation of the series

in (9) to the first N terms. We call Tp = Nh the truncation

point.

Applying the Fourier-series method to Lgθ
, we ob-

tain Ih
σ ,x(Lgθ

) and I
N,h
σ ,x (Lgθ

). The discretization error at x

resulting from step size h is

ed
σ (x) = Ih

σ ,x(Lgθ
)−gθ (x);
we can show that ed
σ (x) ≥ 0 (see Appendix A). The trun-

cation error is

et
σ (x) = I

N,h
σ ,x (Lgθ

)− Ih
σ ,x(Lgθ

).

Thus, I
N,h
σ ,x (Lgθ

) = gθ (x) + ed
σ (x) + et

σ (x). Likewise, we

define ėd
σ (x) = Ih

σ ,x(Lġθ
)− ġθ (x) and ėt

σ (x) = I
N,h
σ ,x (Lġθ

)−
Ih
σ ,x(Lġθ

).
We will apply the Fourier-series method in a way that

ensures monotonicity of G j, j ∈ J, and ensures that G jmin

approaches 0 and G jmax approaches 1 as x jmin
and x jmax

approach −∞ and +∞, respectively. First, we make the

following observation about the behavior of the inversion

method at extreme values of x:

Proposition 1 For any σ ∈ (0,σu),

I
N,h
σ ,x (LGθ

) → 0 as x →−∞,

|IN,h
σ ,x (LGθ

)| → ∞ as x → ∞;

for any σ ∈ (σl ,0),

I
N,h
σ ,x (LḠθ

) → 0 as x → ∞,

|IN,h
σ ,x (LḠθ

)| → ∞ as x →−∞.

Proof: By looking at the formula of I
N,h
σ ,x (LGθ

) and

I
N,h
σ ,x (LḠθ

), we have I
N,h
σ ,x (LGθ

) = O(eσx) and I
N,h
σ ,x (LḠθ

) =
O(eσx), which yields the conclusion. 2

From this result we see that, in order for the G j to

approach 0 and 1 at extreme values of x jmin
and x jmax , we

can pick σ+ ∈ (0,σu) and σ− ∈ (σl ,0), and let

G j =

{

I
N,h
σ+,x j

(LGθ
), if x j ≤ 0;

1− I
N,h
σ−,x j

(LḠθ
), if x j > 0.

(10)

For the monotonicity of the G j , we will use the following

property of the Fourier-series method, which can be verified

by direct differentiation:

Proposition 2 Let f be a density with CDF F.

Suppose the interval (σ1,σ2) is within the region of con-

vergence of LF and L f , where σ1 < 0 and σ2 > 0. Then for

any σ ∈ (0,σ2),

d

dx
I

N,h
σ ,x (LF) = I

N,h
σ ,x (L f ). (11)

Similarly, if F̄(x) is the complementary CDF, then for any

σ ∈ (σ1,0),

d

dx
I

N,h
σ ,x (LF̄) = −I

N,h
σ ,x (L f ). (12)
934



Glasserma
Because I
N,h
σ ,x (Lgθ

) = gθ (x)+ed
σ (x)+et

σ (x) and ed
σ (x)≥

0, we may conclude that I
N,h
σ ,x (Lgθ

) is nonnegative for all

sufficiently large N, at any point at which gθ (x) is strictly

positive. From Proposition 2, we see that nonnegativity of

I
N,h
σ ,x (Lgθ

) implies monotonicity of I
N,h
σ ,x (LGθ

) and I
N,h
σ ,x (LḠθ

).
In practice, we do not know how large N needs to be, so

we apply the following rule: if it happens that G j0 < G j0−1

for some j0, we simply let G j0 = G j0−1 to make G j, j ∈ J

a monotonically increasing sequence. The steps we use to

construct the sequence G j are as follows:

1. Let x0 = Eθ [X ] = −L′
gθ

(0). We start from x0 in

constructing our grid. Compute G0 by (10). For

this value we use a very large truncation point to

get an accurate value for G0.

2. Let x j = x0 + jδ and and x− j = x0 − jδ . Compute

G± j by (10). After getting G j and G− j, we adjust

their values by the following rule:

• If G j < G j−1 then set G j = G j−1; if G− j >
G−( j−1) then set G− j = G−( j−1).

3. We continue for j = 1,2, . . . until we find jmax > 0

and jmin < 0 such that G jmax ≈ 1 or xmax ≡ x jmax is

large enough, and G jmin
≈ 0 or xmin ≡ x jmin

is large

enough in the negative direction. We will explain

how to determine the magnitude of xmax and xmin

in the next section.

We then set J = { jmin, jmin +1, . . . , jmax −1, jmax} and use

{x j, j ∈ J} as our grid.

In the next two sections, we discuss the errors in estimat-

ing prices and sensitivities using the Fourier-series method.

It will be important to keep in mind that we use σ− ∈ (σl ,0)
in computing values at x > 0, and we use σ+ ∈ (0,σu) for

all x < 0.

4 ERROR ANALYSIS FOR PRICES

In this section, we analyze the error in estimating a price,

i.e., the difference between Eθ [V (X̂)] and Eθ [V (X)]. For

simplicity, we let

IN,h
x (Lgθ

) =

{

I
N,h
σ+,x(Lgθ

), if x ≤ 0;

I
N,h
σ−,x(Lgθ

), if x > 0,
(13)

and let ed(x) = 1{x > 0}ed
σ−(x) + 1{x ≤ 0}ed

σ+
(x) and

et(x) = 1{x > 0}et
σ−(x) + 1{x ≤ 0}et

σ+
(x), where 1{·} is

the indicator function.

We can decompose the error using

∣

∣Eθ [V (X̂)]−Eθ [V (X)]
∣

∣

=

∣

∣

∣

∣

∫ xmax

xmin

V (x)ĝθ (x)dx−
∫ ∞

−∞
V (x)gθ (x)dx

∣

∣

∣

∣
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≤
∣

∣

∣

∣

∫ xmax

xmin

V (x)ĝθ (x)dx−
∫ ∞

−∞
V (x)IN,h

x (Lgθ
)dx

∣

∣

∣

∣

(14)

+

∣

∣

∣

∣

∫ ∞

−∞
V (x)

(

IN,h
x (Lgθ

)−gθ (x)
)

dx

∣

∣

∣

∣

. (15)

We will analyze (15) first, and then turn to (14). Note that

∣

∣

∣

∣

∫ ∞

−∞
V (x)

(

IN,h
x (Lgθ

)−gθ (x)
)

dx

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ ∞

−∞
V (x)(ed(x)+ et(x))dx

∣

∣

∣

∣

≤
∫ ∞

−∞
V (x)ed(x)dx+

∣

∣

∣

∣

∫ ∞

−∞
V (x)et(x)dx

∣

∣

∣

∣

(16)

In order to bound the error, we need to impose some

conditions. Our condition on Lgθ
is the following:

Assumption 1 For any σ in (σl ,σu), as ω → ∞,

|Re[Lgθ
(σ + iλω)]| = O(λ−αRRe[Lgθ

(σ + iω)])

and

|Im[Lgθ
(σ + iλω)]| = O(λ−αI Im[Lgθ

(σ + iω)])

uniformly in λ ≥ 1, for some αR > 1 and αI > 1.

This assumption is not very restrictive. For example,

it holds if Re[Lgθ
(σ + iω)] and Im[Lgθ

(σ + iω)] are regu-

larly varying functions (of ω) with negative indices, or if

− log(Re[Lgθ
(σ + iω)] and − log(Im[Lgθ

(σ + iω)] are reg-

ularly varying functions with positive indices. See, e.g.,

Bingham, Goldie and Teugels (1987) for background on

regular variation.

We impose the following condition on the payoff func-

tion V :

Assumption 2 For x > 0, 0 ≤ V (x) ≤ Cvev+x, and

for x < 0, 0 ≤ V (x) ≤ Cvev−x, for some constants Cv > 0,

v+ ∈ (0,−σl), and v− ∈ (−σu,0).
This assumption is more than sufficient to ensure that

Eθ [V (X)] exists, and it is satisfied by many standard option

payoffs.

For fixed σ− ∈ (σl ,0) and σ+ ∈ (0,σu), let

M±(Tp) = |Lgθ
(σ± + iTp)|.

We now have the following:

Theorem 1 Under Assumptions 1 and 2, we can

find σ− ∈ (σl ,0) and σ+ ∈ (0,σu) such that

∫ ∞

−∞
V (x)ed(x)dx = O(e−C/h),

5



Glasserma
for some constant C > 0, and

∣

∣

∣

∣

∫ ∞

−∞
V (x)et(x)dx

∣

∣

∣

∣

= O(max{M−(Tp),M+(Tp)}).

Proof: See Appendix A.

Through (16), this result determines the order of (14).

We turn next to (15) and decompose this error term as

∣

∣

∣

∣

∫ xmax

xmin

V (x)ĝθ (x)dx−
∫ ∞

−∞
V (x)IN,h

x (Lgθ
)dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ xmin

−∞
V (x)IN,h

x (Lgθ
)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

xmax

V (x)IN,h
x (Lgθ

)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ xmax

xmin

V (x)(ĝθ (x)− IN,h
x (Lgθ

))dx

∣

∣

∣

∣

For the last term, we have the following result:

Lemma 1 If V is continuous on the interval

[x j−1,x j], then

∣

∣

∣

∣

∫ x j

x j−1

V (x)(ĝθ (x)− IN,h
x (Lgθ

))dx

∣

∣

∣

∣

= O(δ 2).

If furthermore V is differentiable, then

∣

∣

∣

∣

∫ x j

x j−1

V (x)(ĝθ (x)− IN,h
x (Lgθ

))dx

∣

∣

∣

∣

= O(δ 3).

Through this lemma, we arrive at the following result:

Theorem 2 IfV is differentiable almost everywhere,

then

∣

∣

∣

∣

∫ xmax

xmin

V (x)(ĝθ (x)− IN,h
x (Lgθ

))dx

∣

∣

∣

∣

= O(δ 2),

and there are positive constant Cmin and Cmax for which

∣

∣

∣

∣

∫ xmin

−∞
V (x)IN,h

x (Lgθ
)dx

∣

∣

∣

∣

= O(e−Cmin|xmin|),

and
∣

∣

∣

∣

∫ ∞

xmax

V (x)IN,h
x (Lgθ

)dx

∣

∣

∣

∣

= O(e−Cmax|xmax|).

Proof: Given Lemma 1, we only need to establish the

two tail errors. Since I
N,h
x (Lgθ

) = O(eσ−x) when x → ∞ and

I
N,h
x (Lgθ

) = O(eσ+x) when x →−∞, the result follows. 2

This result indicates that we can set xmin and xmax large

enough in absolute value to make

∣

∣

∣

∣

∫ xmin

−∞
V (x)IN,h

x (Lgθ
)dx

∣

∣

∣

∣
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and
∣

∣

∣

∣

∫ ∞

xmax

V (x)IN,h
x (Lgθ

)dx

∣

∣

∣

∣

negligible compared to

∣

∣

∣

∣

∫ xmax

xmin

V (x)(ĝ(x)− IN,h
x (Lgθ

))dx

∣

∣

∣

∣

.

With this specification, we can combine Theorems 1 and 2

to quantify the pricing error:

Corollary 3 Under the foregoing conditions,

∣

∣Eθ [V (X̂)]−Eθ [V (X)]
∣

∣=

O(δ 2)+O(e−C/h)+O(max{M−(Tp),M+(Tp)}).

5 ERROR ANALYSIS FOR SENSITIVITIES

In this section, we analyze the error in estimating the sen-

sitivity, i.e., |Eθ [V (X̂)Ŝθ (X̂)]−Eθ [V (X)Sθ (X)]|. Much as

in the previous section, we define

IN,h
x (Lġθ

) =

{

I
N,h
σ+,x(Lġθ

) if x ≤ 0

I
N,h
σ−,x(Lġθ

) if x > 0,

and we let ėd(x) = 1{x > 0}ėd
σ−(x)+ 1{x ≤ 0}ėd

σ+
(x) and

ėt(x) = 1{x > 0}ėt
σ−(x)+1{x ≤ 0}ėt

σ+
(x).

We bound the error in the sensitivity estimate as

∣

∣Eθ [V (X̂)Ŝθ (X̂)]−Eθ [V (X)Sθ (X)]
∣

∣

=

∣

∣

∣

∣

∫ xmax

xmin

V (x) ˙̂gθ (x)dx−
∫ ∞

−∞
V (x)ġθ (x)dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫ xmax

xmin

V (x) ˙̂gθ (x)dx−
∫ ∞

−∞
V (x)IN,h

x (Lġθ
)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫ ∞

−∞
V (x)(IN,h

x (Lġθ
)− ġθ (x))dx

∣

∣

∣

∣

.

The form of this bound is very similar to that used for the

error in the price estimate, but now with derivatives of gθ .

We require that

∫ ∞

−∞
|ġθ (x)|dx < ∞,

and much as in Assumption 1, we impose

Assumption 3 For any σ in (σl ,σu), as ω → ∞,

|Re[Lġθ
(σ + iλω)]| = O(λ−α̇RRe[Lġθ

(σ + iω)])

6
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and

|Im[Lġθ
(σ + iλω)]| = O(λ−α̇I Im[Lġθ

(σ + iω)])

uniformly in λ ≥ 1, for some α̇R > 1 and α̇I > 1.

For fixed σ− and σ+, let

Ṁ±(Tp) = |Lġθ
(σ± + iTp)|.

With these assumptions and definitions, the analysis in

the previous section goes through with appropriate modifi-

cation, leading to the following result:

Theorem 4 Under Assumptions 2 and 3, using the

same σ− and σ+ as in Theorem 1,

∫ ∞

−∞
V (x)|ėd(x)|dx = O(e−Ċ/h),

for some positive constant Ċ, and

∣

∣

∣

∣

∫ ∞

−∞
V (x)ėt(x)dx

∣

∣

∣

∣

= O(max{Ṁ−(Tp),Ṁ+(Tp)}).

6 A NUMERICAL EXAMPLE

In the previous sections, we have focused on the bias in

estimating prices and sensitivities. As a measure of overall

simulation error, we use mean square error (MSE), which

is the sum of the squared bias and the estimator variance.

If we use Ns simulation trials, then the MSE for the price

estimate is

MSEprice =

(O(max{M−(Tp),M+(Tp)}) +O(e−C/h)+O(δ 2)
)2

+
Varprice

Ns

,

and for the sensitivity, the MSE is

MSEsen =
(

O(max{Ṁ−(Tp),Ṁ+(Tp)}) +O(e−Ċ/h)+O(δ 2)
)2

+
Varsen

Ns

,

where Varprice and Varsen denote the variance per replication

of the price estimate and sensitivity estimate, respectively.

Several factors affect the two MSEs, including the

truncation parameter Tp, the step size h, the grid parameter

δ , and the number of paths Ns. To make each MSE converge

to 0, we need to change all of these factors simultaneously,

and, for efficiency, we should do so at rates consistent with

93
their impact on the MSE. In this section, we use the Variance

Gamma (VG) model (as in, e.g., Madan, Carr and Chang

1998) to illustrate how to change the values of the factors

appropriately based on the error analysis.

The function we use is the discounted payoff for a

European call option,

V (X) = e−rT max(ST −K,0),

where T is the maturity of the option and ST follows

formula (22) in Madan, Carr and Chang (1998), in which

ST = S0 exp(aT +XT ), X is a VG process, and

a = r +
1

ν
log(1−θν −ρ2ν/2), (17)

with r a constant interest rate and ρ , ν , and θ parameters

of the model. The Laplace transform of XT appears in (2).

The region of convergence of the Laplace transform is

the vertical strip in the complex plane that intersects the

real axis on the interval

(

θν −
√

θ 2ν2 +2ρ2ν

ρ2ν
,

θν +
√

θ 2ν2 +2ρ2ν

ρ2ν

)

.

For any σ in this interval, |Lvg(σ + iω)| has a power decay

(as ω → ∞) with rate 2T/ν . Therefore, the MSE for the

price in VG model is

MSEprice,vg =
(

O(T
−2T/ν
p )+O(e−C/h)+O(δ 2)

)2

+
Varprice

Ns

. (18)

To reduce the MSE, we need to increase Tp, decrease

h, decrease δ , and increase Ns. The purpose of our error

analysis is to guide the allocation of computational effort.

We increase or decrease these parameters to equate the

magnitude of the error reduction in each source of error.

From (18), we see that if Tp increases by a factor of 10,

then h should decrease by a factor of Cν/(2T log10), δ
should decrease by a factor of 10T/ν , and the number of

replications should increase by a factor of 104T/ν . (Our

choice of C is specified in the proof of Theorem 1 in the

Appendix.) With these changes, the RMSE (the square root

of the MSE) for the price estimate should decrease by a

factor of 102T/ν .

The rate of decrease of the RMSE is constrained by the

slowest rate in (18); if we were to change the parameters Tp,

h, δ , and Ns without equating the overall rates of decrease in

the corresponding error terms, we would be allocating too

much computational effort to some parts of the algorithm,

insufficient effort to others. All of these statements should

be understood in the big-O sense provided by our results.

7
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In our examples, we use the following values for the

VG process and the call option payoff:

S0 = 100 K = 100 r = 0.05

T = 1 ρ = 0.2 θ = −0.15

We compare results at ν = 1 and ν = 0.5. Using the formula

in Madan, Carr and Chang (1998) for the prices of European

call options, we get the values in Table 1, against which

we compare the simulation estimates.

Table 1: European call prices for VG model

ν Call Price

1 11.2669

0.5 10.9292

To test our sensitivity estimates, we calculate sensitiv-

ities with respect to the model parameter ρ and the initial

price S0 of the underlying asset. By applying finite differ-

ence approximations to the formula for option prices, we

get the derivative values in Table 2.

Table 2: Derivatives for VG model

Parameter Derivatives

ν = 1 ν = 0.5
S0 0.7282 0.6927

ρ 23.0434 28.5971

To apply LRM, we need to move the dependence on S0

and ρ into the density; recall from (17) that a is a function

of ρ . We therefore work with the random variable logS0 +
aT +XT , whose Laplace transform is S−t

0 exp(−aTt)Lvg(t).
For the parameter S0, the Laplace transform of the partial

derivative is −tLvg(t)/S0; for the parameter ρ , the Laplace

transform of the derivative is ∂ (S−t
0 exp(−aTt)Lvg(t))/∂ρ .

In both cases, the sensitivity MSE is

MSEsen,vg =
(

O(T
−(2T/ν)+1
p )+O(e−C/h)+O(δ 2)

)2

+
Varsen

Ns

.(19)

The impact of the truncation point Tp in the sensitivity

MSE (19) differs from that in the price MSE (18) and results

in a slower overall rate of convergence. For example, with

ν = 1, we get 2T/ν = 2, so the optimal RMSE for the price

is O(T−2
p ) whereas for the sensitivity it is O(T−1

p ). Thus,

to decrease the price RMSE by a factor of 10, we increase

the truncation point by a factor of
√

10, but to decrease

the sensitivity RMSE by a factor of 10 we increase the

truncation point by a factor of 10. A similar comparison

applies with ν = 0.5. In each case, we also change h, δ
and Ns consistent with (19) and (18).
938
Table 3 shows numerical results for price estimates with

ν = 1. From each row to the next, we multiply Tp by
√

10

and change the other parameters at the corresponding rates.

The initial values are set (somewhat arbitrarily) by equating

T−2
p = δ 2 = e−C/h. In the “Error” column, we report the

difference between the simulation mean and the formula

price. In general agreement with our analysis, the error

decreases by roughly a factor of 10 from each row to the

next. In order to get reliable estimates for our comparison,

we use a larger number of replications than would be optimal

under our analysis. In practice, we would try to set the

value of Ns to make the standard error approximately equal

to the bias.

Table 3: Results for prices, with ν = 1.

Tp δ Ns Mean Error Std

20 0.05 5E4 11.0835 -0.1834 0.0593

63.25 0.0158 5E6 11.2476 -0.0193 0.0058

200 0.005 5E8 11.2622 -0.0047 0.0006

Tables 4 and 5 show numerical results for the sensi-

tivities with ν = 1. The error decreases by approximately√
10 from one row to the next, in line with our analysis.

Table 4: Results for sensitivities to S0, with ν = 1.

Tp δ Ns Mean Error Std

20 0.05 5E4 0.8842 0.1560 0.0105

63.25 0.0158 5E6 0.7812 0.0530 0.0009

200 0.005 5E8 0.7508 0.0226 0.00008

Table 5: Results for sensitivities to ρ , with ν = 1.

Tp δ Ns Mean Error Std

20 0.05 5E4 19.9978 -3.0456 1.6666

63.25 0.0158 5E6 22.5957 -0.4478 0.1242

200 0.005 5E8 22.9118 -0.1316 0.0114

Tables 6, 7 and 8 show numerical results for ν = 0.5. In

this case, the modulus of the Laplace transform decays more

quickly, so we start with a smaller value of Tp and increase

it by a factor of
4
√

10 from one row to the next. This should

decrease the price error by a factor of 10 and the sensitivity

error by a factor of 103/4 ≈ 5.6 in each case. The results in

the tables are roughly in line with these predictions, though

the convergence in Table 6 is a bit slower than expected.

7 SUMMARY

We have proposed and tested a method for estimating price

sensitivities by simulation using the likelihood ratio method

when the underlying density is known only through its

characteristic function or Laplace transform. The method
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Table 6: Results for prices, with ν = 0.5.

Tp δ Ns Mean Error Std

12 0.0069 5E4 10.7984 -0.1308 0.0621

22.33 0.0020 5E6 10.8670 -0.0622 0.0062

41.57 0.0006 5E8 10.9172 -0.0120 0.0006

Table 7: Results for sensitivities to S0, with ν = 0.5.

Tp δ Ns Mean Error Std

12 0.0069 5E4 0.6731 -0.0196 0.0069

22.33 0.0020 5E6 0.6894 -0.0032 0.0008

41.57 0.0006 5E8 0.6922 -0.0004 0.00007

Table 8: Results for sensitivities to ρ , with ν = 0.5.

Tp δ Ns Mean Error Std

12 0.0069 5E4 26.0214 -2.5757 1.4963

22.33 0.0020 5E6 27.9911 -0.6060 0.1211

41.57 0.0006 5E8 28.4800 -0.1171 0.0116

uses numerical transform inversion and incurs several types

of error; we have presented results on the convergence rates

of these errors and illustrated these results in the Variance

Gamma model. In this example, the main determinant of

the overall convergence rate is the truncation point used in

the transform inversion, and this parameter results in slower

convergence of sensitivity estimates than of price estimates.

A THEOREM 1: SKETCH OF PROOF

In proving the first statement in the theorem, we use the

Poisson summation formula in Abate and Whitt (1992),

Section 5, and get

ed
σ (x) =

∞

∑
k=−∞,k 6=0

exp

(−2πσk

h

)

gθ

(

x+
2πk

h

)

. (20)

Because gθ is nonnegative, ed
σ (x)≥ 0, and ed

σ (x) = 0 if and

only if gθ (x+2πkh−1) = 0 for all nonzero k.

To simplify notation, we now write g and L instead

of gθ and Lgθ
. Because L is finite on (σl ,σu), for any

σ in this interval we have g(x) < eσx for all sufficiently

large |x|. In particular, we can choose ε > 0 sufficiently

small to have σl,ε ≡ σl +ε <−v+ and σu,ε ≡ σu−ε >−v−,

and then have g(x) < eσl,ε x, for all sufficiently large x, and

g(x) < eσu,ε x for all sufficiently large −x.
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Now suppose x > 0 and take σ = σ−, a negative number.

For sufficiently small h > 0, (20) gives

ed
σ−(x)≤

∞

∑
k=1

exp

(−2πσ−k

h
+σl,ε

(

x+
2πk

h

))

+
−1

∑
k=−∞

exp

(−2πσ−k

h

)

g

(

x+
2πk

h

)

. (21)

The first term is less than or equal to

2exp

(

σl,ε x− 2π(σ−−σl,ε)

h

)

,

if h is sufficiently small. It follows that

∫ ∞

0
V (x)ed

σ−(x)dx

≤Cv

∫ ∞

0

[

2e(σl,ε +v+)xe−
2π(σ−−σl,ε )

h

+
−1

∑
k=−∞

e
−2πσ−k

h e
−2πv+k

h ev+(x+2πk/h)g(x+
2πk

h
)

]

dx

The first term on the right can be integrated to get

−2Cv

σl,ε + v+
exp

(

−2π(σ−−σl,ε)

h

)

.

We bound the second term by

Cv

−1

∑
k=−∞

e
−2π(σ−+v+)k

h

∫ ∞

0
ev+(x+2πk/h)g(x+

2πk

h
)dx

≤CvL(−v+)
−1

∑
k=−∞

e
−2π(σ−+v+)k

h

≤ 2CvL(−v+)e
2π(σ−+v+)

h .

So, if we let σ− = (σl − v+)/2, then

∫ ∞

0
V (x)ed

σ−(x)dx = O(e−C1/h),

with C1 = −π(σl + v+).
By a similar argument, when when x < 0, we can let

σ+ = (σu − v−)/2 and C2 = π(σu + v−) to get

∫ 0

−∞
V (x)ed

σ+
(x)dx = O(e−C2/h).

Setting C = min{C1,C2} concludes the proof of the first

statement in the theorem.
9
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To illustrate the argument for the second part of the

theorem, we simplify to V ≡ 1. Note that, using Assump-

tion 1,

∣

∣

∫ ∞

0
et

σ−(x)dx
∣

∣

≤ h

π

∞

∑
k=1

(

∣

∣Re[L(σ− + iTp + ikh)]
∫ ∞

0
eσ−x cos((kh+Tp)x)dx

∣

∣

+
∣

∣Im[L(σ− + iTp + ikh)]
∫ ∞

0
eσ−x sin((kh+Tp)x)dx

∣

∣

)

≤ h

π

∞

∑
k=1

(

∣

∣Re[L(σ− + iTp(1+
k

N
))]
∣

∣

−σ−
σ2
− +(kh+Tp)2

+
∣

∣Im[L(σ− + iTp(1+
k

N
))]
∣

∣

kh+Tp

σ2
− +(kh+Tp)2

)

≤ h

π

∞

∑
k=1

(

∣

∣Re[L(σ− + iTp)]
∣

∣(1+
k

N
)−αR

−σ−
σ2
− +(kh+Tp)2

+
∣

∣Im[L(σ− + iTp)]
∣

∣(1+
k

N
)−αI

kh+Tp

σ2
− +(kh+Tp)2

)

≤ h

π
|L(σ− + iTp)|

∞

∑
k=1

(

(1+
k

N
)−αR

−σ−
σ2
− +(kh+Tp)2

+(1+
k

N
)−αI

kh+Tp

σ2
− +(kh+Tp)2

)

= O(|L(σ− + iTp)|)

Similarly, the integral from −∞ to 0 is O(|L(σ+ + iTp)|).
This conclusion continues to hold for V satisfying Assump-

tion 2. 2
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