
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

A METAMODEL-BASED REPRESENTATION METHOD FOR REUSABLE SIMULATION MODEL

Yonglin Lei
Lili Song

Weiping Wang
Caiyun Jiang

School of Information System and Management

National University of Defense Technology
Changsha, Hunan 410073, P. R. CHINA

ABSTRACT

The composition and reuse of simulation model is cur-
rently a hot research topic in the area of complex system
modeling and simulation. A unified simulation model rep-
resentation is one of the key techniques to facilitate reuse.
The model representation concept and its role in simulation
are present firstly. The reusable simulation models, when
compared to common simulation models, give some spe-
cial requirements to the specification and method of model
representation, which are summarized in the second part.
Three traditional simulation model representation methods,
i.e. representation by programming language, by simula-
tion language and by generic model language, and their re-
spective shortcomings when representing reusable simula-
tion models are analyzed next. The advantages of
metamodel in software representation are widely acknowl-
edged in recent years. With this in mind this paper presents
a metamodel based method to represent reusable simula-
tion model, and the design considerations of metamodel-
based representation specification is also discussed.

1 INTRODUCTION

Nowadays simulation composability is one of the most
challenging topics in the military simulation domain. Many
literatures (Overstreet, Nance, and Balci 2002, Davis and
Anderson 2003, Hofmann 2004, Yilmaz and Oren 2006)
have figured out that model composition and reuse is the
key issues of simulation composability research. Model re-
use is a systematic process that emphasizes using existing
models as much as possible and avoiding repeating model-
ing in order to reduce simulation development costs (Lei et
al. 2007). The key to simulation model reuse is to enhance
the reusability of model itself, which can be achieved by
fostering reuse-oriented modeling idea and providing sup-
porting techniques for reuse. An important technique is to
build a unified simulation model representation, which can
81-4244-1306-0/07/$25.00 ©2007 IEEE
be used: (1) to support the communication among various
users of the same model about its functionality and seman-
tics, (2) as the collaborative analysis base of different mod-
eling formalisms used to specify the different facets of
complex system, and (3) as the target representation to
which existing models can transform for use in a reuse ar-
chitecture.

The simulation model representation methods are the
methods of designing simulation model specification. Ac-
cording to the specific requirements implied by REusable
simulation Model (REM) over model representation, the
shortages of several current representation approaches are
analyzed firstly. Inspired by Dr Tolk’s idea of metamodel’s
key role in improving simulation interoperability and com-
posability (Tolk 2004), we develop a meta-model based
model representation method which can meet the require-
ments of REM.

2 REM REPRESENTATION REQUIREMENTS

2.1 Simulation Model Representation

Simulation modeling is a process in which behavioral logic
of dynamic systems is described and simulation models are
produced. To represent a simulation model means to de-
scribe and store it. One of model representation’s basic fea-
tures is multi-user oriented. The target users of model rep-
resentation include modelers, model integrators, simulation
analysts, simulation environment and so on. It should pro-
vide consistent model contents for all its users and is the
core and base of simulation study, as shown in Figure 1.
Among them, Modeler chooses appropriate modeling tech-
niques according to the system’s features to model it. The
result model will be stored as a model file in terms of a
certain representation approach. The very model file is the
model representation. Various participants in a simulation
system can work with different parts of same model repre-
sentation according to specific interests by such techniques
51

Le, Song, Wang, and Jiang

as projection, transformation, visualization etc. Modelers
are mainly concerned with the correctness of the model
representation, i.e. whether the model representation accu-
rately describes the structural and behavioral logic features
of the real system. Model integrators are more concerned
with capabilities and interface information within model
representation, and do their integration work based on
those information. Simulation analysts’ mainly focuses are
on the run-time input and output interface information and
running environment requirements within model represen-
tation. Simulation environment is concerned with executa-
ble service framework and available simulation services
information in model representation. It is obvious that dif-
ferent users have different requirements for model repre-
sentation. The key to select a model representation method
is to make the model representation capable of meeting all
users’ requirements.

Modeling
technique

Model
Representation

model store

Modeler

Integrator

Simulation
environment

Analyst

model
analysis

model
integration

simulation
execution

simulation
configuration

Figure 1: Model representation in simulation.

2.2 REM Representation Requirements

As a common simulation model, the REM representation
should be both user-readable and machine-executable. As a
reusable simulation model, REM representation’s main
characteristic is its support for reusability. The reusability
imposes some new requirements to REM representation,
which can be summarized as follows:

2.2.1 Representation Requirements Towards Modeling

Well modeling techniques are often based on certain math
formalisms and use domain-oriented modeling concepts so
as to make modeling as easy as possible. For a large-scale
complex system, a single formalism is often not adequate
8

to describe all aspects of the system. Various disciplines or
subsystems of a complex system are usually based on dif-
ferent formalisms and described with domain-specific con-
cepts. For this reason, REM representation should meet
following basic requirements:

R1: can represent models described using multiple
formalisms;

R2: can represent models described using different
domain-specific concepts;

For those models based on existing modeling languages

and modeling tools, REM representation should:

R3: support integration of these models by transfor-
mation;

In order to provide some implementation selectiveness to

REM, REM representation should not be restricted to
specific programming languages and technical plat-
forms. So REM representation should:

R4: be independent of languages and platforms;

It’s favorable that model representation can be auto-

matically mapped to various programming languages and
platforms, which is the core idea of MDA. That is to say, it
is necessary that model representation is compatible with
MDA.

2.2.2 Representation Requirements Towards
Reusability

In order to support the analysis and judgment of model re-
usability, REM representation is required to support com-
puter-aided analysis of behavioral logic equivalence.
Therefore, behavioral logic in REM representation should
be formalized, which requires REM representation to:

R5: support formalized representation and analysis of

REM behavioral logic;

2.2.3 Representation Requirements Towards
Simulation

A difference between REM simulation and common simu-
lation is that REM is independent of a specific simulation
framework. So REM representation should:

R6: support portability across different simulation

frameworks.
52

Le, Song, Wang, and Jiang

Simulation Language
(continuous, discrete and mixture)

Compile and
Execute

Middleware, OS, Hardware and
Network

Modelers

Modeling and Simulation Tools
(specific formalisms)

Programming
Language Simulator

(compile, interpret
and mixture)

Middleware, OS,
Hardware and Network

Compile and Execute

Programming Language
(FORTRAN, C/C++)

Development Tools
(VC++, Jbuilder)

Modelers

General Modeling Language
(UML, SRML, SML)

Executable model
component

Middleware, OS, Hardware and
Network

Modelers

Modeling Tools
(all formalisms)

Programming
Language Unified

Simulator
(compile,

interpret and
mixture)Simulation

Framework

Simulation Protocol

A: Model Representation
by Programming Language

B: Model Representation
by Simulation Language

C: Model Representation by
Generic Modeling Language

Figure 2: Typical model representation methods.
3 META-MODEL BASED MODEL
REPRESENTATION

3.1 Current Simulation Model Representation
Methods

Model representation is a bridge between user and com-
puter. Model representation specification is a protocol be-
tween modeling and simulation. All simulation models
must use some representation method which can be evalu-
ated by friendliness and generality. Obviously, the way by
which humans think and that by which computers process
are extremely reverse for model representation. General
speaking, the higher abstract degree of model representa-
tion is, the nearer to modeler’s thinking way, and the better
friendliness. On the design of representation method, there-
fore, a core tenet is to make the degree of abstract as high
as possible and ignore the technical details required by im-
plementation. Nevertheless, different domains have differ-
ent abstract characteristics and representation require-
ments, and with the degree of abstract increasing, the
generality of representation method falls down, and the
most friendly representation method for certain domain is
often difficult to be applied in other domains. There is
trade-off between friendliness and generality for the repre-
sentation requirements of models involving multi-domains.

Simulation model representation methods mainly go
through three stages, including representation by pro-
gramming language, representation by Simulation Lan-
guage and representation by generic modeling language
(Figure 2). In various domains all three representation
methods are still in use to different degree.
8

3.1.1 Representation by Programming Language

Early simulations have mostly aimed at continuous sys-
tems, whose simulation model representations are often
based on Programming Languages such as FORTRAN and
following C, C++, Java and Ada. The model representa-
tions of later arisen Discrete Event Simulation, which be-
came the most important domain of simulation research,
are largely based on Programming Languages.

Programming Language is characterized with general-
ity, and can represent almost all simulation models. The
main shortcoming is its low degree of abstract, poor friend-
liness and high modeling difficulty. So additional model
documents are needed to support user to perceive model
information, and powerful visual program tools and com-
mon functional module library are built to facilitate model-
ing. Another shortcoming of Representation by Program-
ming Language is that it doesn’t prescribe a standardized
simulator framework. In a common simulation application,
models and their simulator are not explicitly distinguished
and are mostly compiled together, which makes the models
not portable and hard to reuse. For this reason, many com-
munities or organizations have standardized interfaces be-
tween simulator framework and simulation models. Two
well-known such interface standards are HLA/RTI main-
tained by first DOD then IEEE and SMP/SMI (Argüello et
al. 2000) maintained by ESA. Currently Representation by
Programming Language is mainly used in co-operational
simulations of multidisciplinary and highly changeable
complex systems.
53

Le, Song, Wang, and Jiang

Mix
coustomization

Simulation
customization

Modelization Generalization

Application
domain

Computer

Programming
Language

(FORTRAN, C, etc.)

Generic Modeling
Language

(UML/XML)

Sim-oriented
Generic mod . lang.
(SRML, SMDL, etc.)

Simulation Language
(CSSL, GPSSetc.)

Domain-oriented
Simulation mod . Lang .

Technique -oriented
Mod. Lang . .

Technique
customization

Domain customization Domain customization

Domain
Abstraction

Simulation Abstraction

Simulation
domain

Ideal modeling and
simulation language

Technique
customization

Human

Figure 3: The evolution of simulation model representation.

3.1.2 Representation by Simulation Language

Simulation Languages are generally derived from the
module library of some Programming Language. Said dif-
ferently, the modeling primitives of a Simulation Language
are devised from the common modules that are generic for
simulation modeling in general or specific domains. And
the common modules to support simulation control and
schedule are encapsulated into simulator or simulation
primitives of the Simulation Language. If the simulator is
produced, the models represented by the Simulation Lan-
guage are generally interpret-then-executed, and the behav-
ior of modeling primitives is usually generated by execut-
ing the executable module that has been compiled into
simulator. If the simulation primitives are produced, the
modeling and simulation primitives can be automatically
translated into codes of some Programming Language. For
example, ACSL models can generate FORTRAN represen-
tation, Simulink models can generate C representation, and
ROSE (Williams, St. Pierre, and Nergaard 1999) models
can generate FORTRAN representation. Then all model
codes and simulation codes can be compiled into a whole
executable simulation program.

Simulation Language is usually used for certain simu-
lation domain, such as CSSL (including ACSL and ICSL
and other specific languages conform to CSSL) for con-
tinuous system simulation, GPSS for discrete event system
simulation, SLAM for network system simulation, and
Modelica for multi-domain physical simulation. Simulation
Language is specially designed for simulation, so it can
embed specific modeling techniques, which is an advan-
tage over Programming Language (e.g. GPSS and SLAM
embeds process-oriented modeling technique), or it can be
directly designed in term of some modeling techniques,
such as Euler network modeling language (Wang et al.
2003), XML-based Statecharts modeling language – PcML
8

(Amaral et al. 2004) and Petri network modeling language
– PNML (Billington et al. 2004). To simplify modeling,
the support tools of Simulation Languages generally sup-
port graph-based modeling, and the languages embedding
some modeling techniques can model using relevant graph-
based modeling environments.

Compared with Programming Language, Simulation
Language has greatly improved its degree of abstract, for
example the continuous and discrete system simulation are
distinguished at least. Coarse-grained modeling and simu-
lation primitives and the separation of models and simula-
tor all reduce the difficulty of modeling and enhance the
reusability of simulation. When confronted with multi-
domain co-operation simulation application, however,
Simulation Language is insufficient inevitably.

3.1.3 Representation by Generic Modeling Language

Generic modeling language is a kind of software system
modeling language with object-oriented concept in mind. It
is the platform-independent abstract of various Program-
ming Languages and can be automatically mapped into
various Programming Language and generate platform-
dependent codes. Generic modeling language further pro-
vides modeling elements to describe the structure, behavior
and function of general software systems, so as to support
modeler to define system specification and establish sys-
tem models independent from specific implementation
techniques. Currently UML/XML is the in-fact standard of
generic modeling language. UML is used for visual ex-
pression and XML for model storage.

Simulation model (i.e. computer simulation models
without exception) is a special software system that can
also be described using generic modeling language. In fact
many simulation models are modeled using UML, and
54

Le, Song, Wang, and Jiang

Table 1: Applicability of methods for REM representation.
Methods

Requirements

Representation by
Programming Language

Representation by
Simulation Language

Representation by Generic
modeling language

Friendliness Poor Good Moderate
Generality Excellent Moderate Excellent

R1: Multi-Formalisms Indirect support Support one or few No support limitation
by extensible mechanisms

R2: Multi-Domain Concept No support Only support specified
domain(s)

No support limitation
By extensible mechanisms

R3: Model Integration Hardly support Hardly support Support partly
R4: Language- and Plat-
form-Independent No support No support Support fully

R5: Formalization and
Analyzability of Behavior
Logic

No support Support by the embedded
formalisms

Support by the embedded for-
malisms

R6: Portability

Models are compile-
then-execute, so can sup-
port by adding standard-
ized model interfaces.

If models are interpret-
then-executed, it’s difficult
to define the models inter-
faces. So it depends.

Model codes are auto generated
and compile-then-executed,
Can support by standardized
model interfaces.

there are some generic modeling languages towards simu-
lation domain, such as UML-based simulation model defi-
nition language (SMDL) (ESA 2005) in SMP2, XML
Schema-based SRML and SML (Kilgore 2001). According
to basic features of simulation and based on the extensible
mechanism of generic software modeling languages, these
languages define their modeling and simulation elements
and are still very generic in simulation domain. They also
inherit the extensibility of generic software modeling lan-
guage, which makes it capable of generating sub-languages
towards specific simulation domains.

Generic modeling languages are competent enough for
expressing simulation models and can support various
modeling techniques. When utilizing its extensible mecha-
nisms, a generic modeling language can be customized as a
technique-oriented modeling language. It is certainly that
the technique-oriented modeling language can be further
customized into an application domain-oriented modeling
language.

3.2 Applicability of Representation Methods

The applicability of previous three methods when repre-
senting REM is shown in Table 1.
 The table shows that Programming Languages are not
suitable to represent REM although satisfying some re-
quirements, because they are too low in degree of abstract
when viewed as simulation languages. Simulation Lan-
guages are designed towards some modeling technique and
application domain, and can hardly meet the REM’s multi-
formalism and multi-domain representation requirements.
Generic modeling language introduced the advantages of
both Programming Language and Simulation Language to
some degree, but is insufficient to integrate the existing
85
heterogeneous models. These insufficiencies can be made
up by meta-modeling technique, for that the integration of
heterogeneous models can be implemented on the meta-
level, which is more efficient to deal with the heterogene-
ous problems.

3.3 Metamodel-based Representation

Programming Languages and Simulation Languages, as
well as some generic modeling languages, are usually de-
fined using Extensible Backus-Naur Form (EBNF) (Xia
and Martin 2003), which is broadly used to define the
grammar of languages. The EBNF grammar’s main limita-
tion is that it doesn’t support some advanced language fea-
tures, such as refining, generalization, namespace and
modularization. As an instead, multi-hierarchical meta-
modeling architecture supports these features and enable
meta-model to describe the inherit-hierarchy of concept.
Generic modeling languages like UML employ meta-
model to define themselves (Marcus and Porres 2003).

Meta-model (Gregory 1999) is the model of models. It
defines how to create models, semantics of models as well
as how to make them integrated and interoperable. It is the
specification of modeling environment for certain domain,
and defines the syntax and semantics of the domain and
can represent all systems in the domain. Meta-model has
higher degree of abstraction than model, and can deal with
the models integration problem better.

Meta-model based representation is also a kind of rep-
resentation by generic modeling language. The difference
with others is that it defines generic simulation modeling
language explicit based on meta-model. When designing
the simulation-oriented metamodel, the legacy models in-
tegration requirement is well taken into account, so as to
5

Le, Song, Wa

make the metamodel the integration base of various model-
ing techniques, modeling tools and modeling languages.
This metamodel is called Common Meta Model (CMM) in
this paper. The CMM based REM representation is shown
in Figure 4.

CMM based REM Representation Language

Executable Model Component

Middleware , OS, Hardware , NetWork

Modelers
Modeling Tools

(support various modeling formalisms and domains)

Programming Languages

Compatible Simulation Frameworks
Standard Simulation Protocol (model service /simulation service)

Custo
mize

tow
ard

s

sp
eci

fic

do
main

Formalism

meta-model

mapping

Figure 4: CMM based REM representation.

Figure 4 is different from figure 2-C in two points:

1. The generic modeling language in figure 4, i.e. the

REM representation language, is based on CMM,
which will support the integration of existing
modeling techniques, tools and languages by
meta-model mapping.

2. In metamodel based REM representation ap-
proach the models’ running style is unified as
compile-then-execute, so as to design the interface
standard between REM implementation compo-
nents and simulation framework. The interface
standard acts as a simulation protocol of REM,
and includes model service protocol and simula-
tion service protocol two parts.

The CMM’s support to existing languages, tools and

techniques as well as application domains is illustrated in
Figure 5, in which the meta-modeling and meta-model
mappings are the core concepts and techniques. Meta-
modeling will ensure the syntax consistency between other
meta-models and CMM; and the purpose of meta-model
mapping is to construct the semantic correspondence of
metamodels, so as to do works like model transformation
and codes generation. In Figure 5, the middle column
“formalisms/CMM/application domains” serves to design
the standard REM modeling tools, and the middle row
“modeling language/CMM/modeling tools” serves for the
integration of legacy models.
8

ng, and Jiang

3.4 CMM Modeling Considerations

3.4.1 Selection of Metamodeling Language

Just like modeling, meta-modeling is also a kind of model-
ing, and in essence meta-modeling languages belong to
modeling languages. However, the modeling languages in
common use have not made considerations to support meta
modeling in their design time, and are not suited to be
meta-modeling languages. General speaking, the modeling
languages used for meta-modeling can be divided into two
categories: the first category includes special-designed
meta-modeling languages, such as CASE Data Exchange
Format (CDIF), Meta Object Facility (MOF); the other
category includes common modeling language with meta-
modeling capability, such as UML, EXPRESS and ER dia-
gram. Since UML2.0 and MOF2.0 have been consistent in
the meta-modeling core, and both are defined using the
UML 2.0 Infrastructure, CMM should adopt a combination
of MOF, UML, OCL, XMI and QVT, because this combi-
nation:

1. Has enough capability of meta-modeling. MOF

can be used to define the abstract syntax of meta-
model, and UML can represent the meta-model
diagrammatically, and OCL can define the static
semantic of meta-model, and XMI is used as the
storage specification of meta-model. To sum up,
the modeling requirements of CMM are satisfied
sufficiently.

2. Is in fact standard of meta-modeling. MOF and
UML are the actual meta-modeling standards in
software domain, which makes all MOF-based
meta-models of various modeling languages and
modeling tools exchangeable and interoperable
easily.

3. Many modeling tools, after extending their meta-
models towards simulation direction, can be used
to create simulation models. Since CMM is based
on UML’s meta-modeling core, current UML
tools can be extended expediently so as to support
CMM and be used to create REM models.

4. Query/View/Translation, published by OMG re-
cently, can describe the mapping between CMM
and meta-models of models to be integrated. QVT
not only can implement the transformation from
legacy models to REM, but also can automate the
converse transformation from REM to formalisms
like DEVS, Statecharts and Petri net, which are
easier when doing model analysis.

56

Le, Song, Wang, and Jiang

CMM
(MOF based and DEVS collated)

Statechart Petri Network Euler Network DAE ...

Weapon system
simulation
modeling

C2 system
simulation
modeling

Communication
system simulation

modeling

Surface equipment
simulation
modeling

...

formalisms metamodels

Simulink

Dymola

Sim 2000

...

SRML

CSSL

SLAM

...

m
eta m

ode ls
of

m
od.L ang.

Metamodeling

Metamodeling

Metamodeling

Metamodeling

Meta model
mapping

m
etam

od elsofm
od .to ols

Metamodeling

Metamodeling

Metamodeling

Metamodeling

Meta model
mapping

Te
ch

ni
qu

e
c u

st
.

M
et

aM
od

el
M

ap
pi

ng

application domain metamodels

D
om

ai
n

c u
st.

M
et

a -
m

od
el

m
ap

pi
n g

Figure 5: Common meta model (CMM).

3.4.2 Selection of Abstraction Level

Modeling languages can inhabit in different abstraction
levels. Since mapping of various modeling formalisms is
one of CMM’s basic design requirements, CMM’s abstrac-
tion level should not be too high; otherwise the mapping
from lower abstraction formalisms to CMM will lose se-
mantic information. Zeigler has proved that DEVS can rep-
resent almost all kinds of system models, including con-
tinuous time models, discrete time and discrete event
models, and is the super formalism of various formalisms
(Zeigler, Kim, and Praehofer 2000). In the Formalisms
Transformation Graph (Hans, Lara, and Mosterman 2002)
constructed by Professor Hans Vangheluwe, he points out
that DEVS’s level of abstract is lower than any other for-
malism, and all other formalisms therefore can be map to
DEVS not only losing none semantic, but also making the
semantic of more abstract formalisms explicit. For this rea-
son, CMM should view the lossless mapping from DEVS
as its design aim.

4 CONCLUSIONS

We proposed a metamodel-based simulation model repre-
sentation approach, which can well overcome the short-
comings of traditional simulation model representation
methods when representing the Reusable Simulation Mod-
els (REM). The design considerations of a specific meta-
model REM representation specification, i.e. Common
85
Metamodel (CMM), are also discussed. We have devel-
oped a initial CMM implementation inspired by Simulation
Model Definition Language (SMDL) of Simulation Model
Portability 2 (SMP2) standards, which is a self-
bootstrapped metamodel but not based on OMG’s MOF
suite. As a partial validation to CMM, we created a MOF-
based DEVS metamodel, and finished the mapping from
this DEVS metamodel to CMM and hereby the QVT-based
transformation from DEVS models to REM (Lei 2006).
The development of a CMM-based modeling and simula-
tion environment of REM is our main work of next step.

REFERENCES

Amaral, A. S., R. R. Veloso, N. L. Vijaykumar, C. R. L.
Frances, E. Oliveira. 2004. On proposing a markup
language for statecharts to be used in performance
evaluation. International Journal of Computational In-
telligence 1:3.

Argüello, L. et al. 2000. SMP: a step towards model reuse
in simulation, ESA Bulletin number 103.

Billington, J., S. Christensen, K. Hee, E. Kindler, O. Kum-
mer, L. Petrucci, R. Post, C. Stehno, and M. Weber.
2004. The Petri net markup language: concepts, tech-
nology, and tools. Meeting on XML/SGML based In-
terchange Formats for Petri Nets, Arhus, Denmark.

Davis, P.K. and R. H. Anderson. 2003. Improving the
composability of DoD models and simulations.
7

ang, and Jiang
Le, Song, W

RAND, National Defense Research Institute, Santa
Monica, CA.

ESA. 2005. SMP 2.0 Metamodel, Technical Report No
EGOS-SIM-GEN-TN-0100.

Gregory, G. N. 1999. Metamodeling - Rapid Design and
Evolution of Domain-Specific Modeling Environments.
Ph.D. Thesis, Vanderbilt University.

Hans, V., J. D. Lara, and P. J. Mosterman. 2002. An intro-
duction to multi-paradigm modelling and simulation.
In Proceedings of AI, Simulation and Planning–
AIS’2002. Lisbon. SCS International.

Hofmann, M. 2004. Challenges of model interoperation in
military simulations. SIMULATION 80: 659-667

Kilgore, R. A. 2001. Open source simulation modeling lan-
guage (SML). In Proceedings of the 2001 Winter
Simulation Conference, ed. B. A. Peters, J. S. Smith, D.
J. Medeiros, M. W. Rohrer, 607-613. Piscataway, New
Jersey: Institute of Electrical and Electronics Engi-
neers, Inc.

Lei, Y. L. 2006. Simulation Model Reuse Theory and Ap-
proaches with Heterogeneous Integration Support.
Ph.D. Thesis, National University of Defense Tech-
nology.

Lei, Y. L., W. Zhao, W. P. Wang, and Y. F. Zhu. 2007. A
simulation model reuse approach for virtual prototyp-
ing. Computer Integrated Manufacture System 13:287-
294

Marcus, A. and I. Porres. 2003. A relation between con-
text-free grammars and meta object facility metamod-
els. TUCS Technical Report No 606, ISBN 952-12-
1337-X, ISSN 1239-1891.

Overstreet, C. M., R. E. Nance, O. Balci. 2002. Issues in
enhancing model reuse, International Conference on
Grand Challenges for Modeling and Simulation.

Tolk, A. 2004. Metamodels and mappings - ending the in-
teroperability war. 04F-SIW-105, Fall Simulation In-
teroperability Workshop, Orlando, Florida.

Wang, W. P., Q. Li, Y. F. Zhu, and F. Yang. 2003. Flexible
Simulation Theory and Applications. Changsha: Na-
tional University of Defense Technology Press.

Williams, A. D., J. St. Pierre, and K. Nergaard. 1999.
ROSE SIMSAT Harmonisation, SESP’99.

Xia, Y. and G. Martin. 2003. Rigorous EBNF-based defini-
tion for a graphic modeling language. In Proceedings
of the Tenth Asia-Pacific Software Engineering Con-
ference (APSEC’03).

Yilmaz, L. and T. I. Oren. 2006. Prospective issues in
simulation model composability: basic concepts to ad-
vance theory, methodology, and technology. The
MSIAC's M&S Journal Online, 2:1-7.

Zeigler, B. P., T. G. Kim and H. Praehofer. 2000. Theory
of Modeling and Simulation: Integrating Discrete
Event and Continuous Complex Dynamic Systems. 2nd
ed., Academic Press.
85
AUTHOR BIOGRAPHIES

YONGLIN LEI is a Ph.D. student in the School of Infor-
mation System and Management at National University of
Defense Technology. His research interest lies in the area
of composable simulation and exploratory analysis. His e-
mail address is <samuelyonglin@gmail.com>.

LILI SONG is a Ph.D. student in the School of Informa-
tion System and Management at National University of
Defense Technology. Her research interest lies in the area
of simulation semantic composability and ontology. Her e-
mail address is <sllwendy@gmail.com>.

WEIPING WANG is a professor at National University of
Defense Technology of China. He got his Ph.D. in 1997
from National University of Defense Technology. His re-
search interests are system of systems engineering, simula-
tion composability and simulation-based evaluation. His e-
mail address is <wangwp@nudt.edu.cn>.

CAIYUN JIANG is a Ph.D. student in the School of In-
formation System and Management at National University
of Defense Technology. Her research interest lies in the
area of simulation composability and concept modeling.
Her e-mail address is <jcy2006@126.com>.
8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [1440.000 1440.000]
>> setpagedevice

