
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

AGILE OPTIMIZATION FOR COERCION

Lingjia Tang,
Paul F. Reynolds, Jr.

Department of Computer Science
University of Virginia

Charlottesville, VA 22904, U.S.A

.

ABSTRACT

Coercion combines flexible points, semi-automated
optimization and expert guided manual code modification
for adapting simulations to meet new requirements.
Coercion can improve simulation adaptation efficiency by
offloading large portions of work to automated search.
This paper identifies requirements and related challenges
in coercion, presents methods for gaining insight, and
describes how to use these insights to make agile strategy
decisions during a coercion. We call our optimization
method agile optimization, because it allows users to
preempt optimization and flexibly interleave alternative
optimization methods and manual code modification, as
needed. Agile optimization exploits the combined
strengths of human insight and process automation to
improve efficiency. We describe a prototype system and a
case study that together demonstrate the benefits that can
accrue from agile optimization.

1 INTRODUCTION

COERCE is a semi-automated technology for adapting
simulations to meet new requirements. A necessary part of
constructing a model is selection of abstractions, in order
to reduce complexity, improve performance, and provide
estimations for unknowns. When developing coercible
simulations a subject matter expert identifies a set of
abstraction opportunities and alternatives for each model
abstraction. A flexible point of a simulation reflects one
model abstraction opportunity and the corresponding
bindings for the flexible points reflect abstraction
alternatives. Flexible points can include both parameters
and model abstraction opportunities which reflect design
decisions, implementation considerations, and model
uncertainties. Flexible points can be annotated and
constrained using formal methods (Carnahan 2006). The
coercion process is as follows: when a new set of
requirements for a simulation arises, the user needs to
901-4244-1306-0/07/$25.00 ©2007 IEEE
determine whether to adapt the simulation by numerical
optimization or manual code modification. For
optimization, the user needs to define the objective
function for optimization to represent the difference
between the simulation’s current behavior and required
new behavior. Also, the user should identify related
flexible points, which would become the variables over
which an optimization is conducted. Bindings for each
flexible point represent the valid search range during
optimization. Optimization automatically searches for
appropriate bindings of flexible points that minimize the
objective function, thus minimizing the distance between
the simulation’s current behavior and required behavior.
At those times that optimization would fail to find a
satisfactory solution, manual code modification can be
employed. A user monitoring the coercion must acquire
sufficient insight to determine a next course of action. The
following notation depicts the iterative nature of the
COERCE process:

nSpnSppSpS 1...10
mop |

where 0S is the original simulation, nS is a simulation

instance meeting the new requirements, and p is either
an optimization o , or a manual modification m to the
source code (Waziruddin, Brogan and Reynolds 2004).
 Optimization over simulation inputs (“simulation
optimization”) to meet certain output objectives has been
employed for years. Coercion differs from simulation
optimization (SO) in part because it uses optimization to
transform simulations themselves, and because it employs
flexible points to guide and constrain optimization.
Flexible points, which are the source of variability in
coercion, tend to be much richer than traditional
parameter sets. SO is typically applied to parameter sets
only. Flexible points also include structural alternatives.
Furthermore, flexible point notation supports expression
of dependencies and interactions between flexible points
0

Tang and Reynolds
(incrementally) provided by subject matter experts and
coercion users, thus capturing constraints which can
greatly reduce optimization search space. The following
requirements exist for coercion but have not existed for
traditional simulation optimization:

The optimization portion of coercion must
provide insight into choices for possible
simulation implementation adaptations.
Because coercion combines optimization and
manual code modification to adapt simulations, it
must be an iterative process. Traditionally SO is
applied monolithically.
Because user insight is essential in coercion,
internal processes must be exposed, in order to
enhance insight and to provide guidance for later
steps in the coercion process. In traditional SO
simulations are treated as black boxes. Coercion
must treat them as white boxes.
Agility in the coercion process is essential.
Having optimizations run to completion and/or
repeatedly executing a simulation to completion
can consume unacceptably large amounts of
time. During any coercion step,

ipi SS 1
, a

user must be able to easily switch to another
optimization method or manual modification.

 In partial fulfillment of these requirements, we
propose agile optimization, an approach that supports
preemption and replacement of a coercion step when an
optimization is not proceeding as expected. With agile
optimization, a user selects an optimization method and
initiates a search. During the search, the user monitors the
process, gathers insight through visualization and analysis
support mechanisms, and adjusts strategies and tactics
based on the insights. A user can preempt the process at
any time to implement a strategic or tactical change.
Possible changes include adding or modifying flexible
points, adding insights about flexible points, switching to
another optimization method, tuning the current
optimization method, modifying the desired outcome, or
returning to manual modification. The framework
supporting agile optimization provides visualization,
statistical analysis tools and controls for users to gain
insight and guide the coercion process. Also, it facilitates
preemption and switching of an ongoing optimization, and
it provides support for rapid integration and exploitation
of a user’s insights. Thus, a user can expect to be able to
chain optimization techniques sequentially for
exploration, and to interleave optimizations and manual
code modification flexibly. This approach exploits a
human user's superiority in pattern recognition, learning
and decision making while also exploiting the advantages
of automated search.
 Agile optimization is fundamental to achieving the
requirements for coercion listed above:
9

It is designed to exploit human insight and
involvement in the coercion process, and it
includes provisions for guiding coercion using
that insight.
It combines the respective strengths of humans
and computers to improve quality and efficiency
in the coercion process.
It supports preemption of and chaining of
multiple optimization techniques in order to
maximize efficiency and acquisition of insight.
It utilizes interaction indications and constraints
related to flexible points to limit search space.

 Finally, we have constructed a prototype system that
includes basic visualization tools and a small library of
optimization techniques to provide users some flexibility
in conducting simulation coercion. While the general
system is still under construction and considerable
research and development remains, we present a case
study using the prototype system that demonstrates the
evolving system’s efficacy.

2 PREVIOUS WORK

Coercion has been applied successfully to adapt
simulations in different domains, as reported in Drewry,
Reynolds, and Emanuel (2002), Carnahan, Reynolds, and
Brogan (2003), and Carnahan and Reynolds(2006). For
example, Drewry, Reynolds, and Emanuel (2002)
describes the coercion of a low-resolution simulation of
carbon dioxide uptake in forests to yield behavior closely
matching the behavior of a trusted high-resolution model.
In these studies, automatic optimization was used to find
appropriate bindings for flexible points that yield a
desired simulation behavior. However, there has been no
research on how to flexibly interweave automatic
optimization and manual code modification. Also, no
human interaction was introduced into the optimization
process, and users were provided only an ad hoc method
for choosing an optimization technique. Key
contributions of this paper include its approach to
increasing user insight, leveraging users’ insights and
strategic thinking in the optimization process and flexibly
chaining various techniques in the coercion process.
 In the optimization community, research has occurred
on interactive optimization where a human is brought into
the loop and is assigned different tasks such as modifying
the solutions or eliminating unsatisfactory or unrealistic
solutions. Interesting work includes Human-guided tabu
search (Klau et al. 2002) and the HuGs platform (Klau, et
al. 2002b). Several optimization techniques and solution
visualizations are provided in HuGs. There, users can
preempt a current optimization, modify a solution,
constrain a search, or switch to another technique. With
HuGs, experiments showed that human-guided
optimization outperformed an equivalent amount of
01

Tang and Reynolds
unguided optimization. However, the HuGs work is
limited to a special class of combinatorial problems and a
limited set of optimization techniques (tabu search,
exhaustive search and greedy search).
 Early research has been conducted on combining
various optimization techniques. Hogg and
Williams(2003) have proposed a cooperative search
paradigm where two or more search algorithms are
running in parallel and exchanging and reusing
information generated by the other. Faulkner and Cowart
(2006) present an optimization method that interleaves
thirty different algorithms to solve nonlinear optimization
problems.
 Human interaction with optimization has been
explored in the simulation community recently. Persson,
Grimm, and Ng (2006) propose a white-box optimization
approach. They advocate using visualization and statistics
about the optimization process to help users tune the
technique and gain insight. This work focuses on
observing an optimization and tuning the current
optimization technique. Our work focuses on gaining and
leveraging insights into both optimization and a
simulation. Also, we advocate agility in the method
heretofore unexplored.

3 APPROACH

Agile optimization proceeds as depicted in Figure 1.
Given a set of flexible point definitions and a new set of
requirements, the user must determine whether the best
next step involves optimization or manual code
modification. For optimization, the user must specify an
objective function and constraints that represent the new
desired behavior, identify an appropriate set of flexible
points as the optimization variables and select an
optimization technique to start. During a search, the user
observes the process, and gathers insights from
visualization, analysis, etc. During a search, or at the end
of one, the user will evolve his/her strategy for
proceeding.. A strategic decision may include preemption
and chaining various optimization techniques flexibly.
Others could be:

tune the current search’s parameters or configuration
and restart
modify the flexible points, or add insights about them
constrain the search space according to insights or
modify the objective function and restart.
switch to manual code modification
modify the solution (change the bindings of flexible
points in the solution) and continue

The process continues until the user is satisfied with the
results. The key contributions of our approach relate to
our goal of providing insight in a process based manner.
This process, as noted, includes the use of flexible points,
optimization algorithm agility, and search.
90
 A framework for agile optimization should include
several essential components:

support for cumulatively gaining insight into
simulation behavior and flexible points during the
agile optimization process. Examples include
visualization and statistical analysis components.
support for carrying out strategic changes and
integrating insights, including:

a large set of optimization techniques that are
preemptible and tunable, and methods for
communicating between techniques in order
to control the overhead costs associated with
chaining techniques.
a user-friendly interface for users to observe,
control and enforce new strategies
interactively.

Figure 2 shows the architecture for the framework. In
the following sections, we discuss details of the proposed
architecture.

Figure 1: Process of Agile Optimization

Figure 2: Architecture for Agile Optimization. SAN:
Simulated Annealing; GA: Genetic Algorithm; SD:
steepest descent. Users can enforce strategy changes
2

Tang and Reynolds
through technique control and objective
function/flexible point management. The status of an
optimization is presented to the user through
visualization and statistical analysis components.

3.1 Insights

Insights are essential in our approach. Given sufficient
assistance, as would occur in an agile optimization
framework, a user can gain useful insights that in turn
reveal promising directions and effective strategies for
coercion. Such insights are generally not available as a
user begins to adapt a simulation. With agile optimization
the goal is to make them apparent as early as possible, so
that the adaptation can proceed efficiently. Because
flexible points have semantics representing abstraction
alternatives in the simulation (Carnahan, 2006) they create
more opportunities to gain valuable insights about
themselves and their effects on simulation behavior.
Moreover, newly-gained insights about flexible points and
simulation behavior can be annotated and used for
coercion in the future (Carnahan, 2006).
 Insights can be used to guide a successful coercion.
They can help to constrain the search space. They can also
indicate a need for strategy change as well as suggesting
appropriate changes. Insights are central to problem
redefinition, process performance improvement and
search technique selection. (Tang and Reynolds 2007)
present a summary of several common optimization
techniques and describe possible insights each technique
can provide and important insights each technique needs
for appropriate setup. Their summary can serve as a user
guide for exploiting insights to chain optimization
techniques and to guide the process. Examples of insights
occurring during agile optimization include:

Effects of flexible points on variables of interest
and/or the objective function
Importance and/or sensitivity of flexible points
Interactions between flexible points which can be
used to reduce the search space.
Promising regions where search efforts should
be intensified .
Problem structure/ characteristics of the
landscape
Current search success (stuck in local minimum,
searching a poor area, not converging) and
possible changes.
Insights about the objective function definition,
new constraints, etc.

 There are several approaches for gaining insights.
Most occur as a result of observing near successes and
analyzing the causes of failures during a search. We
believe more knowledge leads to more insight, and speedy
acquisition of insight is important. Agile optimization is
designed to provide speedy acquisition of insight.
90
 Insight can be gained from visualization of
intermediate optimization results, partial executions of the
subject simulation as well as the simulation's current
behavior compared to the target behavior. Also, statistical
analysis can be used to help gain insights into both the
interactions between flexible points and
effects/importance/sensitivity of flexible points. It can be
used together with visualization into the specific
technique’s characteristics (e.g diversity of population in
genetic algorithm, system temperature in simulated
annealing) to give insights about how to tune the
optimization.
 The importance of insight cannot be overstated. In
the next section we demonstrate its utility in shaping an
agile approach to optimization

3.2 Agile Strategies

Possible changes in strategy are listed at the beginning of
this section. Users steer the coercion process based on
insights. Example scenarios include:

Optimization may enter a path that eventually
generates no satisfactory results. A user may
realize that and preempt the process to adjust the
strategy.
A user may realize no optimization method is
going to succeed. In this case, the best choice is
likely preemption, to begin code modification.
The user-defined objective function might not
capture complex requirements sufficiently. User
interaction is needed to steer the optimization
and coercion process agilely.
When a user has insights about how to improve a
current strategy, s/he should leverage the insights
as soon as possible.
A user may realize that a selected optimization
method is inappropriate (e.g. too powerful and
thus too slow) for current conditions.

 To support agility, the agile optimization system must
provide tools for speedy acquisition of insight and
optimization techniques that are easy to manipulate and
switch. We discuss the techniques more in section 3.3.
Finally, heuristics can be employed to predict the need for
strategy change and provide suggestions.
 A human/computer division of workload exploits
automated computation power especially on constrained
and focused search spaces. It also leverages a user’s
domain knowledge and exploits the human advantage in
pattern recognition, learning, strategic thinking and
decision making (Klau, et al. 2002). Literature on
interactive optimization shows that humans are very good
at deciding when to preempt optimization and identify
promising areas of the search space (Scott, Lesh, and Klau
2002), which further supports our approach. Although
some optimization techniques have adaptive schemes to
3

Tang and Reynolds
adjust to different problems, we argue that human learning
skills are still required for best performance. Finally,
including a user in the process assists the user in gaining
confidence in the correctness of the coerced results.

3.3 Optimization Strategies

We have focused on chaining optimization techniques for
coercion. To take full advantage of flexible points,
multiple optimization techniques should be available.
Various optimization techniques have selected strengths
and weaknesses. Some require little insight or setup cost,
while others can exploit detailed information about the
simulation to improve quality of results. Different
techniques produce different search trajectories thus
yielding different insights. Chaining can exploit strengths
of different techniques, solve larger classes of problems,
leverage insight and help users gain different insights.
 To support chaining, optimization techniques must be
modified so that their controlling parameters can be tuned
on-the-fly and they can be preempted and resumed with
different configurations specified by users.
Communication between techniques should be facilitated
to support switching. Search space information should be
retained so that a switched-to technique can start where
the previous technique ended. A list of best-ranking
solutions should be kept for a user to consider.
 Optimization techniques should use user insights as
guidance for search directions, to concentrate on
promising regions, reduce search space, avoid invalid
regions, etc. Techniques should be modified and provide
visibility and control for the following kinds of insights:
 Effects/importance/sensitivity of flexible points
 New constraints – Users should be able to add new
constraints on the fly.
 Promising regions/direction – When a promising
region is discovered, a user should be able to guide search
accordingly (e.g. bounding flexible point ranges). Upon
discovery of a complimentary relationship between
flexible points, the optimization technique can generate
trial solutions accordingly.
 Interactions between flexible points that bound the
search space – Incompatible or canceling effects between
flexible points can be used to reduce the search space.
Flexible point combinations can be disallowed or their
probability reduced.
 We have built a prototype based on the approach
presented here and conducted preliminary case studies.
We describe the prototype and one such study next.

4 CASE STUDY

4.1 Prototype System

Our system uses tools and a formal language(Flex ML)
developed by Carnahan, Reynolds and Brogan (2005) for
9

documenting flexible points and insights about them. For
each iteration of optimization, our system

Figure 3: Sample Visualizations. Graphs Q, Y, and phi
show the coverage of the search space for the three named
flexible points over 45 iterations. Blue dots show the
range of bindings in each iteration that the optimizer
evaluates. The black line is the binding of the selected
solution, used for subsequent iterations. Graph “score”
shows related evaluation of the objective function (lower
is better). The blue dots are evaluations of all trail
solutions that the optimizer generates in each iteration.
The black curve shows the evaluation of the selected
solution. Simulated annealing was the selected
optimization method, which is why a best solution is not
always selected.

executes a new simulation instance with selected bindings
for relevant flexible points, and evaluates the objective
function. Available optimization methods include
simulated annealing, a genetic algorithm and steepest
descent. User insight about flexible points is exploited. A
user can suggest promising search directions and avoid
poor/invalid combinations of flexible point bindings in a
search. A user can incrementally add newly-gained
insights during the process to be used immediately.
 The system provides dynamic visualization of the
effects of an optimization, which helps a user gain insight
about, for example, how flexible points’ selected bindings
affect outcomes as the optimization proceeds, as well as
how different bindings for flexible points affect the
objective function. An example of a running profile is
shown in Figure 3. A user can preempt, restart with
different configurations or switch to other techniques. A
user can also manage flexible points: add or delete
flexible points, change their boundaries and add newly-
discovered interactions between flexible points. Finally, a
user can modify the solution then continue the search.
04

Tang and Reynolds
4.2 Coercing Grass Growth Simulation

4.2.1 Grass Growth Simulation

The Grass Growth simulation is based on a model
employing differential equations developed by France

Figure 4 Grass Growth Model and Two main differential
equations in the model

(1984) to study crop growth. The model includes five
equations and thirteen parameters which are all identified
as flexible points in the model by a subject matter expert.
The expert didn’t identify structural flexible points or
interactions between the flexible points in this model. Still
it is possible for a coercion user to identify those during
the coercion process.
 The environmental inputs of the simulation are day
light information, temperature and length of days. The
output of the simulation is the dry weight of the crop (sum

of storage dry weight sW and structural dry weight gW).

4.2.2 Case Study: Coercing Grass Growth
Simulation

The goal of our coercion exercise is to coerce the Grass
Growth simulation to match the real-world grass data.
 We used the Hurley grass data collected in Finland,
1983(IGER 1983). For every week during this year, sun
and sky radiation, sunshine hours, temperatures and grass
weight were measured. As input to our Grass Growth
simulation we use the real-world inputs supplied by the
dataset and we output grass weight. The initial
comparison of our simulation’s output and the real world
grass weight data is shown in Figure 5. As Figure 5 shows
our simulation’s output (dashed red) does not match the
real world data (solid black). This motivates the coercion:
using real world input data we will semi-automatically
coerce the simulation to produce similar grass growth data
similar to real world grass data.
Coercion Process:

g
GS

W
Y

W
P

dt

dW
GG

G

SG
m

G
WW

WW

WW

dt

dW

S

90
1) The user provided a visualization comparing real-world
data and output data, in Fig 5, which also shows the
simulation’s original behavior. To match these two
curves, the user defined the objective function to be
minimization of the variance in differences between real-
world data and simulation output data. The differences are
sampled on a daily basis for a year. Minimizing variance

Figure 5: Target grass growth curve(solid black) vs.
simulation’s output(dashed red) before coercion started.
X-axis is day number during a year. Measured daily data
is interpolated to be smooth and comparable with
continuous Grass Growth simulation

is a preferred approach for matching the output curve with
the shape of the target curve.
2) The user selected seven relevant flexible points from
the flexible description file. All selected flexible points
have uncertain boundaries and default values. The
selected flexible points are as follows:

3) The user selected simulated annealing with its default
parameter settings and decided to use default values of
flexible points as the start point, and initiated the search.
4) The user observed the running profile visualization and
realized that objective function evaluation is better when
variables a , k are close to their upper bounds. When the
search terminated, the user checked the visualization
(Figure 6) and was not satisfied with the results.

a : Structural specific leaf area
k : Extinction coefficient of canopy
 fc: Fraction carbon content of dry matter
Q : Q_10 factor for rate constants

Y : conversion yield of growth
: shoot growth allocation

m : Leaf transmission coefficient
Objective function:
minimize ()i iVar realData simulationData ,

1, 2...365i ..(i is day number in a year, two

data are compared on daily basis. Real-world
data is interpolated to generated daily data,
simulation outputs daily data)
5

Tang and Reynolds
Table 1. Bindings of flexible points in each optimization phase. Subscript number indicates the phase: 1 is simulated
annealing used in step 3); 2 is simulated annealing used in step 5); 3 is the steepest descent used in step 6). min and
max are lower and upper bounds for flexible points bindings. Start and result are the start binding and result binding of
the flexible point for the search.

 shows in step 5, users expanded boundaries and added flexible points.

 shows the in step 6, users constrain the boundaries to focus the search and the new start point.

 shows the result bindings from each optimization phase

the last row shows the evaluation of objective function of the best result from these three optimization phases.

Flexible

Points
1min 1max

1start 1result 2min 2max
2start 2result 3min 3max 3start 3result

a 10 30 21 30.00 10 40 21 38.778 10 40 38.778 40

k 0 1 0.5 0.587 0.001 1.5 0.5 1.5 0.6 1.5 1.5 1.5

m 0.01 0.95 0.12 0.010 0.01 0.95 0.12 0.01 0.01 0.95 0.01 0.254

fc 0.01 1 0.4 0.809 0.01 1.5 0.4 0.622 0.01 1.2 0.622 0.693
Q 1 10 2 9.585 1 20 2 18.677 4 20 18.677 6.836

Y 0 0.75 0.715 0.324 0.001 0.75 0.715 0.254 0.001 0.6 0.254 0.290

0 1 0.9 0.729 0.001 1.5 0.9 0.722 0.3 1.5 0.722 1.29

initial sW 0.01 0.001 0.03 0.01 0.003 0.001 0.03 0.003 0.001

initial gW 0.01 0.001 0.03 0.01 0.03 0.015 0.03 0.03 0.028
Objective Function 0.0118 0.00516 0.0023
5) The user returned to the simulation, and decided to
extend the upper bounds of a , k (the flexible point
description file indicated boundaries are uncertain). The
user also noticed that in the optimization results,
variables fc, Q , ’s bindings are close to their

boundaries, so a decision was made to extend their upper
bounds as well. The user also re-examined the grass-
growth model and decided to include two more flexible
points into the optimization:

After these modifications, which are shown in table 1,
the user initiated simulated annealing again.
6) When the search terminated, the user was still slightly
not satisfied with the results (Figure 7). The user
suspected that simulated annealing was cooling down
too fast. And the user decided to switch to steepest
descent to search for local minima around the result of
the simulated annealing. If the local minimum is
satisfactory, this strategy is more efficient than tuning
simulated annealing. The user also noticed from the
visualization that flexible points k , fc, Q , ,Y , initial

gW remain within sub-ranges of their valid domain (an

initial sW : initial storage dry

initial gW : initial structural dry weight
906
example is in Figure 8). The user decided to focus the
search in these sub-ranges. The user used the best
solution from simulated annealing as the start point for
steepest descent, as shown in Table 1.
7) After steepest descent terminated, the user checked
the solution and curves, and was satisfied (Figure 9). The
flexible points setting and management in each

Figure 6: after first simulated annealing search in step 3

Tang and Reynolds
Figure 7: after second simulated annealing in step 5

optimization phase are shown in Table1. The result of
each optimization phase is shown in figures 6, 7 and 9.

Figure 8: initial gW . As the optimization proceeds, its
values in the sample solutions are moving from around
lower-bound to a sub-range closer to upper bound.

Figure 9: after steepest descent in step 6

4.2.3 Discussion

In this case study, the user made effective strategy
decisions guiding the coercion process. The user
identified two new relevant flexible points, and
identified a promising direction for expanding the
boundaries of several flexible points during the process
and restarted the search. These decisions improved the
results greatly (from Figure 6 to Figure 7 and to Figure
9) according to the stated objective. The user also
switched to local search and focused the search in a
promising sub-search space which also improved the
results (from Figure 7 to Figure 9).

It should be noted that our focus is not on finding
the ‘only’ or the ‘optimal’ strategic decisions. Our goal
is to study the efficacy of strategic user guidance of a
successful coercion. In some situations, users have more
than one decision option. For example, in this exercise,
steepest descent found a set of satisfactory results
efficiently. Alternatively the user could have chosen to
tune the simulated annealing or restart simulated
annealing instead of switching to steepest descent. Also,
the user could have made mistakes. For example, the
user expanded the boundary of Q, but the binding of Q
in the result solution is within its original bound.
However overall, the user made effective strategy
decisions when the optimization did not give
satisfactory results.

 The user did not preempt the optimization in the
case study. The main reason is that the Grass Growth
simulation is not time-consuming. Also, the optimization
ran for a short period of time and the results
continuously improved as expected during the process.
However, for long running optimizations we provide
dynamic visualizations and allow users to preempt the
optimization process at any time if the optimization
process ceases to be productive.

5 FUTURE WORK AND CONCLUSION

Agile optimization and coercion offer many advantages
over more traditional simulation optimization methods,
including:

Exploitation of flexible point annotations as
well as indications of flexible point interactions
and constraints. This can reduce the search
space considerably and provide increased
insight as optimization occurs.
Support for agility in switching between
modification and optimization and among
optimization methods. Support for agility can
mean greater flexibility and increased
efficiency.

 Coercing simulations is a powerful adaptation
technique, however it poses several challenges. We have
presented an interactive approach where users employ
insights gained during the optimization portion of the
coercion process to make agile strategic decisions to
guide the whole process. The contributions of this paper
include:

Identification of the main challenges in the
coercion process
Identification of the importance of users’
insights and interaction in coercion. We provide
a preliminary taxonomy of insights and we
discuss tools to assist users in gaining insight.
Definition of an interactive approach where
users can preempt the coercion process and
make agile strategic decisions. This approach
reflects respective strengths of humans and
computers.
907

Tang and Reynolds
Focus on chaining optimization techniques
using optimization algorithm-specific transition
information we have described previously
(Tang and Reynolds, 2007).

This case study has motivated several opportunities
for future work. More sophisticated visualizations should
be provided to help users gain more complex insights
about interactions between flexible points. Also,
statistical analysis is not conducted in this case study. It
could be helpful for users to gather insights regarding the
importance and sensitivity of flexible points and how the
current automated search technique is progressing. Such
insights are likely to provide guidance for preempting
the coercion process. Designing better visualization
methods and conducting experiments using statistical
analysis to gain insights are interesting future research
topics. We also plan to conduct more studies on
techniques to improve the agility of strategic decisions in
the process. For example, a dynamic sensitivity analysis
on the effectiveness of the current optimization
technique would identify good locations for preemption.
Finally, we are interested in minimizing the overhead of
chaining various optimization techniques in order to
increase the efficiency of the coercion process.

REFERENCES

Carnahan, J. C. 2006. “Language Support for the
Coercible Software Domain”. A Dissertation
Proposal, University of Virginia: School of
Engineering and Applied Science, Charlottesville,
VA, 2006.

Carnahan, J. C., and P. F. Reynolds. 2006, December.
“Requirements for DDDAS flexible point support”.
In Proceedings of the 2006 Winter Simulation
Conference, ed. L. F. Perrone, F. P. Wieland, J. Liu,
B. G. Lawson, D. M. Nicol, , and R. M. Fujimoto.
Institute of Electrical and Electronics Engineers,
Inc.

Carnahan, J. C., P. F. Reynolds, Jr., and D. C. Brogan.
2003. "An Experiment in Simulation Coercion." In
Proceedings of the 2003 Interservice/Industry
Training, Simulation, and Education Conference,
December 2003.

Carnahan, J. C., P. F. Reynolds, Jr., and D. C. Brogan.
2005. "Simulation-Specific Characteristics and
Software Reuse." In Proceedings of the 2005 Winter
Simulation Conference, pp. 2492-2499, December
2005.

Drewry, D. T., P. F. Reynolds, W. R. Emanuel. 2002.
“An Optimization-Based Multi-Resolution
Simulation Methodology”. In Proceedings of the
2002 Winter Simulation Conference, December
2002.
Faulkner, E. and J. Cowart. 2006. “The Adaptive
Optimization Engine”, Presented at INFORMS
Annual Meeting 2006.

France, J. 1984. “Mathematical Models in Agriculture: A
Quanitative Approach to Problems in Agriculture
and Related Sciences”, Buttersworths Publishing,
Boston, MA, 1984.

Hogg, T. and C. P. Williams. 2003. “Solving The Really
Hard Problems With Cooperative Search”, In
Proceedings of the AAAI93, AAAI Press. Menlo
Park, CA,1993.

IGER (Institute of Grassland and Environmental
Research), 1983. “Hurley Grass Dataset”. Personal
communication <Scott.Laidlaw@afbini.gov.uk>

Klau, G. W., N. Lesh, J. Marks, and M. Mitzenmacher.
2002. “Human-Guided Tabu Search.” In
Proceedings of the 18th National Conference on
Artificial Intelligence(AAAI), pp. 41-47, 2002.

Klau, G. W., N. Lesh, J. Marks, and M. Mitzenmacher.
2002b. “The HuGS Platform: A Toolkit for
Interactive Optimization” , Published in Advanced
Visual Interfaces, May 2002. Trento, Italy.

Persson, A., H. Grimm, A. Ng. 2006. “On-line
instrumentation for simulation-based optimization”.
In Proceedings of the 2006 Winter Simulation
Conference, December 2006.

Scott, S. D., N. Lesh, G. W. Klau. 2002. “Investigating
Human-Computer Optimization”. In proceedings of
Conference on Human Factors in Computing
Systems, 2002.

Tang, L and P.F. Reynolds 2007. "User guide for
chained use of optimization techniques to gain
insight", Technical Report: CS-2007-03, University
of Virginia, Computer Science Dept, Jan. 2007.

Waziruddin, S., D. C. Brogan, P. F. Reynolds. 2004.
“Coercion through Optimization: A Classification of
Optimization Techniques”. In Proceedings of the
2004 Fall Simulation Interoperability Workshop,
Orlando, FL, September 2004.

Wolpert, D.H., Macready, W.G. 1997. “No Free Lunch
Theorems for Optimization”, IEEE Transactions on
Evolutionary Computation, VOL. 1, NO. 1, April
1997.

ACKNOWLEDGMENTS

We gratefully acknowledge support from the DDDAS
program at the National Science Foundation (ITR
0426971), the NSF-NIRT grant, award number 0507023,
and from our colleagues in MaSTRI, the Modeling and
Simulation Technology Research Initiative at the
University of Virginia.
908

Tang and Reynolds
AUTHOR BIOGRAPHIES

LINGJIA TANG is a Ph.D. Candidate in Computer
Science and a member of MaSTRI at the University of
Virginia. Her interests include optimization in coercion
process. She earned her B.S. in Computer Science in
Zhejiang University, China. Her email address is
<lt8f@cs.virginia.edu>.

PAUL F. REYNOLDS, JR. is a Professor of Computer
Science and a member of MaSTRI at the University of
Virginia. He has conducted research in modeling and
simulation for over 25 years, and has published on a
variety of M&S topics including parallel and distributed
simulation, multi-resolution models and coercible
simulations. He has advised numerous industrial and
government agencies on matters relating to modeling
and simulation. He is a plank holder in the DoD High
Level Architecture. His email address is
<reynolds@cs.virginia.edu>
909

