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ABSTRACT

Coercion is a semi-automated simulation adaptation tech-
nology that uses subject-matter expert insight about model
abstraction alternatives, called flexible points, to change the
behavior of a simulation. Coercion has been successfully
applied to legacy simulations, but never before to a simula-
tion under development. In this paper, we describe coercion
of a developing simulation and compare it with our expe-
rience coercing legacy simulations. Using a simulation of
selective dissolution in alloys as a case study, we observe
that applying coercion early in the development process can
be very beneficial, aiding subject matter experts in formal-
izing assumptions and discovering unexpected interactions.
We also discuss the development of new coercion tools and
a new language (Flex ML) for working with flexible points.

1 INTRODUCTION

Developing any good simulation model is a matter of se-
lecting the right abstractions. By definition, models are
abstractions of other systems. Therefore, decisions must be
made about which phenomena to omit, which to include,
and how to represent the included phenomena. The right ab-
straction decisions lead to a simulation that runs efficiently
and provides valid insight into questions of interest.

Often there exists uncertainty about which abstractions
are best for particular questions of interest, and finding the
right abstractions for a model can be a significant research
problem in itself. This uncertainty about abstractions makes
modeling challenging, but it also provides flexibility that
can be exploited during model development. COERCE is a
simulation adaptation technology that exploits this flexibility
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to automate parts of the adaptation process (Waziruddin,
Brogan, and Reynolds 2003). In this paper, we show how
COERCE can be applied early in the simulation life cycle to
build better simulations and gain additional insight during
the development process.

This paper describes the development of a simulation
of selective dissolution in alloys. When an alloy of two or
more metals of different activities (such as gold and silver) is
submerged in an electrolyte and a voltage is applied, the more
active metal may dissolve into the electrolyte while some
of the less active metal may diffuse into spaces vacated by
the more active metal. The result of this dealloying process
is a nanoporous structure with extremely high surface area
and other useful properties (Erlebacher 2004).

To simulate the dealloying process, abstraction deci-
sions must be made about the bonding energies between
different atoms in the system and about how to model
concurrent dissolution events. By identifying and formally
describing these decisions as flexible points, we were able
to use coercion to explore possible abstractions and iden-
tify previously unknown relationships within the system.
This approach succeeded in spite of (and in some cases,
because of) the challenges of coercing a simulation early
in its development.

2 SIMULATION OF SELECTIVE DISSOLUTION

Selective dissolution (also known as dealloying) refers to the
preferential removal of one component of a metal alloy over
another via corrosive processes (Korb 1987). For selective
dissolution to occur, one or more of the metals in an alloy
must be more reactive than the other(s). When the alloy is
exposed to an electrolytic solution, the more reactive metal
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or metals may dissolve into the solution, leaving the other
metal or metals behind.

There are several common environmental processes in
which dealloying occurs, such as the “dezincification” of
brasses. In this instance, the zinc is preferentially removed,
leaving behind a weakened copper skeleton. Dealloying
processes have become a matter of increased interest re-
cently, especially in alloys such as AuxAg1−x, because the
resulting porous gold structure could be used for several
engineering applications including drug delivery and sensor
foundations.

The underlying assumption of the dealloying model
proposed in several recent papers is that both the dissolution
rate of the more reactive component of the alloy and the
surface diffusion rates of both components are dependent
on the coordination number of the bonds of the atoms
at the surface (Erlebacher et al. 2001; Legrand et al.
2002). Initially, the rates of diffusion and dissolution were
derived empirically as best fit parameters in comparison
with experimental data. The model given in Legrand et al.
(2002) was later extended with first principle calculations
using quantum chemistry to obtain more accurate estimates
of the energies of dissolution (Diawara et al. 2004).

In this work, we have modeled the dealloying process
by considering the role of the electrolyte as the medium
by which both the high observed surface diffusivities of
the more noble (less active) atoms can be explained and
through which the cations of the less noble (more active)
component are transported away from the dealloying front.
We adopted a kinetic Monte-Carlo algorithm because it
allows us to model fairly large systems for longer periods
of time than a standard Monte-Carlo algorithm, and the
natural processes that we are modeling lend themselves
easily to this approach (Novotny 2001).

3 COERCE: SEMI-AUTOMATED ADAPTATION

To assist in the development of the dealloying simulation, we
employed a technology called COERCE. COERCE consists
of two parts, coercion and coercibility. Coercion is a semi-
automated adaptation process that leverages subject matter
expert (SME) insight about elements of the simulation code
called flexible points to direct a simulation’s behavior. A
flexible point is the reflection of a model abstraction in
the simulation code, and a flexible point binding is the
implementation of a possible abstraction that could be chosen
at a flexible point. Coercibility requires the description of
flexible points, their properties, their possible bindings, and
their interactions.

3.1 The Coercion Process

The coercion process is sketched in Figure 1. The adap-
tation begins with the introduction of a new requirement
8

on the simulation’s behavior. Using insight about which
abstractions affect each aspect of the simulation’s behavior,
the SME selects flexible points that relate to the new re-
quirement. From here, the simulation analyst must choose
either automatic search or manual modification for changing
the selected flexible points. If automatic search is selected,
then the SME specifies constraints and an objective function
to describe the required behavior. Then, an optimization
technique is applied to search for the set of flexible point
bindings that minimize the objective function. After the
modification is performed or the optimization is run, the
simulation’s behavior is analyzed and the SME determines if
the result is acceptable. If not, then insight is gained from the
new behavior and the process is repeated. This insight can
include identification of new flexible points, observation of
the effect of selected flexible points on simulation behavior,
or discovery of interaction between flexible points and their
effects. This continual accumulation of insight is critical to
the success of the coercion process (Waziruddin, Brogan,
and Reynolds 2004). Because coercion employs automatic
search instead of manual modification, coercion yields a
simulation that performs the required behavior with consid-
erably less programming effort than conventional simulation
development methods.

Coercion can be distinguished from other optimization-
based simulation methodologies in several ways. First,
flexible points include not only numeric parameters but
also design decisions, such as selecting an equation for
representing a phenomenon or omitting the phenomenon
from the simulation altogether. Second, coercion does not
require identifying all parameters in advance, which would
often make the simulation too complex and interfere with
the simulation’s performance (Parnas 1979). Instead, new
flexible points can and should be identified at any point
in a simulation’s life cycle. Most importantly, coercion
takes advantage of SME insight about the flexible points
and their interactions to guide the search process, which
can significantly reduce the costs of search and improve
search results relative to naive optimization methods (Tang
and Reynolds 2007).

3.2 Describing Flexible Points

Flexible points are the key to COERCE. Because flexible
points reflect model abstraction decisions, they have a de-
gree of flexibility derived from uncertainty about what the
right abstractions should be. However, SME knowledge
about the phenomenon that is being modeled can also con-
strain the possible abstractions that could be selected. This
combination of flexibility and constraints makes it possible
to frame simulation adaptation as an optimization problem,
which in turn allows automatic search tools to replace certain
manual code modifications.
92
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Figure 1: The coercion process.

Flexible points commonly include (but are not limited
to) parameters, input distributions, and choices of equations.
They can be identified at any point in the simulation’s
life cycle, including conception, design, implementation,
validation, and adaptation (Carnahan, Reynolds, and Brogan
2004). The following information about flexible points is
useful for coercion:

Possibly valid bindings. Before exploring the possible
bindings for a flexible point, coercion requires
information about what other bindings should be
considered.

How each binding could be implemented. For flexi-
ble point changes to be applied automatically, co-
ercion requires knowledge about how changing a
flexible point binding changes the code.

Effects of each binding on simulation behavior. In
order to know which flexible points should be
changed to meet a specific requirement, coercion
requires knowledge about the effects of each
possible change.

Interactions among different flexible points. As
flexible points can overlap with each other in the
89
code and change each other’s effects, coercion
requires information about how different flexible
points affect one another.

Information about flexible point interactions is particularly
important. When one part of the simulation depends on
assumptions made in another part, changing flexible points
without considering interactions can have unexpected ef-
fects or lead to invalid results. Examples of flexible point
interactions include

• restrictions on which bindings can be selected si-
multaneously,

• requirements on which bindings must be selected
if a given binding is selected,

• complementary effects, where changing two flex-
ible points leads to a much greater effect on sim-
ulation behavior than selecting either in isolation,

• canceling effects, where changing two flexible
points leads to a smaller effect than selecting either
in isolation, and

• implementation conflicts, where selecting one bind-
ing changes how another binding must be imple-
mented.

To capture all of this information and to process it with
automatic coercion tools, a formal language for describing
flexible points is needed. A language called Flex ML is
currently being developed to fulfill this need. Flex ML (short
for “Flexible Point Markup Language”) is an XML-based
language for describing flexible points in simulations. Its
first use in COERCE is described in Gore et al. (2007). Note
that even with a formal language, flexible point descriptions
will always be incomplete, as it is impossible to anticipate
all of the future requirements that might be placed on any
given simulation. However, numerous examples have shown
that coercion can succeed even with incomplete information
about flexible points.

3.3 COERCE Examples

COERCE has been applied successfully to a variety of
simulation adaptation problems. Drewry, Reynolds, and
Emanuel (2002) describe the coercion of a simulation of
carbon dioxide uptake in forests, which explored flexible
points in a low-resolution model to yield behavior that more
closely reflected the behavior of a trusted higher-resolution
model. Carnahan, Reynolds, and Brogan (2003) describe
the coercion of a simplified model of a bicyclist to mimic
the behavior of a detailed full-physics simulation. Carnahan
and Reynolds (2006) discuss the coercion of a logistical
supply-chain simulation in response to new marketing data
and inventory reports.
3
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In each of these cases, flexible points were identified
and automatic search was employed to find flexible point
bindings that yielded the desired simulation behavior. No-
tably, each of these cases involved an existing (“legacy”)
simulation, where the simulation code was already written
and at least partially validated before coercion. This paper
reports on the first effort to apply COERCE to a developing
simulation.

4 CASE STUDY METHODOLOGY

To evaluate the benefits of applying COERCE to the early de-
velopment of a simulation, we identified flexible points and
performed coercion on the selective dissolution simulation
introduced in Section 2. This required identifying the crit-
ical assumptions underlying the new simulation, gathering
SME insight about flexible points and what reasonable bind-
ings might be, and continually integrating changing baseline
simulation code with the adaptations achieved through co-
ercion. The results included demonstrably useful estimates
for a number of uncertain simulation parameters, some sur-
prising insights about interactions within the simulation, and
several promising directions for expanding the simulation
in the future.

4.1 Flexible Point Identification and Analysis

As with previous coercion experiments (e.g., Carnahan,
Reynolds, and Brogan 2003), identification of flexible points
in the dealloying simulation required cooperation between
the simulation analysts and the SME. The analysts, once
familiar with the simulation code, compiled an initial list of
potential flexible points. This list included any parameters
or code that seemed important to the function of the model.
While not a complete or necessarily correct list of the
flexible points in the simulation, it served as a starting point
for discussions with the SME. As the SME was previously
unfamiliar with COERCE, the tentative flexible point list
helped to convey the idea of flexible points, which made it
easier for the SME to identify additional (and often more
useful) flexible points to use in coercion.

To acquire more information about flexible points, the
analysts asked the SME the following questions:

1. What numerical value, code, or distribution is cur-
rently being used as the binding for each flexible
point?

2. What is the explanation for each flexible point’s
current binding? Would different SMEs use dif-
ferent parameter values or modeling approaches
based on incomplete experimental data, or is the
binding based on data that is widely accepted in
the field?
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3. How certain is the SME about the current bind-
ing for each flexible point? (For this study, we
used a subjective scale of “certain”, “uncertain”,
and “unknown”. Future work will address how
quantitative uncertainty analysis techniques could
be used instead.)

4. If the SME is uncertain about the current binding of
a flexible point, what range of values or alternative
approaches might be considered acceptable?

5. Which other bindings for this flexible point should
be considered first?

6. What variables in the code should be directly af-
fected by changing each flexible point?

7. What other flexible points are affected by changing
each flexible point, and how?

A representative subset of the information gathered in this
analysis is presented in Table 1.

4.2 Formalized Descriptions with Flex ML

Once a good working set of flexible points had been iden-
tified, the analysts translated the information into a formal
representation using Flex ML. As mentioned in Section 3.2,
Flex ML is a developing language for describing flexible
points and all of their properties that are relevant to CO-
ERCE. We have developed a number of tools for Flex ML,
including a graphical editor, an XML Schema for detect-
ing errors in Flex ML documents, and a growing library
of optimization routines that can automatically exploit in-
formation about flexible points and potential flexible point
interactions.

The formal nature of Flex ML enables automated anal-
ysis and exploration of simulation implementation alter-
natives. When coercing a simulation to exhibit certain
behaviors, the COERCE optimization process can limit the
search to exploration of those flexible points that poten-
tially affect the desired behavior. Likewise, the process
could explore those flexible points with bindings marked as
less certain before exploring those with bindings considered
more certain. Whenever two flexible points are marked as
potentially interacting in a contradictory manner, the opti-
mization process could avoid changing those flexible points
or flag the result of any coercion involving those flexible
points as possibly suspect.

Several optimization algorithms could take advantage
of the flexible point descriptions in algorithm-specific ways
(Tang and Reynolds 2007). For example, simulated an-
nealing takes steps in random directions through the space
of possible bindings, but flexible point information could
be used to bias that random choice in favor of directions
that the SME wishes to explore first. Also, both simulated
annealing and steepest descent have an initial step size pa-
4
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Table 1: Sample of questions and answers in the flexible point analysis.

Flexible Point Question SME Answers
Au-Au bond 1. What is the default binding? 0.64 eV
energy 2. How was this binding chosen? Based on others’ experimental work

3. How certain is this binding? Uncertain due to extrapolation from original
experiment

4. How could this binding change? Must be greater than the Au-Ag bond energy
5. How should this binding be changed first? More likely that decreasing this value will be

beneficial than increasing
6. What variables does this effect? Diffusivity and # of atoms dealloyed for Au
7. What flexible points does this effect? Could counteract increases in Au-H2O or Au-

Anion bond energies
Factor for 1. What is the default binding? 0.0
voltage-affected
diffusion

2. How was this binding chosen? The SME wished to explore other parameters’
effects on diffusion first

3. How certain is this binding? Completely unknown (no certainty)
4. How could this binding change? Must be in the range 0.0 ≤ x ≤ 1.0
5. How should this binding be changed first? Must increase
6. What variables does this affect? Should affect the diffusivity of Au atoms
7. What flexible points does this affect? Changes bond energies’ effect on diffusivity

Time advance
mechanism

1. What is the default binding? As each event occurs, advance the clock by
a fixed amount based on the average of all
rates of all possible events

2. How was this binding chosen? Comparison w/ Erlebacher (2004)
3. How certain is this binding? Uncertain due to added consideration for elec-

trolyte
4. How could this binding change? Time could advance as inverse of the rate

of the selected event, or some compromise
could be chosen

5. How should this binding be changed first? Not sure – Avoid changing this
6. What variables does this effect? Locations and #s of cations and anions
7. What flexible points does this affect? Not sure
rameter, which can be set based on the units associated with
each flexible point.

4.3 Flexible Points and the Dealloying Simulation

We used coercion to improve the dealloying simulation in
several ways. For example, the SME observed early in the
simulation development process that some gold atoms were
dissolving along with the silver atoms. When dealloying
an AuxAg1−x alloy, it is possible that a few gold atoms
could be dissolved from the crystal, but the applied voltages
are low enough that gold should not be ionized and should
only diffuse across the surface of the crystal. At the same
time, the silver atoms are expected to dissolve into the
electrolyte. To capture these requirements, we stated the
following objective function:
895
u = # of Au atoms dissolved
g = # of Ag atoms dissolved
D = Computed diffusivity of Au

atoms in the simulation
Dtarget = Measured diffusivity of Au

atoms in experiments
s = Scaling factor

Objective
Function

=
{

|Dtarget −D|s+u if u > 0
|Dtarget −D|s−g if u = 0

In other words, if any gold atoms dissolved, then the ob-
jective function was the number of dissolved gold atoms
plus a weighted measurement of the accuracy of the gold’s
diffusivity. If none of the gold atoms dissolved, then the ob-
jective function became the accuracy of the gold’s diffusivity
minus the number of silver atoms that dealloyed. Using
COERCE to minimize this function, the SME and analysts
derived a simulation that dissolved silver without dissolving
gold, while realizing a diffusivity acceptably close to the
experimentally-predicted value.
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4.3.1 Diffusivity Calculations

The value used for Dtarget was 100 Å2/s (10−14 cm2/s).
Within the simulation, the diffusivity of gold was calculated
as follows:

d = Avg. distance moved by
Au atoms (Å)

t = Elapsed simulation time (s)
n = # of elapsed simulation

steps
λ = d

n
D = nλ 2

2t

The scaling factor s was calculated from the size of the
simulated sample that was being dealloyed:

x = Width of the sample
y = Depth of the sample
n = # of elapsed simulation

steps
s = n

5000

( x
10

)( y
10

)
The purpose of this scaling factor was to keep the differ-
ence in diffusivities comparable with the number of atoms
dissolved. As the number of atoms dissolved increased
with the area of the interface between the sample and the
electrolyte (roughly x×y) and the duration of the simulation
(n), the weight of the diffusivity component in the objective
function increased with each of these three factors. The
numbers 5000, 10, and 10 were derived using trial and error
on the dealloying simulation with its default (pre-coercion)
flexible point bindings.

4.3.2 Coercion Results

The progress of the coercion itself is depicted in Figure 2.
The flexible points that the SME selected for this coercion
were the factor for voltage-affected diffusion, Au-Au bond
energy, Au-Ag bond energy, Au-H2O bond energy, Au-
Cation bond energy, Au-Anion bond energy, Ag-Ag bond
energy, Ag-H2O bond energy, Ag-Cation bond energy, and
Ag-Anion bond energy. After exploring the space of possible
bindings, the optimizer converged on the changes given in
Table 2.

Of these changes, the Au-Au, the Au-H2O, the Ag-
Ag, and the Ag-Cation bond energy changes were the most
interesting, because they suggest possible areas for continued
exploration of the physics of the interactions between the
electrolyte and the crystal. For instance, the SME previously
assumed that cations should diffuse away from the crystal and
not have a significant effect on the dissolution and diffusion
of the atoms in the crystal. However, because the coercion
results indicated that changing the Ag-Cation bond energy
was beneficial, cations must be affecting the dissolution of
89
Table 2: Flexible point binding changes.

Previous New
Flexible Point Binding Binding

Au-Au bond energy 0.64 eV 0.74 eV
Au-Ag bond energy 0.56 eV 0.535 eV

Au-Anion bond energy 0.25 eV 0.15 eV
Au-H2O bond energy 0.18 eV 0.074 eV
Ag-Ag bond energy 0.48 eV 0.255 eV

Ag-Anion bond energy 0.25 eV 0.275 eV
Ag-Cation bond energy 0.0 eV 0.025 eV

silver atoms in this simulation. This could mean that cations
have more effect than previously thought, or it could indicate
an error in another part of the simulation. To investigate
this, the SME suggested investigating the concentration of
cations and how cation diffusion is modeled in order to find
an explanation for this surprising behavior.

4.3.3 Additional Flexible Points and Future Coercion

The results of coercing the dealloying simulation indicated
other parts of the simulation that should be explored. This
exploration can also be accomplished through coercion using
several other flexible points.

Time advancement mechanism – As mentioned in
Table 1, deciding how to advance the simulation clock
is a flexible point in this simulation. Different Monte
Carlo algorithms handle simulation time in different ways.
One approach is to advance the clock with each event by
the inverse of the rate associated with that event. This
approach works well when all events operate on the same
time scale. However, in the dealloying example, dissolution
and diffusion events for the different atoms occur at rates
several orders of magnitude apart. The dealloying simulation
currently advances the clock by a fixed amount that is
a weighted average of the inverses of the rates of the
different events. As certain time-dependent processes in the
simulation are behaving strangely (such as cation diffusion),
other bindings for the time advancement flexible point should
be considered.

Ion diffusion – Cation and anion diffusion in the deal-
loying example are currently modeled differently from gold
and silver diffusion and dissolution. At each time step,
each ion has a certain probability of swapping with one of
its neighboring ions or water molecules. The probabilities
depend on the charge of the ion, the direction of the neigh-
bor, the direction of the applied voltage, and the current
concentration of cations and anions in the electrolyte. One
important question for this simulation is how the concen-
tration of anions and cations should be maintained, as it is
not known how much concentrations near the surface might
differ from concentrations in the bulk electrolyte. Exploring
this flexible point and considering different algorithms for
6
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Figure 2: Coercing the dealloying simulation. Simulation was run with a 15×15×15 crystal with 70% Ag and 30% Au for
10000 time steps per run. Objective function has been normalized to a 0–1 scale.
ion diffusion will clarify whether the observed effect of
cations on silver dissolution is valid.

Bond energies in ternary alloys – Another direction for
expanding this simulation is to consider ternary alloys, such
as mixtures of gold, silver, and copper. Introducing another
metal into the alloy means estimating bond energies between
atoms of the new metal and the other atoms, molecules,
and ions in the simulation. The simulation code has already
been extended to support representation of ternary alloys.
However, additional experimental data about ternary alloy
dealloying are needed to provide constraints and an objective
function for coercion of a ternary alloy simulation.

5 DISCUSSION

The selective dissolution simulation is still under develop-
ment. However, several important lessons and benefits have
become evident from applying COERCE to this developing
simulation.

5.1 Improvements to Flex ML

As discussed in Section 4.2, the flexible points in this
simulation were described using our Flex ML language.
We discovered several ways to improve Flex ML. First,
the dealloying simulation included several cases where the
bound on one flexible point’s bindings was actually the
binding for another flexible point. For example, because
gold is known to be less active than silver, the Au-Ag bond
energy was constrained to be less than the Au-Au bond
energy and greater than the Ag-Ag bond energy. To reflect
this, we added the ability to specify bounds in Flex ML in
terms of the bindings and bounds of other flexible points.
8

The selective dissolution simulation also highlighted
the need for supporting compound flexible points, which
are flexible points that consist of other flexible points. Flex
ML can describe several classes of flexible points, such
as algorithm selections, integer parameters, and real-valued
parameters. However, certain flexible points involved both
the selection of an algorithm and the setting of certain
parameters. For example, picking a binding for the time
advancement flexible point involves selecting an equation for
calculating time step sizes and setting parameters that govern
how different events’ rates factor into the time step size.
To describe flexible points such as the time advancement
mechanism, Flex ML must include support for compound
flexible points.

5.2 Integration with the Evolving Simulation

In our study, a few challenges arose from the fact that
the dealloying simulation was still under development. In
particular, it was occasionally difficult to determine if un-
acceptable simulation behaviors were the result of incorrect
modeling choices or programming errors in how the model-
ing choices were implemented. COERCE assumes that the
simulation actually implements the model abstractions that
have been selected. With a previously validated legacy sim-
ulation, that assumption is reasonable, but with an untested
new simulation, that assumption does not generally hold.

Fortunately, several developing COERCE-related tech-
nologies address the issue of validating evolving simula-
tions. Lightweight validation applies static analysis tools
and automatic search to efficiently determine if changing the
simulation has violated any correctness properties that the
SME identified. This is less expensive than a full validation,
97
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making it economical to apply earlier in the the development
of a simulation (Liu, Reynolds, and Brogan 2006). Emer-
gent behavior exploration uses coercion to actively explore
unexpected simulation behaviors, finding the limitations on
when unexpected behaviors occur and allowing the SME
to check if the simulation behaves as expected under better
understood conditions (Gore et al. 2007).

5.3 Benefits of the Early Use of COERCE

Applying COERCE early in the life of the dealloying sim-
ulation provided a number of benefits relative to coercing
a legacy simulation. One issue in previous coercion ex-
periments has been a reluctance of SMEs or simulation
users to reconsider certain abstraction decisions in their
models. In the carbon dioxide uptake example, SMEs dis-
agreed about whether a parameter to Beer’s Law was a
valid flexible point, even though changing the parameter
slightly led to dramatic improvements in the simulation’s
behavior (Drewry, Reynolds, and Emanuel 2002). Likewise,
an attempt to coerce a model of thermoacoustic coupling
in combustion reactions failed when only parameters were
allowed to change and the combustion equations themselves
were ruled out as possible flexible points (Zambon 2005).
This is primarily a social problem, but it affects the technical
success of coercion.

Because it is still under development, every part of
the dealloying simulation was considered eligible for iden-
tification as a flexible point. The materials science SME
permitted the analysts to treat almost any parameter as a
flexible point, even those with values derived from experi-
ments. For example, the Au-Au bond energy inside a bulk
crystal was reported by Howe (1997) to be 0.64 eV. How-
ever, the SME observed that at the interface, when atoms
have some vacancies among their neighbors, the energies
of the remaining bonds may be stronger or weaker than the
bond energies inside the bulk crystal. Through coercion,
we discovered that raising the Au-Au bond energy was an
effective way to prevent Au atoms from dissolving under
circumstances when they were not expected to dissolve.
This suggests that increased bond energies at the surface
may play a significant role in determining the critical volt-
age for gold. Without a willingness to question modeling
assumptions, this discovery might not have occurred.

6 CONCLUSION

We have successfully applied COERCE to a developing
simulation of selective dissolution of gold-silver alloys. In
the process, we identified a variety of important flexible
points in the simulation and made a number of improve-
ments for representing flexible points in Flex ML. Using
these flexible points, we coerced the dealloying simulation
to eliminate undesired behaviors and generate more real-
8

istic results. This coercion was successful in spite of the
instabilities associated with a newly-developed simulation.
In fact, the coercion process benefited from the added flex-
ibility that comes from working with a newly-developed
simulation.
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