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ABSTRACT 

Coercion combines flexible points, semi-automated 
optimization and expert guided manual code modification 
for adapting simulations to meet new requirements. 
Coercion can improve simulation adaptation efficiency by 
offloading large portions of work to automated search. 
This paper identifies requirements and related challenges 
in coercion, presents methods for gaining insight, and 
describes how to use these insights to make agile strategy 
decisions during a coercion. We call our optimization 
method agile optimization, because it allows users to 
preempt optimization and flexibly interleave alternative 
optimization methods and manual code modification, as 
needed. Agile optimization exploits the combined 
strengths of human insight and process automation to 
improve efficiency. We describe a prototype system and a 
case study that together demonstrate the benefits that can 
accrue from agile optimization. 

1 INTRODUCTION

COERCE is a semi-automated technology for adapting 
simulations to meet new requirements. A necessary part of 
constructing a model is selection of abstractions, in order 
to reduce complexity, improve performance, and provide 
estimations for unknowns. When developing coercible
simulations a subject matter expert identifies a set of 
abstraction opportunities and alternatives for each model 
abstraction. A flexible point of a simulation reflects one 
model abstraction opportunity and the corresponding 
bindings for the flexible points reflect abstraction 
alternatives. Flexible points can include both parameters 
and model abstraction opportunities which reflect design 
decisions, implementation considerations, and model 
uncertainties. Flexible points can be annotated and 
constrained using formal methods (Carnahan 2006). The 
coercion process is as follows: when a new set of 
requirements for a simulation arises, the user needs to 
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determine whether to adapt the simulation by numerical 
optimization or manual code modification. For 
optimization, the user needs to define the objective 
function for optimization to represent the difference 
between the simulation’s current behavior and required 
new behavior. Also, the user should identify related 
flexible points, which would become the variables over 
which an optimization is conducted. Bindings for each 
flexible point represent the valid search range during 
optimization. Optimization automatically searches for 
appropriate bindings of flexible points that minimize the
objective function, thus minimizing the distance between 
the simulation’s current behavior and required behavior. 
At those times that optimization would fail to find a 
satisfactory solution, manual code modification can be 
employed.  A user monitoring the coercion must acquire 
sufficient insight to determine a next course of action. The 
following notation depicts the iterative nature of the 
COERCE process: 

nSpnSppSpS 1...10
mop |

where 0S  is the original simulation, nS  is a simulation 

instance meeting the new requirements, and p is either 
an optimization o , or a manual modification m  to the 
source code  (Waziruddin, Brogan and Reynolds 2004).  
 Optimization over simulation inputs (“simulation 
optimization”) to meet certain output objectives has been 
employed for years.  Coercion differs from simulation 
optimization (SO) in part because it uses optimization to 
transform simulations themselves, and because it employs 
flexible points to guide and constrain optimization.   
Flexible points, which are the source of variability in 
coercion, tend to be much richer than traditional 
parameter sets.  SO is typically applied to parameter sets 
only.  Flexible points also include structural alternatives.  
Furthermore, flexible point notation supports expression 
of dependencies and interactions between flexible points 
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Tang and Reynolds 
(incrementally) provided by subject matter experts and 
coercion users, thus capturing constraints which can 
greatly reduce optimization search space.  The following 
requirements exist for coercion but have not existed for 
traditional simulation optimization:  

The optimization portion of coercion must 
provide insight into choices for possible 
simulation implementation adaptations. 
Because coercion combines optimization and 
manual code modification to adapt simulations, it 
must be an iterative process.  Traditionally SO is 
applied  monolithically. 
Because user insight is essential in coercion, 
internal processes must be exposed, in order to 
enhance insight and to provide guidance for later 
steps in the coercion process.  In traditional SO 
simulations are treated as black boxes.  Coercion 
must treat them as white boxes. 
Agility in the coercion process is essential.  
Having optimizations run to completion and/or 
repeatedly executing a simulation to completion 
can consume unacceptably large amounts of 
time.  During any coercion step,  

ipi SS 1
, a 

user must be able to easily switch to another 
optimization method or manual modification. 

 In partial fulfillment of these requirements, we 
propose agile optimization, an approach that supports 
preemption and replacement of a coercion step when an 
optimization is not proceeding as expected. With agile 
optimization, a user selects an optimization method and 
initiates a search. During the search, the user monitors the 
process, gathers insight through visualization and analysis 
support mechanisms, and adjusts strategies and tactics 
based on the insights. A user can preempt the process at 
any time to implement a strategic or tactical change.  
Possible changes include adding or modifying flexible 
points, adding insights about flexible points, switching to 
another optimization method, tuning the current 
optimization method, modifying the desired outcome, or 
returning to manual modification. The framework 
supporting agile optimization provides visualization, 
statistical analysis tools and controls for users to gain 
insight and guide the coercion process. Also, it facilitates 
preemption and switching of an ongoing optimization, and 
it provides support for rapid integration and exploitation 
of a user’s insights. Thus, a user can expect to be able to 
chain optimization techniques sequentially for 
exploration, and to interleave optimizations and manual 
code modification flexibly. This approach exploits a 
human user's superiority in pattern recognition, learning 
and decision making while also exploiting the advantages 
of automated search. 
 Agile optimization is fundamental to achieving the 
requirements for coercion listed above: 
9

It is designed to exploit human insight and 
involvement in the coercion process, and it 
includes provisions for guiding coercion using 
that insight. 
It combines the respective strengths of humans 
and computers to improve quality and efficiency 
in the coercion process. 
It supports preemption of and chaining of 
multiple optimization techniques in order to 
maximize efficiency and acquisition of insight. 
It utilizes interaction indications and constraints 
related to flexible points to limit search space. 

 Finally, we have constructed a prototype system that 
includes basic visualization tools and a small library of 
optimization techniques to provide users some flexibility  
in conducting simulation coercion. While the general 
system is still under construction and considerable 
research and development remains, we present a case 
study using the prototype system that demonstrates the 
evolving system’s efficacy. 

2 PREVIOUS WORK 

Coercion has been applied successfully to adapt 
simulations in different domains, as reported in Drewry, 
Reynolds, and Emanuel (2002), Carnahan, Reynolds, and 
Brogan (2003), and Carnahan and Reynolds(2006). For 
example, Drewry, Reynolds, and Emanuel (2002) 
describes the coercion of a low-resolution simulation of 
carbon dioxide uptake in forests to yield behavior closely 
matching the behavior of a trusted high-resolution model. 
In these studies, automatic optimization was used to find 
appropriate bindings for flexible points that yield a 
desired simulation behavior. However, there has been no 
research on how to flexibly interweave automatic 
optimization and manual code modification.  Also, no 
human interaction was introduced into the optimization 
process, and users were provided only an ad hoc method 
for choosing an optimization technique.  Key 
contributions of this paper include its approach to 
increasing user insight, leveraging users’ insights and 
strategic thinking in the optimization process and flexibly 
chaining various techniques in the coercion process. 
 In the optimization community, research has occurred 
on interactive optimization where a human is brought into 
the loop and is assigned different tasks such as modifying 
the solutions or eliminating unsatisfactory or unrealistic 
solutions. Interesting work includes Human-guided tabu 
search (Klau et al.  2002) and the HuGs platform (Klau, et 
al. 2002b). Several optimization techniques and solution 
visualizations are provided in HuGs.  There, users can 
preempt a current optimization, modify a solution, 
constrain a search, or switch to another technique. With 
HuGs, experiments showed that human-guided 
optimization outperformed an equivalent amount of 
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unguided optimization. However, the HuGs work is 
limited to a special class of combinatorial problems and a 
limited set of optimization techniques (tabu search, 
exhaustive search and greedy search).  
 Early research has been conducted on combining 
various optimization techniques. Hogg and 
Williams(2003) have proposed a cooperative search 
paradigm where two or more search algorithms are 
running in parallel and exchanging and reusing 
information generated by the other.  Faulkner and Cowart 
(2006) present an optimization method that interleaves 
thirty different algorithms to solve nonlinear optimization 
problems. 
 Human interaction with optimization has been 
explored in the simulation community recently.  Persson, 
Grimm, and Ng (2006) propose a white-box optimization 
approach. They advocate using visualization and statistics 
about the optimization process to help users tune the 
technique and gain insight. This work focuses on 
observing an optimization and tuning the current 
optimization technique. Our work focuses on gaining and 
leveraging insights into both optimization and a 
simulation. Also, we advocate agility in the method 
heretofore unexplored. 

3 APPROACH  

Agile optimization proceeds as depicted in Figure 1.  
Given a set of flexible point definitions and a new set of 
requirements, the user must determine whether the best 
next step involves optimization or manual code 
modification. For optimization, the user must specify an 
objective function and constraints that represent the new 
desired behavior, identify an appropriate set of flexible 
points as the optimization variables and select an 
optimization technique to start.  During a search, the user 
observes the process, and gathers insights from 
visualization, analysis, etc.  During a search, or at the end 
of one, the user will evolve his/her strategy for 
proceeding.. A strategic decision may include preemption 
and chaining various optimization techniques flexibly. 
Others could be: 

tune the current search’s parameters or configuration 
and restart 
modify the flexible points, or add insights about them 
constrain the search space according to insights or 
modify the objective function and restart. 
switch to manual code modification 
modify the solution (change the bindings of flexible 
points in the solution) and continue  

The process continues until the user is satisfied with the 
results. The key contributions of our approach relate to 
our goal of providing insight in a process based manner.  
This process, as noted, includes the use of flexible points, 
optimization algorithm agility, and search. 
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 A framework for agile optimization should include 
several essential components:  

support for cumulatively gaining insight into 
simulation behavior and flexible points during the 
agile optimization process. Examples include 
visualization and statistical analysis components. 
support for carrying out strategic changes and 
integrating insights, including: 

a large set of optimization techniques that are 
preemptible and tunable, and methods for 
communicating between techniques in order 
to control the overhead costs associated with 
chaining techniques.  
a user-friendly interface for users to observe, 
control and enforce new strategies 
interactively. 

Figure 2 shows the architecture for the framework.  In 
the following sections, we discuss details of the proposed 
architecture.

Figure 1: Process of Agile Optimization   

     
Figure 2: Architecture for Agile Optimization. SAN: 
Simulated Annealing; GA:  Genetic Algorithm; SD: 
steepest descent.  Users can enforce strategy changes 
2
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through technique control and objective 
function/flexible point management. The status of an 
optimization is presented to the user through 
visualization and statistical analysis components.  

3.1 Insights 

Insights are essential in our approach. Given sufficient 
assistance, as would occur in an agile optimization 
framework, a user can gain useful insights that in turn 
reveal promising directions and effective strategies for 
coercion.  Such insights are generally not available as a 
user begins to adapt a simulation.  With agile optimization 
the goal is to make them apparent as early as possible, so 
that the adaptation can proceed efficiently. Because 
flexible points have semantics representing abstraction 
alternatives in the simulation (Carnahan, 2006) they create 
more opportunities to gain valuable insights about 
themselves and their effects on simulation behavior. 
Moreover, newly-gained insights about flexible points and 
simulation behavior can be annotated and used for 
coercion in the future (Carnahan, 2006). 
 Insights can be used to guide a successful coercion. 
They can help to constrain the search space. They can also 
indicate a need for strategy change as well as suggesting 
appropriate changes. Insights are central to problem 
redefinition, process performance improvement and 
search technique selection. (Tang and Reynolds 2007) 
present a summary of several common optimization 
techniques and describe possible insights each technique 
can provide and important insights each technique needs 
for appropriate setup. Their summary can serve as a user 
guide for exploiting insights to chain optimization 
techniques and to guide the process. Examples of insights 
occurring during agile optimization include: 

Effects of flexible points on variables of interest 
and/or the objective function 
Importance and/or sensitivity of flexible points  
Interactions between flexible points which can be 
used to reduce the search space. 
Promising regions  where search efforts should 
be intensified . 
Problem structure/ characteristics of the 
landscape  
Current search success (stuck in local minimum, 
searching a poor area, not converging) and 
possible changes. 
Insights about the objective function definition, 
new constraints, etc. 

 There are several approaches for gaining insights. 
Most occur as a result of observing near successes and 
analyzing the causes of failures during a search.  We 
believe more knowledge leads to more insight, and speedy 
acquisition of insight is important.  Agile optimization is 
designed to provide speedy acquisition of insight. 
90
 Insight can be gained from visualization of 
intermediate optimization results, partial executions of the 
subject simulation as well as the simulation's current 
behavior compared to the target behavior. Also, statistical 
analysis can be used to help gain insights into both the 
interactions between flexible points and 
effects/importance/sensitivity of flexible points. It can be 
used together with visualization into the specific 
technique’s characteristics (e.g diversity of population in 
genetic algorithm, system temperature in simulated 
annealing) to give insights about how to tune the 
optimization. 
 The importance of insight cannot be overstated.  In 
the next section we demonstrate its utility in shaping an 
agile approach to optimization 

3.2 Agile Strategies  

Possible changes in strategy are listed at the beginning of 
this section. Users steer the coercion process based on 
insights. Example scenarios include: 

Optimization may enter a path that eventually 
generates no satisfactory results.  A user may 
realize that and preempt the process to adjust the 
strategy.
A user may realize no optimization method is 
going to succeed. In this case, the best choice is 
likely preemption, to begin code modification. 
The user-defined objective function might not 
capture complex requirements sufficiently. User 
interaction is needed to steer the optimization 
and coercion process agilely. 
When a user has insights about how to improve a 
current strategy, s/he should leverage the insights 
as soon as possible. 
A user may realize that a selected optimization 
method is inappropriate (e.g. too powerful and 
thus too slow) for current conditions.   

 To support agility, the agile optimization system must 
provide tools for speedy acquisition of insight and 
optimization techniques that are easy to manipulate and 
switch. We discuss the techniques more in section 3.3. 
Finally, heuristics can be employed to predict the need for 
strategy change and provide suggestions. 
 A human/computer division of workload exploits 
automated computation power especially on constrained 
and focused search spaces. It also leverages a user’s 
domain knowledge and exploits the human advantage in 
pattern recognition, learning, strategic thinking and 
decision making (Klau, et al. 2002). Literature on 
interactive optimization shows that humans are very good 
at deciding when to preempt optimization and identify 
promising areas of the search space (Scott, Lesh, and Klau 
2002), which further supports our approach. Although 
some optimization techniques have adaptive schemes to 
3
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adjust to different problems, we argue that human learning 
skills are still required for best performance. Finally, 
including a user in the process assists the user in gaining 
confidence in the correctness of the coerced results. 

3.3 Optimization Strategies 

We have focused on chaining optimization techniques for 
coercion. To take full advantage of flexible points, 
multiple optimization techniques should be available. 
Various optimization techniques have selected strengths 
and weaknesses. Some require little insight or setup cost, 
while others can exploit detailed information about the 
simulation to improve quality of results. Different 
techniques produce different search trajectories thus 
yielding different insights. Chaining can exploit strengths 
of different techniques, solve larger classes of problems, 
leverage insight and help users gain different insights.   
 To support chaining, optimization techniques must be 
modified so that their controlling parameters can be tuned 
on-the-fly and they can be preempted and resumed with 
different configurations specified by users. 
Communication between techniques should be facilitated 
to support switching. Search space information should be 
retained so that a switched-to technique can start where 
the previous technique ended. A list of best-ranking 
solutions should be kept for a user to consider.  
 Optimization techniques should use user insights as 
guidance for search directions, to concentrate on 
promising regions, reduce search space, avoid invalid 
regions, etc. Techniques should be modified and provide 
visibility and control for the following kinds of insights: 
 Effects/importance/sensitivity of flexible points  
 New constraints – Users should be able to add new 
constraints on the fly.
 Promising regions/direction – When a promising 
region is discovered, a user should be able to guide search 
accordingly (e.g. bounding flexible point ranges). Upon 
discovery of a complimentary relationship between 
flexible points, the optimization technique can generate 
trial solutions accordingly. 
 Interactions between flexible points that bound the 
search space – Incompatible or canceling effects between 
flexible points can be used to reduce the search space. 
Flexible point combinations can be disallowed or their 
probability reduced.
 We have built a prototype based on the approach 
presented here and conducted preliminary case studies.  
We describe the prototype and one such study next. 

4 CASE STUDY 

4.1 Prototype System 

Our system uses tools and a formal language(Flex ML) 
developed by Carnahan, Reynolds and Brogan (2005) for 
9

documenting flexible points and insights about them. For 
each iteration of optimization, our system 

Figure 3: Sample Visualizations.  Graphs Q, Y, and phi 
show the coverage of the search space for the three named 
flexible points over 45 iterations. Blue dots show the 
range of bindings in each iteration that the optimizer 
evaluates. The black line is the binding of the selected 
solution, used for subsequent iterations.  Graph “score” 
shows related evaluation of the objective function (lower 
is better). The blue dots are evaluations of all trail 
solutions that the optimizer generates in each iteration. 
The black curve shows the evaluation of the selected 
solution. Simulated annealing was the selected 
optimization method, which is why a best solution is not 
always selected. 

executes a new simulation instance with selected bindings
for relevant flexible points, and evaluates the objective 
function. Available optimization methods include 
simulated annealing, a genetic algorithm and steepest 
descent. User insight about flexible points is exploited.  A 
user can suggest promising search directions and avoid 
poor/invalid combinations of flexible point bindings in a 
search. A user can incrementally add newly-gained 
insights during the process to be used immediately. 
  The system provides dynamic visualization of the 
effects of an optimization, which helps a user gain insight 
about, for example, how flexible points’ selected bindings 
affect outcomes as the optimization proceeds, as well as 
how different bindings for flexible points affect the 
objective function. An example of a running profile is 
shown in Figure 3.  A user can preempt, restart with 
different configurations or switch to other techniques. A 
user can also manage flexible points: add or delete 
flexible points, change their boundaries and add newly-
discovered interactions between flexible points. Finally, a 
user can modify the solution then continue the search. 
04
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4.2 Coercing Grass Growth Simulation 

4.2.1 Grass Growth Simulation 

The Grass Growth simulation is based on a model 
employing differential equations developed by France  

Figure 4 Grass Growth Model and Two main differential 
equations in the model 

(1984) to study crop growth. The model includes five 
equations and thirteen parameters which are all identified
as flexible points in the model by a subject matter expert. 
The expert didn’t identify structural flexible points or 
interactions between the flexible points in this model. Still 
it is possible for a coercion user to identify those during 
the coercion process. 
 The environmental inputs of the simulation are day 
light information, temperature and length of days. The 
output of the simulation is the dry weight of the crop (sum 

of storage dry weight sW  and structural dry weight gW ).

4.2.2 Case Study: Coercing Grass Growth 
Simulation 

The goal of our coercion exercise is to coerce the Grass 
Growth simulation to match the real-world grass data.  
 We used the Hurley grass data collected in Finland, 
1983(IGER 1983). For every week during this year, sun 
and sky radiation, sunshine hours, temperatures and grass 
weight were measured. As input to our Grass Growth 
simulation we use the real-world inputs supplied by the 
dataset and we output grass weight. The initial 
comparison of our simulation’s output and the real world 
grass weight data is shown in Figure 5. As Figure 5 shows 
our simulation’s output (dashed red) does not match the 
real world data (solid black). This motivates the coercion: 
using real world input data we will semi-automatically 
coerce the simulation to produce similar grass growth data 
similar to real world grass data.  
Coercion Process: 

g
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W
P

dt

dW
GG

G

SG
m

G
WW

WW

WW

dt

dW
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1) The user provided a visualization comparing real-world 
data and output data, in Fig 5, which also shows the 
simulation’s original behavior. To match these two 
curves, the user defined the objective function to be 
minimization of the variance in differences between real-
world data and simulation output data. The differences are 
sampled on a daily basis for a year.  Minimizing variance 

Figure 5: Target grass growth curve(solid black) vs. 
simulation’s output(dashed red) before coercion started. 
X-axis is day number during a year. Measured daily data 
is interpolated to be smooth and comparable with 
continuous Grass Growth simulation

is a preferred approach for matching the output curve with 
the shape of the target curve. 
2) The user selected seven relevant flexible points from 
the flexible description file. All selected flexible points 
have uncertain boundaries and default values. The 
selected flexible points are as follows:   

3) The user selected simulated annealing with its default 
parameter settings and decided to use default values of 
flexible points as the start point, and initiated the search.  
4) The user observed the running profile visualization and 
realized that objective function evaluation is better when 
variables a , k  are close to their upper bounds. When the 
search terminated, the user checked the visualization 
(Figure 6) and was not satisfied with the results. 

a :   Structural specific leaf area  
k :   Extinction coefficient of canopy
 fc:          Fraction carbon content of dry matter  
Q :  Q_10 factor for rate constants  

Y :   conversion yield of growth 
:  shoot growth allocation 

m :  Leaf transmission coefficient 
Objective function:   
minimize ( )i iVar realData simulationData ,

1, 2...365i ..( i is day number in a year, two 

data are compared on daily basis. Real-world 
data is interpolated to generated daily data, 
simulation outputs daily data ) 
5



Tang and Reynolds 
Table 1.  Bindings of flexible points in each optimization phase. Subscript number indicates the phase: 1 is simulated 
annealing used in step 3); 2 is simulated annealing used in step 5); 3 is the steepest descent used in step 6). min and 
max are lower and upper bounds for flexible points bindings. Start and result are the start binding and result binding of 
the flexible point for the search.   

   shows in step 5, users expanded boundaries and added flexible points.  

   shows the in step 6, users constrain the boundaries to focus the search and the new start point. 

    shows the result bindings from each optimization phase 

the last row shows the evaluation of objective function of the best result from these three optimization phases.  

Flexible 

Points 
1min 1max

1start 1result 2min 2max
2start 2result 3min 3max 3start 3result

a 10 30 21 30.00  10 40 21 38.778  10 40 38.778 40

k 0 1 0.5 0.587  0.001 1.5 0.5 1.5 0.6 1.5 1.5 1.5

m 0.01 0.95 0.12 0.010  0.01 0.95 0.12 0.01  0.01 0.95 0.01 0.254

fc 0.01 1 0.4 0.809  0.01 1.5 0.4 0.622  0.01 1.2 0.622 0.693
Q 1 10 2 9.585  1 20 2 18.677 4 20 18.677 6.836

Y 0 0.75 0.715 0.324  0.001 0.75 0.715 0.254  0.001 0.6 0.254 0.290

0 1 0.9 0.729  0.001 1.5 0.9 0.722 0.3 1.5 0.722 1.29

initial  sW   0.01   0.001 0.03 0.01 0.003 0.001 0.03 0.003 0.001

initial gW   0.01   0.001 0.03 0.01 0.03 0.015 0.03 0.03 0.028
Objective Function   0.0118     0.00516         0.0023 
5) The user returned to the simulation, and decided to 
extend the upper bounds of a , k  (the flexible point 
description file indicated boundaries are uncertain). The 
user also noticed that in the optimization results, 
variables fc, Q , ’s bindings are close to their 

boundaries, so a decision was made to extend their upper 
bounds as well. The user also re-examined the grass-
growth model and decided to include two more flexible 
points into the optimization: 

After these modifications, which are shown in table 1, 
the user initiated simulated annealing again. 
6) When the search terminated, the user was still slightly 
not satisfied with the results (Figure 7). The user 
suspected that simulated annealing was cooling down 
too fast. And the user decided to switch to steepest 
descent to search for local minima around the result of 
the simulated annealing. If the local minimum is 
satisfactory, this strategy is more efficient than tuning 
simulated annealing. The user also noticed from the 
visualization that flexible points k , fc, Q , ,Y  , initial 

gW remain within sub-ranges of their valid domain (an 

initial sW :   initial storage dry  

initial gW : initial structural dry weight 
906
example is in Figure 8). The user decided to focus the 
search in these sub-ranges. The user used the best 
solution from simulated annealing as the start point for 
steepest descent, as shown in Table 1. 
7) After steepest descent terminated, the user checked 
the solution and curves, and was satisfied (Figure 9). The 
flexible points setting and management in each  

Figure 6: after first simulated annealing search in step 3 
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Figure 7: after second simulated annealing in step 5 

optimization phase are shown in Table1. The result of 
each optimization phase is shown in figures 6, 7 and 9.

Figure 8:  initial gW . As the optimization proceeds, its 
values in the sample solutions are moving from around 
lower-bound to a sub-range closer to upper bound. 

Figure 9: after steepest descent in step 6 

4.2.3 Discussion 

In this case study, the user made effective strategy 
decisions guiding the coercion process. The user 
identified two new relevant flexible points, and 
identified a promising direction for expanding the 
boundaries of several flexible points during the process 
and restarted the search. These decisions improved the 
results greatly (from Figure 6 to Figure 7 and to Figure 
9) according to the stated objective. The user also 
switched to local search and focused the search in a 
promising sub-search space which also improved the 
results (from Figure 7 to Figure 9).

It should be noted that our focus is not on finding 
the ‘only’ or the ‘optimal’ strategic decisions. Our goal 
is to study the efficacy of strategic user guidance of a 
successful coercion. In some situations, users have more 
than one decision option. For example, in this exercise, 
steepest descent found a set of satisfactory results 
efficiently. Alternatively the user could have chosen to 
tune the simulated annealing or restart simulated 
annealing instead of switching to steepest descent. Also, 
the user could have made mistakes. For example, the 
user expanded the boundary of Q, but the binding of Q 
in the result solution is within its original bound. 
However overall, the user made effective strategy 
decisions when the optimization did not give 
satisfactory results. 

 The user did not preempt the optimization in the 
case study. The main reason is that the Grass Growth 
simulation is not time-consuming. Also, the optimization 
ran for a short period of time and the results 
continuously improved as expected during the process. 
However, for long running optimizations we provide 
dynamic visualizations and allow users to preempt the 
optimization process at any time if the optimization 
process ceases to be productive. 

5 FUTURE WORK AND CONCLUSION 

Agile optimization and coercion offer many advantages 
over more traditional simulation optimization methods, 
including: 

Exploitation of flexible point annotations as 
well as indications of flexible point interactions 
and constraints.  This can reduce the search 
space considerably and provide increased 
insight as optimization occurs. 
Support for agility in switching between 
modification and optimization and among 
optimization methods.  Support for agility can 
mean greater flexibility and increased 
efficiency.

 Coercing simulations is a powerful adaptation 
technique, however it poses several challenges. We have 
presented an interactive approach where users employ 
insights gained during the optimization portion of the 
coercion process to make agile strategic decisions to 
guide the whole process. The contributions of this paper 
include: 

Identification of the main challenges in the 
coercion process 
Identification of the importance of users’ 
insights and interaction in coercion. We provide 
a preliminary taxonomy of insights and we 
discuss tools to assist users in gaining insight. 
Definition of an interactive approach where 
users can preempt the coercion process and 
make agile strategic decisions. This approach 
reflects respective strengths of humans and 
computers.  
907
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Focus on chaining optimization techniques 
using optimization algorithm-specific transition 
information we have described previously 
(Tang and Reynolds, 2007). 

This case study has motivated several opportunities 
for future work. More sophisticated visualizations should 
be provided to help users gain more complex insights 
about interactions between flexible points. Also, 
statistical analysis is not conducted in this case study. It 
could be helpful for users to gather insights regarding the 
importance and sensitivity of flexible points and how the 
current automated search technique is progressing. Such 
insights are likely to provide guidance for preempting 
the coercion process. Designing better visualization 
methods and conducting experiments using statistical 
analysis to gain insights are interesting future research 
topics. We also plan to conduct more studies on 
techniques to improve the agility of strategic decisions in 
the process. For example, a dynamic sensitivity analysis 
on the effectiveness of the current optimization 
technique would identify good locations for preemption. 
Finally, we are interested in minimizing the overhead of 
chaining various optimization techniques in order to 
increase the efficiency of the coercion process.  

REFERENCES 

Carnahan, J. C. 2006. “Language Support for the 
Coercible Software Domain”. A Dissertation 
Proposal, University of Virginia: School of 
Engineering and Applied Science, Charlottesville, 
VA, 2006. 

Carnahan, J. C., and P. F. Reynolds. 2006, December. 
“Requirements for DDDAS flexible point support”. 
In Proceedings of the 2006 Winter Simulation 
Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu, 
B. G. Lawson, D. M. Nicol, , and R. M. Fujimoto. 
Institute of Electrical and Electronics Engineers, 
Inc. 

Carnahan, J. C., P. F. Reynolds, Jr., and D. C. Brogan. 
2003. "An Experiment in Simulation Coercion." In 
Proceedings of the 2003 Interservice/Industry 
Training, Simulation, and Education Conference,
December 2003. 

Carnahan, J. C., P. F. Reynolds, Jr., and D. C. Brogan. 
2005. "Simulation-Specific Characteristics and 
Software Reuse." In Proceedings of the 2005 Winter 
Simulation Conference, pp. 2492-2499, December 
2005. 

Drewry, D. T., P. F. Reynolds, W. R. Emanuel. 2002. 
“An Optimization-Based Multi-Resolution 
Simulation Methodology”. In Proceedings of the 
2002 Winter Simulation Conference, December 
2002. 
Faulkner, E. and J. Cowart. 2006. “The Adaptive 
Optimization Engine”, Presented at INFORMS 
Annual Meeting 2006. 

France, J. 1984. “Mathematical Models in Agriculture: A 
Quanitative Approach to Problems in Agriculture 
and Related Sciences”, Buttersworths Publishing, 
Boston, MA, 1984. 

Hogg, T. and C. P. Williams. 2003. “Solving The Really 
Hard Problems With Cooperative Search”, In 
Proceedings of the AAAI93, AAAI Press. Menlo 
Park, CA,1993. 

IGER (Institute of Grassland and Environmental 
Research), 1983. “Hurley Grass Dataset”.  Personal 
communication <Scott.Laidlaw@afbini.gov.uk>

Klau, G. W., N. Lesh, J. Marks, and M. Mitzenmacher. 
2002. “Human-Guided Tabu Search.” In 
Proceedings of the 18th National Conference on 
Artificial Intelligence(AAAI), pp. 41-47, 2002. 

Klau, G. W., N. Lesh, J. Marks, and M. Mitzenmacher. 
2002b. “The HuGS Platform: A Toolkit for 
Interactive Optimization” , Published in Advanced 
Visual Interfaces, May 2002. Trento, Italy. 

Persson, A., H. Grimm, A. Ng. 2006. “On-line 
instrumentation for simulation-based optimization”. 
In Proceedings of the 2006 Winter Simulation 
Conference, December 2006. 

Scott, S. D., N. Lesh, G. W. Klau. 2002.  “Investigating 
Human-Computer Optimization”. In proceedings of 
Conference on Human Factors in Computing 
Systems, 2002.  

Tang, L and P.F. Reynolds 2007. "User guide for 
chained use of optimization techniques to gain 
insight", Technical Report: CS-2007-03, University 
of Virginia, Computer Science Dept, Jan. 2007. 

Waziruddin, S., D. C. Brogan, P. F. Reynolds. 2004. 
“Coercion through Optimization: A Classification of 
Optimization Techniques”. In Proceedings of the 
2004 Fall Simulation Interoperability Workshop,
Orlando, FL, September 2004. 

Wolpert, D.H., Macready, W.G. 1997. “No Free Lunch 
Theorems for Optimization”, IEEE Transactions on 
Evolutionary Computation, VOL. 1, NO. 1, April 
1997. 

ACKNOWLEDGMENTS 

We gratefully acknowledge support from the DDDAS 
program at the National Science Foundation (ITR 
0426971), the NSF-NIRT grant, award number 0507023, 
and from our colleagues in MaSTRI, the Modeling and 
Simulation Technology Research Initiative at the 
University of Virginia. 
908



Tang and Reynolds 
AUTHOR BIOGRAPHIES 

LINGJIA TANG is a Ph.D. Candidate in Computer 
Science and a member of MaSTRI at the University of 
Virginia. Her interests include optimization in coercion 
process. She earned her B.S. in Computer Science in 
Zhejiang University, China. Her email address is 
<lt8f@cs.virginia.edu>. 

PAUL F. REYNOLDS, JR. is a Professor of Computer 
Science and a member of MaSTRI at the University of 
Virginia. He has conducted research in modeling and 
simulation for over 25 years, and has published on a 
variety of M&S topics including parallel and distributed 
simulation, multi-resolution models and coercible 
simulations. He has advised numerous industrial and 
government agencies on matters relating to modeling 
and simulation. He is a plank holder in the DoD High 
Level Architecture. His email address is 
<reynolds@cs.virginia.edu>
909


