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ABSTRACT

This paper reviews the use of Monte Carlo simulation in
the field of financial engineering. It focuses on several
interesting topics and introduces their recent development,
including path generation, pricing American-style deriva-
tives, evaluating Greeks and estimating value-at-risk. The
paper is not intended to be a comprehensive survey of the
research literature.

1 INTRODUCTION

Many problems in financial engineering focus on estimating
a certain value, e.g., pricing derivative securities, computing
price sensitivities, evaluating portfolio risks. The value can
often be written as or transformed to an expectation of a
complicated random variable whose behavior is modeled as a
stochastic process. Monte Carlo simulation is a method that
is often used to estimate expectations. Compared to other
numerical methods, Monte Carlo simulation has several
advantages. First, it is easy to use. In most situations, if
the sample paths from the stochastic process model can be
simulated, then the value can be estimated. Second, its rate of
convergence typically does not depend on the dimensionality
of the problem. Therefore, it is often attractive to apply
Monte Carlo simulation to problems with high dimensions.

To apply Monte Carlo simulation to estimate a financial
value, there are typically three steps: generating sample
paths, evaluating the payoff along each path, and calculating
an average to obtain estimation. In this paper, we will discuss
the recent development of these steps and their applications.
Before that, we will first provide a financial background for
readers who are not familiar with financial engineering.

In Section 3 we discuss path generation. Since simula-
tion can only generate sample paths in discrete times, how
to control discretization error becomes the central issue in
path generation. In this section, we first introduce Euler and
Milstein discretization schemes, and compare their rates of
convergence. We further introduce the recent development
91-4244-1306-0/07/$25.00 ©2007 IEEE
on exact simulation, which aims to generate sample paths
that have no discretization error.

The evaluation of payoffs along sample paths for deriva-
tives is often straight-forward except for American-style
derivatives. For the evaluation step for derivatives that are
not American style, the research has focused mainly on
improving the efficiency of simulation. A good review of
those methods can be found in Staum (2002), which re-
views the development of Monte Carlo method in financial
engineering by 2002. In this paper, we focus on the pricing
of American-style derivatives, and introduce some recent
work, e.g., stochastic mesh method and dual method, in
Section 4.

Besides pricing of derivative securities, we also intro-
duce some applications of Monte Carlo simulation in risk
management. For the practical purpose of risk management,
people always want to know price sensitivities (Greeks) and
Value-at-Risk (VaR) of an investment portfolio. We discuss
the estimation of Greek and VaR estimation in Section 5.

2 FINANCIAL BACKGROUND

One topic at the core of the field of financial engineering
is how to evaluate derivative securities “fairly”. Derivatives
are financial instruments whose payoffs are derived from
underlying market variables such as stock prices, commodity
prices, market indices and interest rates, etc. A standard
example of such derivatives is European options contingent
on an underlying asset. The option entitles the holder a right
to buy (call) or sell (put) a certain amount of underlying
assets from or to the option issuer on the option maturity
for a pre-specified price (exercise price or strike price).

The payoff of a derivative usually depends on the future
prices of the underlying. Consider a European call option as
an example. Denote K to be its strike price. When the option
matures, the holder will exercise the right when the spot
price of the underlying ST > K and will not do so if ST ≤K.
Therefore the payoff of the European option is given by
max{ST −K,0}. Consequently, the pricing problem now
boils down to find a way to derive the present value of such
19
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future payoffs, which are dependent on the future prices of
the underlying, from the current underlying information.

As a very first step towards the target, it is indispensable
to establish an accurate model to describe the underlying
asset movements. In finance, the following system of SDEs
is widely used:

dSi
t

Si
t

= µi(t,St)dt +
k

∑
j=1

σi j(t,St)dW j
t , 1 ≤ i ≤ d, (1)

where St = (S1
t , · · · ,Sd

t ) is the values of the underlyings
at time t, W = (W 1

t , · · · ,W k
t ) is a standard k-dimensional

Brownian motion to capture the random fluctuation of the
underlyings, and each of µi and σi j are scalar-valued func-
tions. In addition, a risk free money market account is often
introduced, whose dynamic is given by dS0

t /S0
t = rtdt, where

rt is the instantaneous risk free interest rate at time t.
Based on such models, starting from Black and Sc-

holes (1973) and Merton (1973), an elegant and remarkably
practical mathematical theory of derivative pricing has been
developed. Detailed treatment of the theory is obviously
not suitable for a tutorial paper like this. In the rest of the
section we would like to highlight some principles of the
theory, especially focusing on those bridging the connection
between the theory and Monte Carlo simulation, and refer
readers to Björk (1998) and Duffie (2001) and the references
therein for further background.

Two major approaches exist in the literature to derive
financial derivative prices: one is through replication ar-
gument and the other through risk neutral probability. In
details, suppose that model (1) holds and we have a deriva-
tive with payoff function Φ(ST ). Denote the derivative value
at time t to be V (t,S0

t ,St) when the money market account is
S0

t and the underlying price is St . Then the former approach
will show that V must satisfy the following PDE:

∂V
∂ t

+
1
2

d

∑
i, j=1

Σi jSi
tS

j
t

∂ 2V
∂SiS j

= rtS0
t

∂V
∂S0 . (2)

for 0 ≤ t ≤ T and the boundary condition V (T,S0
T ,ST ) =

Φ(ST ), where Σi j = ∑
k
l=1 σilσl j.

In theory, we may call for numerical methods to solve
the above PDE (2) for the derivative price. But several
features limit the feasibility of the approach. First, when
the dynamic (1) is complicated, the solution to the PDE
(2) may be very difficult to obtain or even fail to exist;
second, high dimensional assets (e.g., d ≥ 3) will make the
numerical solution of the PDE impractical; third, it is not
easy to derive the corresponding PDE for such derivatives as
Asian options, whose payoffs depend on the whole sample
path of the underlying assets’ historical price.

The introduction of risk neutral pricing overcomes
the barriers that the PDE approach encounters. According
9

to the Feynman-Kac formula (Karatzas and Shreve 1991,
Chapter 4), the solution to (2) has a very nice probabilistic
representation:

V (t,s) = Ẽ[e−
∫ T
t rsds

Φ(ST )|St = s], (3)

where Ẽ is the expectation under a new probability measure
P̃. Under it, the dynamic of underlying price S is given by

dSi
t

Si
t

= rtdt +
k

∑
j=1

σi j(t,St)dW̃ j
t , 1 ≤ i ≤ d, (4)

where W̃ is the standard Brownian motion under new proba-
bility P̃. Notice that in (4), the expected returns of underlying
assets are always the same as the risk free interest rate r.
That is why people call the new measure “risk neutral”.

The relation (3) demonstrates the applicability of Monte
Carlo simulation to the field of derivative pricing. Now
what we need to do is simply to estimate the expectation
of some functions of sample paths of a diffusion process.
Notice that the difference of (1) and (4) in their financial
interpretation plays no role from the view point of Monte
Carlo simulation. Thus, from now on, we always consider
the following general model

dSi
t = ai(t,St)dt +

k

∑
j=1

bi j(t,St)dW j
t , 1 ≤ i ≤ d (5)

and how to evaluate the expectation E[Φ(S)] efficiently,
skipping all irrelevant detailed financial interpretation.

In contrast to the PDE approach, Monte Carlo simulation
has its own attractions. First, we bypass the technical
obstacle to verifying the existence of the solution to (4),
which could be extremely hard in some cases; second,
Monte Carlo simulation is much easier to implement than the
PDE approach, especially for high dimensional problems;
third, the probabilistic representation of derivative prices (3)
actually is valid for a very general class of underlying asset
dynamics, such as Lévy processes, and payoff functions
which may be dependent on the whole sample path.

3 PATH GENERATION

In the section we overview the methods to generate sample
paths. To avoid obscuring the main idea by unnecessarily
complicated notations, we start from the case of d = 1 and
k = 1 in (5) first.

The most straightforward scheme is known as the Euler-
Maruyama discretization, which is named after the work of
Maruyama (1955). The idea is to approximate the solution
to SDE (5) by a finite difference recursion. Given an interval
[0,T ] and a fixed time step h such that h = T/N for a positive
integer N, the approximation of Sih is given by a recursion
20
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as follows:

Ŝi = Ŝi−1 +a((i−1)h, Ŝi−1)h+b((i−1)h, Ŝi−1)
√

hZi, (6)

for 1 ≤ i ≤ N with Z a sequence of i.i.d. standard normal
random variables and Ŝ0 = S0.

To assess the quality of different schemes, we need to
know how much discretization error is introduced. There
are two main categories of criteria used commonly in the
literature: strong convergence criteria and weak convergence
criteria. We say that the approximation converges strongly
with order γ > 0 if for all sufficiently small time steps h,

E[‖Ŝ−S‖]≤Chγ

for some constant C and some norm ‖·‖. Typical choices of
norms include the Lp norm ‖ŜN −ST‖p and the max norm
sup0≤t≤T ‖Ŝ[t/h]−St‖. Under some smoothness conditions
on the drift and volatility functions a and b, one can show
that the Euler scheme typically has a strong order of 1/2
(Theorem 10.2.2, Kloeden and Platen 1992).

The weak criteria are more relevant with applications
in pricing derivatives than the strong ones since they char-
acterize how close the expectations of a function computed
from Ŝ are to that computed from S. A typical weak error
criterion has the form∣∣E[ f (ŜN)]−E[ f (ST )]

∣∣ .
We say that a discretization scheme has weak order of
convergence γ if there exists some uniform constant C such
that the above difference is less than Chγ for all sufficiently
small h and all functions f whose derivatives of order
0,1, · · · ,2γ + 2 exist and are polynomially bounded. The
Euler scheme turns out to have a weak order of 1 under
some smoothness conditions on a and b (Theorem 14.1.5,
Kloeden and Platen 1992).

Obviously, we prefer to achieve a larger γ because it
implies smaller discretization error for a fixed discretization
step h, which is usually associated with computational effort.
One line of research is devoted to looking for schemes
with higher convergence orders. To motivate the following
refinements, let us rewrite

E[ f (ST )] = E[ f (S0)]+E

[
N

∑
i=1

E[ f (S(i+1)h)− f (Sih)|Sih]

]
.

If f is smooth enough, applying the Taylor expansion to f ,

E[ f (S(i+1)h)− f (Sih)|Sih]≈ f ′(Sih) ·E[S(i+1)h−Sih|Sih].

Therefore, we need accurate estimation of the conditional
expectations E[S(i+1)h−Sih|Sih] to achieve a discretization
scheme with a high order of weak convergence. Notice that
921
the difference S(i+1)h−Sih is equal to

∫ (i+1)h

ih
a(t,St)dt +

∫ (i+1)h

ih
b(t,St)dWt . (7)

We can see that a good approximation to the above inte-
grals is necessary. The Euler scheme uses a(ih,Sih)h and
b(ih,Sih)(W(i+1)h −Wih) to approximate the two integrals
respectively.

Applying Ito’s formula to a, for ih ≤ t < (i+1)h,

a(t,St) = a(ih,Sih)+
∫ t

ih
L 0a(u,Su)du+∫ t

ih
L 1a(u,Su)dWu

where L 0 and L 1 are two functional operators defined as
follows:

L 0 :=
∂

∂ t
+a(t,S)

∂

∂S
+

1
2

b2(t,S)
∂ 2

∂S2

L 1 := b(t,S)
∂

∂S
.

Making a substitution in
∫ (i+1)h

ih a(t,St)dt, we have

∫ (i+1)h

ih
a(t,St)dt = a(ih,Sih)h+∫ (i+1)h

ih

∫ t

ih
L 0a(u,Su)dudt +

∫ (i+1)h

ih

∫ t

ih
L 1a(u,Su)dWudt.

Finally, we approximate the above multiple integrals by the
following:

L 0a(ih,Sih)
∫ (i+1)h

ih

∫ t

ih
dudt

+L 1a(ih,Sih)
∫ (i+1)h

ih

∫ t

ih
dWudt

≈L 0a(ih,Sih) ·
1
2

h2 +L 1a(ih,Sih)∆Ii

where ∆Ii =
∫ (i+1)h

ih (Wt −Wih)dt.

Similarly, the integral
∫ (i+1)h

ih b(t,St)dWt can be approx-
imated by

L 0b(ih,Sih) · (h∆Wi−∆Ii)+L 1b(ih,Sih) ·
1
2
((∆Wi)2−h)

where ∆Wi = W(i+1)h−Wih.
Consequently, we end up at another discretization

scheme, known as the Milstein scheme in the literature,



Chen and Hong
which is given by the recursion:

Ŝi+1 = Ŝi +L 0a(ih,Sih) ·
1
2

h2 +L 1a(ih,Sih) ·∆Ii+

L 0b(ih,Sih)·(h∆Wi−∆Ii)+L 1b(ih,Sih)·
1
2
((∆Wi)2−h).

Talay (1984) shows that the Milstein scheme can achieve a
weak order of 2 under some smoothness conditions on the
coefficient functions a and b. The implementation of the
scheme involves simulating two correlated normal random
variables ∆Wi and ∆Ii with the joint distribution:

(∆Wi,∆Ii)T ∼ N
(

0,

(
h 1

2 h2

1
2 h2 1

3 h3

))
.

In theory, if the coefficients a and b are sufficiently
smooth, one may apply Ito’s formula on the functions L 0a,
L 1a, L 0b and L 1b repeatedly and obtain higher-order mul-
tiple integrals representation for (7). Kloeden and Platen
(1992) show that the schemes obtained through approximat-
ing those higher-order multiple integrals actually are able
to produce any arbitrarily high weak or strong order (Kloe-
den and Platen 1992, Section 14.5). But these high order
schemes are too cumbersome to be implemented in practice.
We refer readers who are interested in the topic to Kloeden
and Platen (1992) and Glasserman (2003), Chapter 6.

As for high dimensional S (i.e., d > 1 or k > 1 in (5)),
we also can use a derivation parallel to the scalar case
to derive the corresponding high-order schemes. But one
difficulty of such high dimensional schemes lies in how to
simulate the following mixed integral:

∫ t+h

t
[W k

u −W k
u ]dW j

u , k 6= j.

Several approaches are suggested in the literature to tackle
the difficulty, simulating directly from its distribution, or
replacing it by simpler random variables, or imposing an
artificial assumption on the volatility function b. Readers
may also refer to Glasserman (2003), Chapter 6 for the
details.

Recently, another line of research appears aiming to
circumvent the discretization error of traditional discrete
approximation schemes (e.g. Beskos and Roberts 2005,
Beskos et al. 2006a, Beskos, Papaspiliopoulos, and
Roberts 2006b, DiCesare and McLeish 2006). It involves
acceptance-rejection sampling and returns exact draws
from any finite dimensional distribution of the solutions of
SDE.

Acceptance-rejection sampling (ARS) is a widely used
Monte Carlo simulation technique. Let (Ω,F ) be a measur-
able space and we wish to simulate some random elements
92
according to a probability measure µ on Ω. Assume ν is
a probability measure on Ω from which we know how to
generate samples and it has the property that the Radon-
Nykodym derivative of µ with respect to ν is uniformly
bounded, i.e., there exists some constant ε > 0 such that

dµ

dν
(ω)≤ 1

ε
, for all ω ∈ Ω.

Let f := ε · (dµ/dν) and we have 0 ≤ f ≤ 1. The ARS
technique can help us generate samples from µ through ν .
The procedure is to sample X from its distribution under ν

and accept it with probability f (X).
Formally, at first we generate an i.i.d. sequence of

(Xn, In),n≥ 1, Xn sampled from ν and a binary indicator In
with conditional probability P[I = 1|X = x] = f (x) for all
x ∈ Ω. We continue to reject Xn until we meet the first n
such that In = 1. Suppose that τ = inf{n : In = 1}. Then we
claim that Xτ is a sample with the distribution µ . To verify
it, for any A ∈F ,

P[Xτ ∈ A] = P[X ∈ A|I = 1] =
P[X ∈ A, I = 1]

P[I = 1]
.

As we know,

P[I = 1] =
∫

P[I = 1|X = x]dν(x)

=
∫

f (x)dν(x) = ε

∫
dµ(x) = ε

and

P[X ∈ A, I = 1] =
∫

A
P[I = 1|X = x]dν(x)

= ε

∫
A

dµ(x) = εµ(A).

Thus, P[Xτ ∈ A] = µ(A), i.e., Xτ follows the distribution
µ . In summary, the ARS algorithm is valid if we can find
a function f , 0 ≤ f ≤ 1, which is proportional to dµ/dν ,
to generate the decision variable I whose distribution is
defined by f .

Go back to the discussion of simulation of (5). Once
again, we start from one dimensional case to illustrate the
main idea. Our target is to generate samples of ST . Let
us introduce a function F(t,y) =

∫ y
0 1/b(t,u)du. Under the

condition that the volatility coefficient b is positive definite,
F is strictly increasing in y and therefore the inverse of F
exists. Denoted it by F−1(t, ·). Let Yt := F(t,St). Applying
Ito’s lemma to Y , we immediately get that

dYt = ã(t,Yt)dt +dWt , (8)
2
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where ã(t,y) is given by

ã(t,y) =
[

a(t,u)
b(t,u)

− 1
2

∂b
∂S

(t,u)−
∫ u

0

∂b/∂ t
b2 (t,v)dv

]
,

where u is evaluated at u = F−1(t,y). Once we know how
to simulate YT , we can recover ST from the relation that
ST = F−1(T,YT ).

Consider a function space C [0,T ] which is the set of
all continuous functions on [0,T ]. Denote Q and Z to be
the measures on C [0,T ] induced by the process Y and the
standard Brownian motion. Combining Girsanov’s theorem
and Ito’s lemma, one can show that, for any ω ∈ C [0,T ]

dQ
dZ

(ω) = exp{A(ωT )} · exp
{
−
∫ T

0
φ(t,ωt)dt

}
, (9)

where A(u) =
∫ u

0 ã(y)dy and φ(t,ωt) = (ã2(t,ωt) +
∂ ã(t,ωt)/∂y)/2.

In light of (9), we can do the simulation in the following
steps to draw a sample of YT . First, simulate ωT according
to the measure Z, which is a candidate to be accepted or
rejected. This is easy to do because ωT ∼ N(0,T ) under
Z. Given such ωT , exp{A(ωT )} becomes a constant and
therefore dQ/dZ is proportional to

exp
{
−
∫ T

0
φ(t,ωt)dt

}
. (10)

Now we need to simulate a decision variable I to
decide whether to accept ωT or to reject it. The probability
P[I = 1|ω] should be proportional to (10). Surprisingly, it
is not necessary to know the whole path ω for the purpose
of simulating I if we notice that (10) is very similar to the
probability that a time-inhomogeneous Poisson process with
intensity φ(t,ωt) at instant t has no event points occurring
in [0,T ].

Suppose that there exists some constant k such that
0 ≤ φ(y) ≤ k for all y. Under such assumption, we may
use stochastic thinning to generate a Poisson process with
intensity φ(t,ωt). Simulate a path of a homogeneous Poisson
process with intensity k. This results in some event points
on [0,T ]: 0 ≤ τ1 < · · · < τn ≤ T . Generate n independent
uniformly distributed random variables U1, · · · ,Un and then
accept the event i if Ui > φ(τi,ωτi)/k and reject it otherwise.
Finally, I is set to be 0 if there is any event being accepted or
to be 1 otherwise. One can easily show that the probability
that I = 1 is proportional to (10).

From the above algorithm, what we need to know is
the values of ω at all τi’s given ωT . In other words, all ωτi

should be sampled from a Brownian bridge with starting
point 0 and ending point ωT . One can refer to Glasserman
(2003), pp. 82-86 for detailed procedure of simulating a
Brownian bridge.
923
Another way to construct I is through Taylor expansion
of the right hand side of (9), suggested by Beskos and
Roberts (2005). This way decomposes the event of I = 1
into the union of a series of sets. Beskos, Papaspiliopoulos,
and Roberts (2006b) explore how to relax the bounded
assumption of φ to a case that φ is bounded below only.

As for high dimensional process S, not all processes
can be transformed into the form of (8). Aı̈t-Sahalia and
Mykland (2004) show that such transform exists if and only
if volatility function b satisfies the following commutativity
condition: for any triplet (i,m, l)

k

∑
j=1

∂bim(t,s)
∂ s j

b jl(t,s) =
k

∑
j=1

∂bil(t,s)
∂ s j

b jm(t,s).

Given such b, DiCesare and McLeish (2006) discuss how
to implement exact simulation for high dimensional process
S.

4 AMERICAN-STYLE DERIVATIVE PRICING

In this section we concentrate on American-style derivative
pricing. Whereas a European option can be exercised only at
a fixed date, an American-style derivative can be exercised
any time up to its maturity. Thus finding its value entails
finding the optimal exercise policy, which poses a significant
challenge for simulation.

Suppose that we have an American-style derivative
whose payoff function is given by Φ. Then its value is
represented by

sup
τ∈T

E[e−
∫

τ
t rsds

Φ(Sτ)], (11)

where T is a class of admissible stopping times with values
in [0,T ]. In the following, to avoid cumbersome notations,
we suppress the discount factor exp(−

∫
τ

t rsds) which may
be done by appropriately redefining Φ and S. In addition, we
restrict ourselves to those derivatives that can be exercised
only at fixed discrete times: 0 ≤ t1 < · · · < tK ≤ T , and
consider T consisting only of the stopping times valued
at ti,1 ≤ i ≤ K. Such restriction justifies itself when we
take K to be sufficiently large to approximate the value of
continuously exercisable American-style derivatives.

4.1 Dynamic Programming Approaches

For optimal stopping time problem (11), the solution is
given by the following backward recursion:

VK(s) = Φ(s) (12)
Vi−1(s) = max(Φ(s),E[Vi(Sti)|Sti−1 = s]), (13)
i = 1, · · · ,K,
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if Vi(s) denotes the value of the derivative at time ti given
the underlying asset price Sti = s. Equation (12) states that
the derivative value at the maturity must be equal to the
payoff value at that time because there is no further exercise
opportunity left. Equation (13) states that in intermediate
steps the derivative value must be the maximum of the
immediate exercise value and the expected present value of
future payoffs because the derivative holder has two options
at those time epochs: to stop or to continue.

The difficulty of applying Monte Carlo simulation meth-
ods in American derivative pricing is how to efficiently
evaluate continuation values Ci−1(s) := E[Vi(Sti)|Sti−1 = s]
for all 1≤ i≤ K. Once this is done, the derivative value is
obtained by recursion (12) and (13) and the optimal exercise
policy is determined by

τ
∗ = min{ti,1 ≤ i ≤ K : Φ(Sti)≥Ci(Sti)}.

Broadie and Glasserman (1997) suggest a random tree
method to produce two consistent estimators for the deriva-
tive value, one biased high and one biased low, and both
of them converging to the true value.

Given a fixed a branching number m > 0, the random
tree method starts by simulating a tree of sample paths.
Given the initial price state S0, simulate m independent
successors S1

t1 , · · · ,S
m
t1 for possible asset prices at time t1;

for each Si
t1 ,1 ≤ i ≤ m, simulate m independent successor

Si1
t2 , · · · ,S

im
t2 , and so on, until generating all nodes at time tK .

Denote a generic node in the tree at time ti by S j1 j2··· ji
ti , where

ji is a number in {1,2, · · · ,m}. The superscript indicates
that the node is reached by following the j1th branch of
node S0, the j2th branch of node S j1

t1 , and so on.

Figure 1: Random tree with m = 2 and K = 2.

Set Ṽ j1 j2··· jK
K = Φ(S j1 j2··· jK

tK ) and use

C̃ j1 j2··· ji−1
i−1 =

1
m

m

∑
j=1

Ṽ j1 j2··· ji−1 j
i , 1 ≤ i ≤ K

to approximate the continuation valueCi−1 at node S j1 j2··· ji−1
ti−1

.
The approximation of the derivative value at the same node
is defined as Ṽ j1 j2··· ji−1

i−1 = max[Φ(S j1 j2··· ji−1
ti−1

),C̃ j1 j2··· ji−1
i−1 ].
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A simple induction argument demonstrates that E[Ṽ ]
gives an upper bound for the true value of the derivative, i.e.,
E[Ṽ j1 j2··· ji

i |S j1 j2··· ji
ti ] ≥ V (S j1 j2··· ji

ti ) for all 0 ≤ i ≤ K. First,
the inequality holds obviously for i = K. Now if it holds
for the nodes of time ti+1, then

E[C̃ j1 j2··· ji
i |S j1 j2··· ji

ti ] = E[Ṽ j1 j2··· ji1
i+1 |S j1 j2··· ji

ti ]

≥ E[Vi+1(Sti+1)|S
j1 j2··· ji
ti ] = Ci(S

j1 j2··· ji
ti ),

where the first equality uses the fact that the m successors
are independently simulated and the inequality is due to the
induction hypothesis. Therefore, by Jensen’s inequality,

E[Ṽ j1 j2··· ji
i |S j1 j2··· ji

ti ]

= E[max(Φ(S j1 j2··· ji
ti ),C̃ j1 j2··· ji

i )|S j1 j2··· ji
ti ]

≥ max(Φ(S j1 j2··· ji
ti ),E[C̃ j1 j2··· ji

i |S j1 j2··· ji
ti ]),

where the right hand side is exactly V (S j1 j2··· ji
ti ).

The high biased estimator Ṽ results from the fact that
we use the same future information to estimate continuation
values and to decide whether to stop or to continue at each
step. Separation of successors into two disjoint subsets, one
for the decision of exercise or not and the other for the
estimation of continuation values, will lead to low biased
estimators. More precisely, at the terminal nodes, define
ṽ j1 j2··· jK

K := Φ(S j1 j2··· jK
tK ); at intermediate node S j1··· ji

ti define

ṽ j1 j2··· ji
ik =

 Φ(S j1 j2··· ji
ti ),

if 1
m−1 ∑ j 6=k Ṽ j1 j2··· ji j

i ≤
Φ(S j1 j2··· ji

ti );
ṽ j1 j2··· jik

i+1 , otherwise

for 1 ≤ k ≤ m and set the following as the estima-
tion of the derivative value at the node: ṽ j1 j2··· ji

i =
∑

m
k=1 ṽ j1 j2··· ji

ik /m. Broadie and Glasserman (1997) showed
that E[ṽ j1 j2··· ji

i |S j1 j2··· ji
ti ] ≤ Vi(S

j1 j2··· ji
ti ) and that both high

biased estimator Ṽ and low biased estimator ṽ converge in
probability to the true value V as m →+∞.

The major drawback of random tree method is that the
number of nodes grows exponentially as K increases, which
would incur a huge computational burden when considering
high dimensional problems. The Stochastic mesh method is
introduced by Broadie and Glasserman (2004) to overcome
the disadvantage. Instead of simulating a random tree in
the previous method, the stochastic mesh method generates
m independent sample paths starting from the initial S0 (cf.
solid arrows in Figure 2). Denote a generic node in the jth
path at time ti by S j

ti , 1 ≤ j ≤ m.
Consider the estimation of continuation value at node

S j
ti . We use all nodes at time ti+1 although m−1 of them

are not the successors of S j
ti . To correct the “abuse”, we

need to attach different weights to the estimated values at
4



Chen and Hong
Figure 2: Stochastic mesh.

different nodes when we sum them up. Suppose that at the
terminal nodes Ṽ j

K := Φ(S j
tK ). The estimated continuation

value at S j
ti is then given by

C̃ j
i :=

1
m

m

∑
k=1

Ṽ k
i+1wti

j,k

for 1 ≤ i < K, where wti
j,k is the corresponding weight of

Sk
ti+1

used to calculate the continuation value at node S j
ti

(dotted lines in Figure 2). Then the estimated value of the
derivative is given by Ṽ j

i := max{Φ(S j
ti),C̃

j
i }.

We obtain high biased estimators if we choose the
weights w such that wti

j,k is a deterministic function of S j
ti

and Sk
ti+1

and w satisfies

1
m

m

∑
k=1

E[Vi+1(Sk
ti+1

) ·wti
j,k|S

j
ti ] = Ci(S

j
ti). (14)

In words, this means that if we knew the true value of the
derivative of the next step, the expected weighted average
at each node would be the true continuation value.

Once again we can show the estimator Ṽ is high biased
under such selection of w by induction. Indeed, if we
suppose that it holds for nodes at i + 1, then by Jensen’s
inequality,

E[Ṽ j
i |S

j
ti ] = E

[
max{Φ(S j

ti),C̃
j
i }|S

j
ti

]
≥ max

{
Φ(S j

ti),
1
m

m

∑
k=1

E[Ṽ k
i+1wti

j,k|S
j
ti ]

}
.

Ṽ k
i+1wti

j,k is greater than Vi+1(Sk
ti+1

)wti
j,k by the induction

hypothesis and using (14), we have E[Ṽ j
i |S

j
ti ]≥Vi(S

j
ti).

Go back to the choice of w. When j 6= k, Sk
ti+1

is not a

successor of node S j
ti and thus the actual probability density

function of Sk
ti+1

should be given by gi+1, the marginal
density function of Sti+1 . In (14),

E[Vi+1(Sk
ti+1

)wti
j,k|S

j
ti ] =

∫
Vi+1(u)wti

j,kgi+1(u)du
9

and meanwhile, by the definition of C,

Ci(S
j
ti) =

∫
Vi+1(u) fi(u;S j

ti)du,

where fi(·;x) is the conditional probability density function
of Sti+1 given Sti = x. Comparing the right hand sides of
the above two equations, a natural choice of w should be
wti

j,k = fi(Sk
ti+1

;S j
ti)/gi+1(Sk

ti+1
) to make them equal.

Notice that any stopping rule is suboptimal. Therefore
we also can get a low biased estimator through the above
estimated continuation values C̃. With the mesh held fixed,
we simulate one additional independent path for the under-
lying asset price, (Sm+1

t1 , · · · ,Sm+1
tK ), starting from S0. The

derivative is exercised at a stopping time

τ̃ = min{ti,1 ≤ i ≤ K : Φ(Sm+1
ti )≥ C̃i(Sm+1

ti )}.

and the low biased estimator is defined as v̂ = Φ(Sm+1
τ̃

).
Broadie and Glasserman (2004) also showed that both Ṽ
and ṽ are asymptotically unbiased as m →+∞.

Finally, we would like to mention the work of Cave,
Donnelly, and Carriere (1996), Longstaff and Schwartz
(2001) and Tsitsiklis and Van Roy (1999, 2001), which
may be viewed as variations of stochastic mesh methods
with different weight choices.

4.2 Duality

Rogers (2002) and Haugh and Kogan (2004) established a
dual method to price American-style derivatives, which can
be represented as the value of the following problem:

V0(s) = inf
M∈M

E
[

max
0≤i≤K

(Φ(Sti)−Mti)|S0 = s
]
, (15)

where M is the set of all martingales with initial value 0.
The method produces upper bounds for the true derivative
value if we specify a martingale in (15). Furthermore, we
also can show that the infimum actually is attained by

M∗
ti =

i

∑
j=1
{Vj(St j)−E[Vj(St j)|St j−1 ]}, 0 ≤ i ≤ K. (16)

The dual method is based on a well known fact
in probability theory: the Doob-Meyer decomposition of
supermartingales. We call a random variable sequence
{Xi,0 ≤ i ≤ K} a supermartingale if E[Xi+1|Fi] ≤ Xi for
all i, where F is the σ -algebra filtration of the sequence.
For any supermartingale X , there exists a unique pair of a
martingale N with N0 = 0 and a decreasing process D (i.e.,
Di ≥ Di+1,a.s. for all i) such that Xi = Ni +Di, 0 ≤ i ≤ K.
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In particular, the form of N is given by

Ni =
i

∑
j=1
{X j −E[X j|F j−1]}, 0 ≤ i ≤ K.

From the recursion (13), we immediately conclude that
{Vi(Sti),0 ≤ i ≤ K} is a supermartingale. Applying the
Doob-Meyer decomposition to it, Vi(Sti) should be equal to
a sum of the martingale M∗ and a decreasing process D.

We may justify (15) as follows. For any martingale
M with M0 = 0 and any stopping time τ , by the optional
stopping theorem,

E
[

max
0≤i≤K

(Φ(Sti)−Mti)|S0

]
≥ E[Φ(Sτ)−Mτ |S0]

= E[Φ(Sτ)|S0],

and thus

inf
M

E
[

max
0≤i≤K

(Φ(Sti)−Mti)|S0

]
≥ max

τ
E[Φ(Sτ)|S0]

= V0(S0).

On the other hand, because Φ(Sti) ≤ Vi(Sti) and Vi(Sti) =
M∗

ti +Dti ,

E
[

max
0≤i≤K

(Φ(Sti)−M∗
ti )|S0

]
≤E

[
max

0≤i≤K
(Vi(Sti)−M∗

ti )|S0

]
= E

[
max

0≤i≤K
Dti |S0

]
= E[D0|S0],

where the last equality uses that process D is decreasing.
By the decomposition, we know that D0 = V0(S0)−M0 =
V0(S0).

In general, M∗ can not be computed exactly because it
involves the value function and its conditional expectations
which we do not know. Then, how can we approximate it to
get a good upper bound? A general strategy is to construct
an approximate martingale from either an approximate value
function or stopping policy. More precisely, if we have a set
of functions Ṽi, 0≤ i≤K, which approximate the true value
of the derivative at time ti, we can construct a martingale
along each simulated path S0,St1 , · · · ,StK by letting

M̃ti =
i

∑
j=1
{Ṽj(St j)−E[Ṽj|St j−1 ]};
9

if we have a set of stopping times τ̃i, 0 ≤ i ≤ K, which
satisfies τ̃i ≥ ti for each i, we can construct a martingale

M̃ti =
i

∑
j=1
{E[Φ(Sτ̃ j)|St j ]−E[Φ(Sτ̃ j)|St j−1 ]}.

The evaluation of both the martingales requires computing
conditional expectations. One can do it by nested simulation
(Haugh and Kogan 2004, Andersen and Broadie 2004).

The Doob-Meyer decomposition has some variations in
the literature. For instance, if the supermatingale {Xi,0 ≤
i≤K} is positive, it admits another form of decomposition:
Xi = Bi ·Ai, where B is a positive martingale with B0 = 1 and
A is a decreasing process. In light of such decomposition,
Jamshidian (2003) provided another dual representation of
the derivative value:

V0(s) = inf
B∈B

E
[

max
1≤i≤K

(
Φ(Sti)

Bti

)
·BtK |S0 = s

]
,

where B is the set of positive martingales whose initial
value is 1. Furthermore, the infimum is achieved when we
choose the martingale

B∗ti =
i

∏
j=1

Vj(St j)
E[Vj(St j)|St j−1 ]

, 0 ≤ i ≤ K.

In the following, we would like to call the former dual
representation by additive dual and the latter one by mul-
tiplicative dual.

One fundamental problem thus arises: how do we
compare the additive and multiplicative duals since both
provide upper bounds on American-style derivative prices?
To answer this problem, Chen and Glasserman (2007a)
showed a strong equivalence between these two in the sense
that any additive dual can be improved by a multiplicative
dual and vice versa. But in terms of simulation variance,
they showed that the variance of the multiplicative method
typically grows much faster than that of the additive method
as the number of exercise dates K increases.

5 RISK MANAGEMENT

Risk management includes identifying the sources of risks,
measuring them, and controlling or hedging them. Monte
Carlo simulation has been implemented widely in practice to
compute risk measures of the financial portfolios. However,
as pointed out by Glasserman (2003), the research on ways
of improving simulation applications in risk management
remains limited. In this section, we are going to present
two specific problems. The first is how to use Monte Carlo
simulation to estimate Greeks, and the second is how to
26
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improve the efficiency of simulation on estimating value-
at-risk (VaR).

5.1 Greeks

Greeks are price sensitivities which are to quantify the risk
exposure of a financial derivative investment. Each Greek
measures how much the derivative value changes in response
to the change of a specific parameter of the underlying asset.
For instance, four popularly used Greeks are: “Delta” —
the first order sensitivity with respect to the underlying;
“Gamma” — the second order sensitivity to the underlying;
“Vega” — the sensitivity to the underlying volatility; and
“Rho”— the sensitivity to risk free interest rate.

Greeks play a vital role in risk management. They
provide guiding information on how to adjust the invest-
ment portfolio to achieve the desired exposure (e.g. Delta
hedging). Whereas the price of derivatives often can be ob-
served in the market, their sensitivities can not. Therefore,
an accurate and implementable calculation of sensitivities
is even more important than the calculation of prices in that
sense.

As we argued in Section 2, the price of a derivative is
usually in the form of an expectation of the payoff function.
The calculation of Greeks then can be generalized to a
problem of estimating the following differentiation:

d
dθ

α(θ) :=
d

dθ
E[Φ(S(θ))],

where θ is a parameter of interest. For example, when θ

is the initial underlying price, the above is the derivative’s
delta; when θ is the volatility parameter, the above is the
derivative’s vega.

The most naive way to do Monte Carlo simulation is
by finite difference method. Fix a small enough ε . We
simulate N independent replications S1(θ), · · · ,SN(θ) and
N additional replications S1(θ + ε), · · · ,SN(θ + ε). One
estimator is constructed as follows:

1
ε

[
1
N

N

∑
i=1

Φ(Si(θ + ε))− 1
N

N

∑
i=1

Φ(Si(θ))

]
. (17)

From the law of large numbers, both averages inside the
brackets converge to E[Φ(S(θ + ε))] and E[Φ(S(θ))], re-
spectively. When ε is sufficiently small, the expectation
of (17) should be very closed to α ′(θ). But, on the other
hand, the variance of the finite difference estimator usually
will increase as ε decreases. Thus, we need to choose ε

to balance bias and variance to reach the optimal mean
square error. Related discussion can be found in Chapter 7
of Glasserman (2003) and the references therein.

The disadvantages of finite difference methods are ob-
vious. They are biased because we use the idea of finite
9

difference to approximate the derivative α ′(θ); they are
slow because we need to simulate sample paths for both
parameter θ and parameter θ +ε; and they also could lead
to high variances.

To overcome all of these disadvantages, two categories
of more sophisticated estimates are introduced in the lit-
erature. They exploit the structure about the dynamic and
parameter dependence more to achieve unbiased and effi-
cient estimators.

The first category is known as the pathwise derivative
estimates, or more commonly infinitesimal perturbation
analysis in the discrete event simulation literature. For
the derivative price α(θ), we have

d
dθ

α(θ) = E
[

d
dθ

Φ(S(θ))
]

= E
[

dΦ

dS
· dS(θ)

dθ

]
,

if the interchange of the order of differentiation and expec-
tation is valid and function Φ is smooth enough. We then
end up at an unbiased estimator dΦ/dS ·dS/dθ of α ′(θ).

The smoothness requirement on payoff function Φ turns
out to be very crucial to make sure the pathwise derivative
method works. One can show that one sufficient condition
is that Φ is Lipschitz continuous, i.e, there exists a positive
constant C such that

|Φ(x)−Φ(y)| ≤C|x− y|, for all x and y.

Furthermore, we have the following counterexample that
the method fails if Φ is discontinuous. Suppose that the
underlying asset price follows a geometric Brownian motion
dSt/St = rdt + σdWt , S0 = 0 and consider the Delta of a
digital option with maturity T and strike price K, whose
payoff is defined as Φ(ST ) = 1 if ST ≥ K and Φ(ST ) = 0 if
ST < K. It is easy to see that dΦ/dS = 0, a.e. and therefore
the pathwise derivative estimator is 0 too. But surely 0 is
not unbiased to α ′(S0).

The second estimate, by the likelihood ratio method, is
introduced to get rid of the dependence on the smoothness
of payoff functions. Suppose that the probability density
function of S(θ) is known as g(s;θ). Then, as long as we
can interchange the order of differentiation and expectation,

d
dθ

α(θ) =
d

dθ

∫
Φ(s)g(s;θ)ds =

∫
Φ(s)

∂g
∂θ

(s;θ)ds.

Multiplying and dividing g(s;θ) simultaneously in the in-
tegration on the right hand side,

∫
Φ(s)

∂g
∂θ

(s;θ)ds =
∫

Φ(s)
∂g/∂θ(s;θ)

g(s;θ)
g(s;θ)ds

= E
[

Φ(S(θ))
∂

∂θ
lng(S(θ),θ)

]
.
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In other words, Φ(S(θ))(∂ lng(S(θ),θ)/∂θ) is an unbiased
estimator of α ′(θ). Notice that the estimator does not
differentiate the payoff function Φ. Thus the likelihood
ratio method successfully circumvents the difficulty the
pathwise derivative encounters.

The bottleneck of the likelihood ratio estimates is that
they involve the probability density of S(θ). Unfortunately,
for many diffusion process S, the explicit form of the prob-
ability densities is not available. Fournié et al. (1999, 2001)
explored how to use the Malliavin calculus to derive un-
biased estimators for several major Greeks such as Delta,
Vega and Rho without any knowledge of the density. But
their method calls for heavy mathematical machinery. We
refer readers of interest to Nualart (2006) for a comprehen-
sive treatment of the Malliavin calculus and its financial
applications.

Different from the Malliavin calculus method, Chen
and Glasserman (2007b) provide a more elementary way
to reach the same result as Fournié et al. (1999) and cast
more intuitive insight. The difficulty of the likelihood ratio
method is that we do not know the explicit form of the
density of S. Let us consider the Euler discretization of the
process (5). Given Ŝi = si, the transition probability density
function of Ŝi+1 is

f (si+1;si) =
1√

2πb(ih,si)
exp
[
(si+1− si−a(ih,si)h)2

b2(ih,si)

]
.

By the Markov property, the joint density of (Ŝ1, · · · , ŜN)
with initial value being Ŝ0 = s0 will be

ĝ(s1, · · · ,sN) =
N

∏
i=0

f (si+1;si). (18)

Viewing (18) as an approximation to the density of the
original process S, we are able to apply the likelihood
ratio method on ĝ to derive Greek estimators. Meanwhile
the estimator will converge weakly to what the Malliavin
calculus achieves as h → 0.

5.2 VaR

The first step of managing market risk is to select an appro-
priate measure of risk. VaR is a widely used risk measure
in financial applications (Jorion 2001). Let L denote the
random loss of a portfolio in a certain period of time. In
the subsection, we assume that L is a continuous random
variable. Then the α-VaR of L, denoted as vα , satisfies

P(L > vα) = 1−α, (19)

where α often takes values 0.95 or 0.99. Note that vα is also
the α quantile of L. If we define the large losses to be the

9

losses in the upper (1−α)-tail of the loss distribution, the
α-VaR is the lower bound of the large losses. It provides
information on the potential large losses that an investor
may suffer.

Suppose that we can simulate the model of L, and obtain
an i.i.d. sample L1,L2, . . . ,Ln. Then vα can be estimated
by

v̂n
α = L(dnαe),

where L(k) is the kth order statistic of L. Serfling (1980)
shows that v̂n

α → vα w.p.1 and

√
n(v̂n

α − vα)⇒
√

α(1−α)
fL(vα)

·N(0,1) (20)

as n → ∞, where fL(·) is the density of L.
Since α is often 0.95 or 0.99 in financial applications,

fL(vα) is often very small. Then, by Equation (20), the
variance of v̂n

α is often large. To make the simulation more
efficient, we need to apply variance reduction techniques.
If we can find an efficient method to estimate the loss
probability P(L > x) with large x, then we can invert Equation
(19) to find vα . In the rest of this subsection, we demonstrate
how to use importance sampling to obtain a more efficient
estimator of the loss probability. The analysis and results
reported here are based on Glasserman, Heidelberger, and
Shahabuddin (2000).

Let V (S, t) denote the portfolio value at time t and
market price vector S, so the loss over time interval ∆t is

L =−∆V = V (S, t)−V (S +∆S, t +∆t)

where ∆S is the change in S over the interval ∆t. Suppose
that ∆S∼N(0,ΣS), so we may write ∆S =CZ with CCT = ΣS
and Z being a vector of independent standard normals. To
estimate P(L > x) using Monte Carlo simulation, we first
generate n i.i.d. observations of Z to obtain n observations
of ∆S. Then we revalue portfolio and compute the loss for
these n observations. Given the n i.i.d. observations of L,
denoted by L1,L2, . . . ,Ln, the loss probability P(L > x) can
be estimated by 1

n ∑
n
i=1 1{Li > x}.

Since {L > x} is a rare event when x is large, we consider
using importance sampling (IS) to improve the efficiency
of the simulation. Let P denote the original probability
measure of L and let P̃ denote the IS measure of L. Then

P(L > x) = Ẽ
[(

dP
dP̃

)
1{L > x}

]
,

where the expectation is taken under the IS measure of L.
Under the IS measure, the event {L > x} may not be a rare
event. Then the IS estimator of P(L > x) may be more
efficient. The key question is how to select an appropriate
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IS measure P̃. In this subsection, we introduce a method
that is based on the delta-gamma approximation of ∆V .

By the delta-gamma approximation of ∆V ,

∆V ≈ ∂V
∂ t

∆t +δ
T

∆S +
1
2

∆ST
Γ∆S,

where

δi =
∂V
∂Si

, Γi j =
∂ 2V

∂Si∂S j

of the portfolio at time t are deterministic, and they are
often available for hedging purposes. Let

Q =−∂V
∂ t

∆t−δ
T

∆S− 1
2

∆ST
Γ∆S.

It is an approximation of L =−∆V . Let a =− ∂V
∂ t ∆t. Note

that ∆S = CZ. Then

Q = a− (CT
δ )T Z− 1

2
ZT (CT

ΓC)Z.

By Glasserman, Heidelberger, and Shahabuddin (2000), we
may choose C such that − 1

2 (CT ΓC) = Λ, where Λ is a
diagonal matrix with diagonal elements λ1,λ2, . . . ,λm. Let
b =−CT δ , then

Q = a+bT Z +ZT
ΛZ = a+

m

∑
j=1

(b jZ j +λ jZ2
j ). (21)

Let

ψ(θ) = logE
(

eθQ
)

be the cumulant generating function of Q. Then by Equation
(21), if θ < 1/2,

ψ(θ) = aθ +
1
2

m

∑
j=1

(
θ 2b2

j

1−2θλ j
− log(1−2θλ j)

)
.

If our goal is to estimate P(Q > x) instead of P(L > x),
we can apply the exponential twisting approach to find IS
measures of Q. Let Pθ be a family of probability measures
that satisfies

dPθ

dP
= eθQ−ψ(θ)

with θ being any real number at which ψ(θ) < ∞. Under
the new measure Pθ ,

P(Q > x) = Eθ

[
eθQ−ψ(θ)1{Q > x}

]
.

9

To minimize the variance of the new estimator, we minimize
the second moment of eθQ−ψ(θ)1{Q > x} under Pθ . Since

Eθ

[
e2θQ−2ψ(θ)1{Q > x}

]
= E

[
eθQ−ψ(θ)1{Q > x}

]
≤ e−θx+ψ(θ),

we may choose θ that minimizes e−θx+ψ(θ). By some
algebra, we may show that the optimal θ ∗ satisfies Eθ∗(Q) =
x. Therefore, under the optimal IS measure Pθ∗ , {Q > x} is
no longer a rare event, instead x is now near the center of the
distribution. Glasserman, Heidelberger, and Shahabuddin
(2000) show that Pθ∗ is asymptotically optimal as x → ∞.

To implement the IS scheme, we need to know how to
find Z = (Z1, . . . ,Zm)T such that Q, calculated by Equation
(21), follows the IS distribution Pθ∗ . Glasserman, Heidel-
berger, and Shahabuddin (2000) show that Z j follows a
normal distribution with mean µ j(θ ∗) and variance σ j(θ ∗),
where

µ j(θ ∗) =
θ ∗b j

1−2λ jθ ∗ , σ j(θ ∗) =
1

1−2λ jθ ∗ .

Since Q is often a good approximation of L, then the IS
measure that leads to a good estimate of P(Q > x) often
leads to a good estimate of P(L > x). Therefore, we may use
Pθ∗ as the IS measure of L. Then, we may estimate P(L > x)
as follows: Generate n observations of Z following the IS
measure, evaluate Q from Z using Equation (21), calculate
the loss L =V (S, t)−V (S+∆S, t +∆t) where ∆S =CZ, then
estimate P(L > x) by

1
n

n

∑
i=1

e−θ∗Qi+ψ(θ∗)1{Li > x}.

Glasserman, Heidelberger, and Shahabuddin (2002) fur-
ther extend the results to a heavy-tailed setting, where ∆S
follows a multivariate t-distribution. They show that the
new IS probability measure is also asymptotically optimal.

6 CONCLUSIONS

Financial engineering is a fast growing area. As the models
become more and more complicated and also more and
more realistic, Monte Carlo simulation often becomes the
only method to evaluate the prices of derivatives and to
estimate the risk measures of portfolios. There is a great
need for developing simulation algorithms that are correct
and efficient under these new models. In this paper we
review some of the recent developments, and we believe
there are still many interesting problems yet to be solved.
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