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ABSTRACT

In this tutorial we consider three methods for select-

ing the best of a set of competings yst ems: interactive

analysis, ranking and selection, and multiple compar-

isons. We describe each method; discuss assumptions,

implement ation aspects, advantages, and disadvan-

tages; and demonstrate the use of each method with

an airline-reservation-system simulation example.

1 INTRODUCTION

Stochastic simulation is often used to compare com-

peting systems. In this tutorial, we discuss concepts

and methods to select the best system. The goal is to

design an efficient experiment and to provide a sound

data analysis.

We consider three approaches: interactive analysis

(IA), ranking and selection (R&S), and multiple com-

parison procedures (MCPS). The concept of standard

error underlies all three approaches, but they differ

in that IA, R&S, and MCPS are based on estimation,

opt imization, and inference, respectively.

After considering factors affecting problem context,

we define a specific example involving the selection of

an airline-reservation system. We pursue the exam-

ple with SchmeiserSchmeiserdiscussing IA in Section 2, Golds-

man discussing R&S in Section 3, and Nelson dis-

cussing MCPS in Section 4. Common notation is used

throughout.

1.1 The Problem Context

The problem context can vary dramatically. Some

factors that affect the choice of design and analysis

methods include:

●

●

●

●

●

Number of competing systems, k. In o,ur exam-

ple k is small, less than ten or twenty, and the

systems are given. Another possibility y is k large,

possibly infinite, as is the case when some deci-

sion variables are cent inuous.

Question to be answered. In our example the

goal is to find the single best system, where best

is some criterion of goodness determined by the

decision-maker. Other possibilities include find-

ing all systems satisfying a set of criteria or rank-

ing the best r of the k systems.

Number of performance measures. In cmr exam-

ple the comparison of systems is based on only

one criterion so the definition of best is unam-

biguous. When multiple performance param~e-

ters are considered, the definition of best ble-

comes more subjective. Scatter plots and other

graphical aids are particularly useful for compar-

isons in two, and sometimes more, dimensions.

Type of performance measures. In our exam-

ple the single performance measure is estimated

by a sample mean of independent observations.

Comparisons based on dependent observatic,ns

are sometimes more efficient, but complicate the

statistical analysis. The statistical analysis allso

would change if the performance measure were

estimated with a non-mean, such as a sample

standard deviation or quantile.

Computational cost. In our example the stoch:is-

tic elements of the system and the system co m-

plexit y produce a high computational cost, mea-

sured typically in elapsed time, money, or both.

If the computational cost is not high, then the
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●

●

●

●

1.2

We

comparison is easy-simply

tern until the sampling error

simulate each

is negligible.

sys-

Constraints. In our example we make various as-

sumptions about constraints placed on the anal-

ysis caused by computing time, analyst time, and

analyst sophistical ion.

Simulation environment. The combination of

computer hardware and software can support

or hinder simultaneous runs of various systems,

stopping and rest arting of the simulations, inter-

active anal ysis, graphical analysis, and statistical

analysis.

Common random numbers. Often the k sys-
tems have similar logical structure, in which case

the use of common random numbers can reduce

the computational cost. In our example com-

mon random numbers are not used; therefore,

the data from each system are independent from

the other systems’ data.

Use of the results. The choice of analysis method

can depend upon whether its purpose is to con-

vince the analyst or another decision-maker.

The Airline-Reservation Example

consider k = 4 different airline-reservation sys-

tems. The single measure of performance is the ex-

pected time to failure, E[TTF]—the larger the bet-

ter. The system works if either of two computers

works. Computer failures are rare, repair times are

fast, and the resulting E[TTF] is large. The four sys-

tems arise from variations in parameters affecting the

time-to-failure and time-to-repair distributions. We

know from experience that the E[TTF]’s are roughly

100,000 minutes (about 70 days) for all four systems.

We are indifferent to expected differences of less than

3000 minutes (about two days).

The large E[TTF] ‘s, the highly variable nature of

rare failures, the similarity of the systems, and (as it

turns out) the small indi~erence zone of 3000 min-

utes yield a problem context with reasonably large

computational costs. Although the similarity of the

systems suggests the use of variance reduction tech-

niques such as common random numbers, for tutorial

simplicity we have agreed to restrict ourselves to in-

dependent replications of the systems. In all cases

the point estimator for system i is the sample aver-

age over the replications allocated to system i by the

experiment.
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2 INTERACTIVE ANALYSIS

The interactive analysis described here is an estima-

tion approach. It considers the k = 4 point estima-

tors for the respective E[TTF]’s and the estimates of

their sampling errors. The goal is a vague, but well-

founded, sense of confidence in the selected system.

IA is similar in spirit to the procedure in Schmidt and

Taylor (1970, pp. 524–528), except that we suppress

their explicit confidence-interval logic. Neither the

assumptions nor the cleanly-stated statistical conclu-

sions of R&S and MCPS are found here.

2.1 The Method

The method is to successively experiment with the

systems, roughly comparing the four point estimators

and their associated standard errors with each other

until we are comfortable that the chosen system is the

best or negligibly close to the best. A more-detailed

discussion of the underlying concepts can be found in

SchmeiserSchmeiser(1990).

An interactive driver program reads a specified sys-

tem i, a set of random-number seeds, a number of

microreplications m, and a number of macroreplica-

tions b. It runs the simulation model for n = bm
replications, producing the TTF observation Yije on

microreplication 1 of macroreplication j. The driver

also produces the point estimator for pi, the E[TTF]

of system i,

b bm

wit h associated sample variance of the macro replica-

tion estimators

and standard error sei = Si/ti. (The SERVO soft-

ware described in SchmeiserSchmeiserand Scott 1991 could be

used to automatically compute these statistics.) The

relevant part of the output report is

. . parameters. . .

. . system = 1

. . macroreplicat ions = 5

. . microreplicat ions = 5

. .monte carlo estimates. . .

,, estimated E [TTFI = 111086.

. . With standard error = 21211.0

In this example, twenty-five replications of system 1

have been run. The interpretation is that system 1
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has estimated E[TTF] of 11. x 104 minutes. The last

digit included is in the most-significant position of the

standard error. The last digit is meaningful only in

that 11. x 104 is a better guess than 1, x 105, The

digits not included are meaningless, since they are

dominated by sampling error.

2.2 The Assumptions

The significant digits interpretation of the last para-

graph is loosely based on the mathematics of the con-

fidence interval on the E[TTF] of system i,

Yi +t&l,l-@/.2 - sei,

which under assumptions of normality and indepen-

dence of the Yij ‘S covers the true mean pi with confi-

dence 1 – cr. If these assumptions hold, then for b >4

[b > 15] and the typically-used 90% to 99% confi-

dences, the t-values range from 1.6 to 4.6 [1.6 to 2.9].

Since the range of values is small, and since most peo-

ple choose a arbitrarily, there is little precision lost

by stating significant digits rather than a confidence

interval. Put another way, lit tle practical (compared

to statistical) confidence results if varying a (over the

typical values) affects our decision whether to stop or

simulate further.

Nevertheless, some care must be taken, since in

extreme cases the significant-digit guideline is invalid.

Small values of b and a can lead to large t-values; for

example, b = 2 with a 99% confidence level yields a

t-value of 64. In simulations with serially dependent

data, large values of b (with fixed n) result in high

correlation of the Yij ‘s, typically biasing estimators of

the standard error to the low side. Choosing 10< b <

30 is often wise (Schmeiser 1982). The independence

in our example implies that we can safely choose b

relatively large, since only normality of the Yij ‘S (via

the central limit theorem) is gained with low values

of b.

Interactive experimentation leads to sequential

sampling, another source of error in confidence-

interval computations. But if the value of b is kept

reasonably large, the secondary effects of sequential

sampling are negligible in a method that does not

specify a confidence level.

2.3 The Example

In this section we summarize a log kept during an

analysis of the airline-reservation-system example.

The analysis spanned two days.

The initial run, which produces the example out-

put shown above for system 1, is designed just to

gain a sense of the magnitude of the required pro-

duction experiment in terms of time per replication

and number of replications. The twenty-five replica-

tions require about thirteen minutes on a dedicated

SPARCstation 1, so each replication costs about 30

seconds of real time. We extrapolate this time esti-

mate to the other systems, since all four systems are

similar.

The standard error estimate of 21000 minutes has

only b – 1 = 4 degrees of freedom, but that is fine

for the following rough analysis. We are interested

only in detecting differences between the best system

and inferior systems when the differences are in fact

at least 3000 minutes. So the standard errors will

need to drop to at most 1500 minutes, or 1/14 the

current value. Therefore, the number of replications

needs to be about 142 times longer: 5000 replications.

This means that the “worst-case” projected experi-

ment time is 5000 replications times half a minute

per replication times four systems. Seven days. The

standard error has few degrees of freedom, so the a,c-

tual experiment time may be from five to nine days.

Rather than begin a seven-day experiment so soon

after starting the comparison, and since it is time

to go home for the day, we first run an overnight

experiment: For each of the four systems, we run b d

15 macroreplications of m = 15 microreplications; as

agreed upon for this tutorial, we use different random

numbers for each system.

The overnight results are given in Table 1. Stated

in significant digits, Y1 = 11.1 x 104, 92 = 10.3 x 104,

Y3 = 9.4x 104, and Y4 = 0.8 x 104. System 4 appea,rs

to be an order of magnitude from being competitive;

however, inspection shows an input error, so ignore

the system 4 results for now, while being pleased this

was an overnight run rather than a week-long run.

System 1 looks better than systems 2 and 3, regard-

less of the indifference value. System 3 already is close

to being eliminated, so the total experimentation is

looking shorter than the worst-case projections.

Table 1: IA Overnight-Experiment Results

ill 2 3 4

z 110762. 103265. 93968. 7!194.

Sei 5757. 4622. 5226. 538.

Now would be a good time to create some graphics,

e.g., boxplots of the macroreplication estimators Vij.

(We have not included graphics in this paper due to

space constraints.)

Needing to go home in about an hour, let us devcke

about 30 minutes exclusively to system 4, for which

we take b = 10 and m = 6. It turns out that Y4 =
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8.8 x 104 minutes, which is not competitive, especially

if we remember the indifference value of 0.3 x 104

minutes.

We will be back in about five hours, so we have time

to make a run of systems 1 and 2, each for b = 30

and m = 10. The results are Y1 = 10.9 x 104 and

Y2 = 10.5 x 104. This is more cumulative evidence

indicating system 1 is best, but the evidence from this

run alone is not conclusive. Since the additional in-

formation lowers the standard error of the estimators

for systems 1 and 2, we decide that it is safe to elim-

inate system 3 from further consideration. In fact,

since the indifference value is 3000 minutes, we could

at this point select system 1 as best, albeit with low

(undefined, subjective) confidence.

We are now far ahead of schedule, which (arbitrar-

ily for this tutorial) is to finish before the Memorial

Day weekend. With the extra time, we devote an-

other night’s run to the comparison. We simulate

systems 1, 2, and 4, each for b = 30 and m = 20.

(System 4 is included since the time is available; our

initial look was probably sufficient, despite it be-

ing only sixty microreplications.) The results are

YI = 10.6x 104, ~z = 10.4x 104, and 74 = 9.1 x 104.

System 4 is clearly noncompetitive. Our confidence

in system 1 has risen yet more, since it is again best,

although still not conclusively. With the extra assur-

ance of the 3000-minute indifference zone, we declare

system 1 our choice with a confidence easily great

enough for this tutorial application.

2.4 Discussion

IA carries a variety of advantages compared to the

formal methods such as those to be discussed in the

next sect ions. Noncompetitive systems are elimi-

nated quickly in IA, and so require less computation

than bet ter systems; many formal methods assume

the worst case and devote equal numbers of observa-

tions to each system. IA allows heavy computation to

be conveniently scheduled while the analyst is away;

many formal methods require an inconvenient single

large run. IA forces the analyst to think about the

results, which helps to detect mistakes. IA extends

directly to estimators other than means (Schmeiser,

Avramidis, and Hashem 1990); new mathematics is

required for most formal methods. Common random

numbers can be incorporated into IA by computing

standard errors on differences or by using the same

analysis with some increased confidence in the results.

Adding new systems is easy with IA’s informality;

most formal methods require the number of systems

k to be fixed.

Three disadvantages exist. First, the lack of a pre-

cise confidence statement causes discomfort for many

people. Second, the analyst ignoring or misusing the

standard errors allows incorrect conclusions. Third,

using significant digits as a measure of sampling er-

ror is crude, since a significant digit is added only by

simulating 100 times longer. Of course, the standard

errors are available for more precise computation if

the analyst desires.

3 RANKING AND SELECTION

Ranking and selection procedures are statistical

methods specifically developed to select the best sys-

tem from a set of competing systems. Provided

certain assumptions are met, these methods usually

guarantee that the probability of a correct selection

will be at least some user-specified value. This sec-

tion discusses the normal means procedure of Rinott

(1978). We then apply the Rinott procedure to the

airline-reservation-system problem at hand.

3.1 The Method

The general goal behind R&S methods is to select

the best system from among k competitors. Here,

we have k = 4 airline-reservation systems. By best,

we mean the system having the largest underlying

E[TTF]. Suppose we denote the E[TTF] arising from

system i by pi, i = 1, 2, . . . . k, and the associated or-

dered pi’s by p[ll ~ pt21 ~ . . . < p[~l. (We assume

that the pi ‘s, p[il ‘s, and their pairings are completely

unknown. ) Since we prefer the E[TTF] to be as large

as possible, the mean difference between the two best

systems in the ongoing airline-reservation example is

P[~] –Pp - 11. The smaller this difference is, the greater

the amount of sampling that will be required to dif-

ferentiate between the two best systems. Of course,

if p[~l – p[~– 11 is very small say less than ~ >0, then

for all practical purposes, it would not matter which

of the two associated systems we chose as best. In

other words, we regard 6 as the smallest difference

“worth detecting.” In the airline-reservation exam-

ple, we have taken 6 = 3000 minutes.

We would also like to be assured that the probabil-

ity that we make a correct selection (CS) of the best

system will be at least a certain high value, P*. The

greater the value of P*, the greater the number of ob-

servations that will be required. We take P* = 0.90

in our example.

We will apply a two-stage procedure due to Rinott

(1978) to the airline-reservation problem. The pro-

cedure assumes that system i produces independent

and identically distributed (i.i.d.) normal (pi, a?) out-

put, where pi and u; are unknown, i = 1,2, . . . . k,
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and where the k systems are independent. If p[k] –

W-II > ~, the Procedure guarantees that ~{cs} 2
P*.

The procedure runs as follows. In the first stage of

sampling, we take a random sample of b. observations

from each of the k normal populations. We use as

our observations from system i the macroreplication.-
estimators, Y~l, Y~z, . . . . defined as in Subsection 2.1;

for now, we will assume that they are i.i.d. normal.

Calculate the first-stage sample means,

and sample variances

s; = ~(fij–Yy)2/(bo – 1),

j=l

fori=l,2 ,. ... k. The sample variances are used to

determine the number of observations (macrorepli-

cations) which must be taken in the second stage

of sampling; the larger a sample variance, the

more macroreplications must be taken in the sec-

ond stage from the associated system. Now set

bi = max{bo, [(hSi/d)21 }, where [.1 is the “ceiling”

function, and h is a constant that solves a certain in-

tegral, and is tabled in, e.g., Wilcox (1984). During

the second stage of sampling, take bi – b. additional

observations from the ith system, i = 1,2, . . . . k.
~inally, we calculate the grand means Yi =

~j~l ~j/bi, ~ = 1,2,.. .,k, and select the sYstem

having the largest ~i m best (which is certainly intu-

itively appealing).

3.2 The Assumptions

Rinott’s procedure requires that the observations

(macroreplications) taken within a particular system

be i.i.d. normal. We discuss these assumptions in this

subsection.

The macroreplication estimators, Yil, Yiz, . . . . Yib,,

from the ith system are assumed to be i.i.d. with

expectation pi. This is trivially true since the

macroreplicat ions are independent of each other.

The macroreplications from across all systems are

assumed to be independent; i.e., if i # i’, all Yij ‘S are

independent of all ~i,j ‘s, j = 1,2, . . .. This require-

ment is also satisfied trivially since different random-

number streams are chosen for each system’s simula-

t ion. (See Subsection 4.5 for a discussion concerning

the use of common random numbers.)

The macroreplication estimators, Yij, for i =

1,2,..., kandj=l,2,. . . , bi, are assumed to be nor-

mall y distributed. If the number of microreplications

m is large enough, say at least 20, then the central

limit theorem yields approximate normality for the

macroreplication estimators.

We make no assumptions on the variances of the

macroreplications. Although there are a number of

R&S procedures devised for the special case of normal

populations with unknown but common variance, we

will not resort to those procedures here.

3.3 The Example

Our goal is to find the system having the largest

E[TTF]. To achieve the goal the following sequence

of experiments was performed:

1. A debugging experiment to check the computer

code and assess execution speed.

2. A pilot experiment to study characteristics of the

data and aid in planning the production run.

3. A production run to produce the final results.

All R&S experiments and analyses were performed

on various SPARCstations.

3.3.1 Debugging Experiment

Five macroreplications, each consisting of five m i-

croreplications of system 1, produced a sample mean

TTF of 129182. minutes and a sample standard de-

viation 69417.2 minutes. Each microreplication took

about 24 seconds of real time on a (non-dedicated)

SPARCstation 1. Since the sample variance was so

large, we decided to conduct a somewhat larger p’i-

lot study; this would also serve as the first stage c)f

the Rinott procedure. The pilot study would take 20

macroreplicat ions, each consisting of 20 microreplica-

tions, for each of the k = 4 systems. We anticipated

that the pilot study would use at most 10 hours of

real time.

3.3.2 Pilot Experiment

By dividing the pilot study among various SPARC-

stations, we were able to complete it in less than 3

hours. The results are given in Table 2.

To check our normality assumption, we used the

pilot study to conduct Shapiro-Wilks tests on the 20

macroreplications from each system; the tests passed

at all reasonable levels. We mention in passing that

we could have also conducted Bartlett’s test to check

for equality of variances among the systems; we did

not do so since Rinott’s procedure haa no restrictions

on the variances of the macroreplication estimators.

We also remark that an IA interpretation of the pilot
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Table 2: R&S Pilot Experiment (bO = 20)

ill 2 3 4

jy) ~ogzse. ~of7&3f3. 96167’.7 897’47.9

SjSj 29157.3 24289.9 25319.5 20810.8

se~ 6519.8 5431.4 5661.6 4653.4

bi 699 485 527 356

study would have immediately eliminated system 4

(and maybe even system 3) from further considera-

tion.

For the case k = 4 and P* = 0.90, the critical con-

stant from Wilcox (1984) is h = 2.720. This enabled

us to calculate the hi-values for the second stage of

sampling. Since the pilot study was also intended to

be used as the first stage of Rinott sampling, we have

displayed the resulting hi-values in the table. For ex-

ample, for system 2, we needed to take bz – b. = 465

additional macroreplications in stage two, each con-

sisting of m = 20 microreplications. The total num-

ber of microreplications over all four systems was

about 40000. A worst-case scenario of 24 seconds

of real time per microreplication (as in the debugging

experiment) implied that the production run might

take 250 hours; luckily, we had access to a number

of SPARCstations, some faster than the SPARCsta-

tion 1.

3.3.3 Final Results

By dividing the production runs among the various

SPARCstations, we were able to complete them in

less than 2 days. The results are given in Table 3.

These results clearly establish system 1 as the winner.

We can make the formal statement that we are at

least 9070 sure that we have made the correct selection

(with the proviso that the true difference between the

best and second best E[TTF]’s is at least 6 = 3000

minutes).

Table 3: R&S Production Run

ill 2 3 4

3.4 Discussion

There are a number of reasons to use R&S techniques

when seeking the best of a number of competing sys-

tems. Procedures such as Rlnott’s guarantee the user

of a correct selection with high probability when the

true difference between the best and second best sys-

tem is at least 6; even when the true difference is less

than 6, Rlnott’s procedure insures selection with high

probability of a “good” system (i.e., one that is within

6 of the best). This guarantee compares favorably to

the simple “yes” or “no” answer that a classical hy-

pothesis test is likely to provide. R&S procedures

are also easy to use, as our Rinott example demon-

strated; little more than one tabled constant look-up

and a sample-mean calculation is required.

One drawback to Rinott’s procedure is that it tends

to be conservative, i.e., it sometimes takes more ob-

servations than necessary in the presence of ‘(favor-

able” system mean configurations (i.e., configurate ions

in which the largest mean and the others differ by

more than 6). This drawback arises from the fact that

Rlnott guarantees P{CS} > P for all configurations

of the system means for which the best is at least 6

better than the second best. But Rinott is just one of

many R&S techniques for the normal means problem.

For instance, if we were to assume (or force) common

variances among the competing systems, we could use

a variety of more efficient R&S procedures, some of

which enjoy the capability of sequentially eliminating

systems deemed as noncompetitive; these procedures

capitalize on favorable system mean configurations

by terminating sampling early. Bechhofer, Dunnett,

Goldsman, and Hartmann (1990) study a number of

such procedures. For additional reading, Gibbons,

Olkin, and Sobel (1977) is a nice introductory R&S

text, and Law and Kelton (1991) shows how to apply

R&S techniques in a simulation context.

4 MULTIPLE COMPARISONS

Multiple-comparison procedures treat the optimiza-

tion problem as an inference problem on the per-

formance parameters of interest. MCPS account for

the error that arises when making simultaneous infer-

ences about differences in performance among k sys-

tems. This section introduces a specific MCP, multi-

ple comparisons with the best (MCB), and applies it

to the airline-reservation-system example.

E 110816.5 106411.8 99093.1 86568.9

Se; 872.0 1046.5 894.2 985.8

4.1 The Method

MCB provides simultaneous statistical inference on

either Pi — max~~i pl or pi — minz#i pl, for i =

1,2 , . . . . k, where pi is the performance parameter of
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system i. In the airline-reservation example, pi is the

E[TTF] for computer configuration i.

This collection of parameters is particularly rele-

vant for optimization. For example, suppose a larger

performance parameter is better (as in the airline-

reservation system). If pi – maxl#i pl > 0, then

system i is the best, because all other systems have

smaller performance parameter. On the other hand,

if pi — maxl#i pf < 0, then system i is not the

best, since there is another system with larger per-

formance parameter. Even when pi – m~#i pl <0,

if Pi — maxl#i pl > —6, where 6 is a positive number,

then system i is within 6 of the best.

If optimization is the goal, then inference on the k

parameters Pi – maxz+~ pt, i = 1,2, . . . . k, is superior

to inference on the k(k – 1)/2 parameters Pi – pl,

ViVi# 1. Simultaneous inference is typically sharper

(smaller differences in performance can be detected)

when fewer parameters are included in the inference.

The parametricparametricversion of MCB described here as-

sumes that the output data from the simulation ex-

periment is approximated by the oneway analysis-of-

variance model:

for systems z’ = 1,2, . . . . k and replications j =

1,2,..., ni, where the &ii’s are i.i.d. normal (O, o*)

random variables. (We make no distinction between

micro and macroreplications for the moment.)

Under model (1), Hsu (1984) derived simultaneous

(1 – a)100% confidence intervals for pi – maxt~i pt

fori=l,2 ,.. ., k. In the “balanced” case (nl = nz =
. ..= nr = n), the form of the ith interval is

where ~i is the sample mean of the outputs from

system i, S2 is a pooled estimator of U*, d =

dl_a,k(n_l),k is a critical value, z- = min{O, z} and

z+ = max{O, x}. The intervals for the “unbalanced”

case are similar, but difficult to write compactly.

Notice that the MCB intervals are constrained in-

tervals, meaning that each interval either contains O.

or one of its endpoints is O. In a maximization prob-

lem, if the confidence interval for pi – maxl#i pl con-

tains O it means that—relative to the sampling error

in the point estimators—system i is not significantly

different from the best system, and may be the best.

If the upper endpoint of the interval is O, then system

i is not the best system. On the other hand, if the

lower endpoint is O, then system i is the best system;

at most one system will have lower endpoint O. These

statements are made with confidence level 1 – a.

Hochberg and Tamhane (1987) describe the the-

oretical development and practical application of

MCB. Nelson (1992) gives a detailed algorithm for

the balanced case. Both references provide tables

of critical values. Statistical analysis packages that

compute MCB intervals include J MP (version 2) and

Minitab (release 8).

4.2 The Assumptions

The assumptions implied by model (1), and their in-

terpretation in simulation experiments, are discussed

in this subsection.

The output data from within each system i,

E1, K2,..., Y.~n, ~ are assumed to be i.i. d. with com-

mon expectation pi. This will be true if the outputs

are from replications (as in the airline-reservation ex-

ample), or approximately true if they are batch means

from within a single replication of a stationary pro-

cess.

The output data from across all systems on repli-

cation j, Ylj, Y2j, . . . . Ykj, are assumed to be inde-

pendent. This will be true if different random num-

ber streams or seeds are chosen for the simulation c,f

each system. Since simulators sometimes use common

random numbers (CRN) to sharpen comparisons, we

comment on the effect of CRN on MCB in Subsec-

tion 4.5.

All the outputs Mj, for j = 1,2, . . .,ni and i Z=

1,2,..., k, are assumed to be normally distributed.

This may be approximately true if each Yij is an av-

erage of many outputs.

All the outputs ~j, for j = 1,2,.. .,ni and i =

1,2, . . . . k, are assumed to have common variance

U2 = Var[Y~j], Vi, j. There is no reason to believe

this assumption holds in general.

The assumptions of normally distributed data and

common variance are clearly the most tenuous. How-

ever, since simulators can often obtain a large number

of replications, n, the method of batch means can be

used to improve the approximation to both assump-

tions.

Consider the outputs from system i in the balanced

case: Y~l,Yiz,..., Yin. If bimi = n, then we can trans-

form the data into bi batch means of mi outputs as

follows:

(2)

forl=l,2,. . . . bi. Notice that the “batch means” are

identical to the macroreplication estimators described

in the previous sections. We use different terminology

because we “batch” the data after collecting it to

improve the approximations of normality and equal

variance.
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Let u? = Var[~j]. Then Var[zy] = u~/m~; that is,

the variance of the batch means can be controlled by

the choice of batch size, m~. In addition, the batch

means will tend to be normally distributed due to

the central limit theorem effect. Therefore, by choos-

ing the batch sizes ml, mz, . . . . mk (equivalently the

numbers of batches bl, b2, . . . . bk) appropriately, the

batch means ~1 will be more nearly normally dis-

tributed, and the variances of the batch means more

nearly equal, than the original data Yij.

A drawback of batching is the loss of degrees of

freedom—from ~~=1 (ni – 1) to ~~=1 (bi – I) —which

affects how sharp the inference is. Goldsman and

Nelson (1990) analyzed the effect of batching on MCB

and found that, for 3 ~ k < 10 systems, very little is

lost as long as the number of batches is bi z 20; this

result holds no matter how many replications, n, are

available. Therefore, bat thing can (and should) be

used provided the simulator has enough data to form

at least 20 batch means.

4.3 Planning

The IA approach SchmeiserSchmeiseradvocates proceeds until

the estimation error is small enough that a winner

can be declared. The R&S procedure Goldsman ad-

vocates is also designed to yield a winner. MCPS

provide information about the relative performance

of the systems, but they are typically not designed

to produce a winner. However, careful planning of

the experiment can insure that useful results are ob-

tained.

Suppose that a difference in performance of more

than 8 is considered important. Hsu (1988) derived

an expression for the sample size, n, required to guar-

antee that, with high probability y, the system that

MCB infers to be the best is in fact within 8 of the

true best. This “power” calculation requires an es-

timate of 6/a, and is similar in spirit to the second-

stage sample-size calculation of Rinott’s procedure.

Since software for Hsu’s sample-size calculation is

not readily available, a crude approximation is to take

( )AL+n-l)jk fJ 2
n>

6
(3)

which approximates the sample size required to ob-

tain a confidence-interval halfwidth less than or equal

to 6. An estimate of u may be obtained from a pilot

study, and a conservative (small) value of n can be

chosen to determine a value of dl_e, ~(n _ I),k to insert

in the formula.

4.4 The Example

The outline of experiments we performed is the same

as that described in Subsection 3.3. The data was

written to a file, and the analysis was conducted using

Splus. All experiments and analyses were performed

on a DECstation 3100.

4.4.1 Debugging Experiment

Ten replications of system 1 produced a sample mean

TTF of ~1 = 60761. minutes and a sample standard

deviation of S = 71450. minutes. Each replication

took about 3 seconds of real time. Under the (arbi-

trary) constraint of running and analyzing the pilot

experiment within an hour, this implied that a pilot

experiment of n = 200 replications for each system

could be performed (approximately 40 minutes of real

time to generate the data).

4.4.2 Pilot Experiment

For each system, n = 200 replications of TTF were

generated. Different random number seeds were used

to initialize the experiment for each system to obtain

independent data, as assumed by model (1). The

simulations act uall y used nearly the entire hour.

Histograms and quantile-quantile plots of the data

from each system indicated that the data was not

normally distributed. Boxplots of the data indicated

that system 1 was somewhat more variable than the

others; the ratio of the largest sample variance (sys-

tem 1) to the smallest sample variance (system 4) was

almost 2.5.

To improve the approximation of normality, the

data from each system were batched into b = 40 batch

means of m = 5 outputs. Visually the data appeared

to be more normally distributed after the transforma-

tion. Using the batch means, 95% simultaneous MCB

confidence intervals were formed for pi — maxl#~ pl,

i = 1,2,3,4; the results are displayed in Table 4.

Table 4: MCB Pilot Experiment

lower upper

i limit Yi – m~#~ Y~ limit

1 -11349. 7091. 25530.

2 -31242. -12802. 5638.

3 -25530. -7091. 11349.

4 -36172. -17732. 708.

System 1 was the sample best, but since all the

intervals contained O no system could be declared
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to be the best. The lower limit on the interval for

PI – ma~#l ,u~ indicated that, if system 1 is not the

best, its E[TTF] could be as much as 11349. minutes

less than the best; since this was greater than the in-

difference zone of 6 = 3000 minutes, a “production

run” was planned.

Using the pooled standard deviation estimate from

the pilot run, S = 92449., the indifference zone

8 = 3000, and the critical value d0,95)4t40J,4 = 2.078,

formula (3) predicted that n x 8200 replications

would be required to distinguish differences of 3000

minutes. Approximately 42 hours of real time would

be required for the computer to complete that many

replications.

Rather than save all of the TTF data from the

production run, the outputs were batched as they

were generated into b = 300 batch means of m = 27

outputs each (implying n = 8100 replications; the

200 pilot replications were available to add to the

data set if needed). Having 300 batch means allowed

some flexibility for further batching to achieve ap-

proximately equal variances whiIe still keeping the

number of batches above 20. The production runs

were executed over a weekend.

4.4.3 Final Results

The batch means from all four systems appeared to

be normally distributed. Applying Bartlett’s test for

equality of variance yielded a test statistic of 13.11,

which is larger than the 0.995 quantile of a X2 random

variable with 3 degrees of freedom; the variances did

not appear to be equal. However, the test statistic

without system 4 was only 0.99, which is not signifi-

cant,

The ratio of the pooled sample variance from sys-

tems 1,2, and 3 to the sample variance of system 4

was about 1.5. Therefore, approximately equal vari-

ances could be obtained by rematching the 300 batch

means from systems 1,2, 3 and 4 into 61 = b2 =

b3 = 100 and b4 = 150 batch means, respectively.

Bartlett’s test on the rebatched data yielded a test

statistic of 1.03, which is not significant.

The 95% simultaneous MCB confidence intervals

based on the rebatched data are given in Table 5.

System 1 wss conclusively identified as the best sys-

tem (with confidence level 0.95), and the best guess

is that it is superior by 5288. minutes. System 2 was

the sample second best, but it may be inferior to sys-

tem 1 by as much as 8284. minutes, which is greater

than the indifference zone of 3000 minutes.

Table 5: MCB for Production Run

1 0 5288. 8284.

2 -8284. -5288. ()

3 -12747. -9751. ()

4 -25409. -22675. ()

4.5 Discussion

MCPS recognize that selecting the best system is a

multivariate-estimation problem, and they explicitly

account for the joint (overall) error inherent in mak-

ing statements about multiple performance parame-

ters. Informal methods for measuring sampling errclr

do not account for the possibility of simultaneous er-

rors in different directions. MCPS provide inference

about not only the best system, but also relation-

ships among all the systems. In the case of MCB, the

difference between the expected performance of each

system and the best of the other systems is boundecl.

These insights are useful when the performance pa~-

rameter of interest (E[TTF] in the example) does nc,t

account for all of the differences among the systems

(e.g., cost of installation). MCPS can provide infer-

ence from a single stage of sampling, although, as the

example illustrates, experiment planning may be re-

quired to guarantee useful results since a winner is

not guaranteed.

The primary disadvantage of MCPS is their reliance

on rather strict distributional assumptions. Non-

parametricparametricprocedures exist that remove assumptions

(such as normality) on the marginal distributions, but

they typically have lower power to discriminate dif-

ferences. A particularly nettlesome limitation is the

assumption of independence across systemls, which

rules out the use of CRN. CRN is a variance re-

duction technique for sharpening estimators of dif-

ferences. The improvement is obtained by inducing

positive dependence across replications from each sys-

tem, Ylj, Yzj, ..., Ykj, which violates an assumpticm

of model (l).

We have been able to show that MCB is conser-

vative, under fairly general conditions, when CRN

is employed, which means that a true confidence

level greater than 1 – a is achieved. Ideally, the

MCP should incorporate GRN to make the inference

sharper while preserving the desired confidence level.

Some progress has been made in developing MCPS

that incorporate CRN (e.g., Yang and Nelson 1991).
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