
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

EXPLOITING WEB SERVICE TECHNIQUES FOR COMPOSING SIMULATION MODELS

Mathias Röhl
Florian Marquardt

Adelinde M. Uhrmacher

University of Rostock
Albert-Einstein-Str. 21

18059 Rostock, GERMANY
ABSTRACT

Two basic approaches to simulation model composition can
be distinguished, depending on whether the unit of composi-
tion is a model specification according to a certain modeling
formalism or the component is a simulation system wrapping
the actual model implementation. Model-based approaches
mainly provide user-friendly means for modular-hierarchical
construction of complex models but come with limited ca-
pabilities for compositional reasoning. Simulation-based
composition approaches explicitly distinguish between in-
terface descriptions and model implementations and thereby
facilitate a reasoning about compositions based solely on
publicized interfaces descriptions. However, compositional
reasoning about interoperability at the conceptual level and
on overall model validity is currently not very elaborated.
This paper takes a closer look at web services technologies
and discusses how to adapt them to the problem of model
composition.

1 INTRODUCTION

To reuse and combine simulation models within different
experimentation contexts poses severe challenges, mainly
induced by differences in assumptions, aims, and constraints
(Davis and Anderson 2004, Overstreet, Nance, and Balci
2002), also called context dependencies (Yilmaz and Ören
2006). The importance of the abstractions that underlie a
model have led to distinguish the experimentation context
from the context of model realization (Yilmaz and Ören
2006). The latter focuses on the interfaces and the ques-
tion: whether components can be put together and connected
properly (Petty and Weisel 2003a). While the realization
context makes explicit all direct and indirect dependencies
to other models, the experimental context, aka experimental
frame (Zeigler 1984), describes the conditions of experimen-
tation. These two contexts are sometimes also referred to as
8331-4244-1306-0/07/$25.00 ©2007 IEEE
the engineering and the semantic aspect of composability,
respectively (Weisel, Petty, and Mielke 2004).

In the following we review existing approaches to com-
pose simulation models and web services. Afterwards, we
will explore how web service composition techniques may
be exploited to support a conceptual sound and valid com-
position of models.

2 COMPOSITION OF SIMULATION MODELS

Two basic approaches to simulation model composition
can be distinguished, depending on whether the unit of
composition is a model specification according to a cer-
tain modeling formalism, or the component is a simulation
system wrapping the actual model definition.

2.1 Composition within Modeling Formalisms

COTS simulation systems like Arena (Kelton, Sadowski,
and Sturrock 2003) offer libraries of models that can be
assembled together via graphical user interfaces. Model-
ing within these tools is mainly based on object-oriented
modeling concepts supported by visual representation of
model entities. Most of these tools focus on a particular
application domain. The state of the art in this domain is
set by Modelica (Elmqvist, Mattsson, and Otter 2001) as
an open and standardized language, which aims at the de-
scription of complex physical systems. Models can contain
sub-models that are connected via their ports, thereby, a hi-
erarchically construction of models is supported. Modelica
exploits intensively object-oriented concepts. Models are
defined as parametrize-able classes and may be substituted
according to class inheritance. The flexibility of Modelica
has motivated the development of a set of model libraries,
mainly for continuous and hybrid modeling.

DEVS (Discrete EVent System specification) is
a general-purpose modeling language, which supports
modular-hierarchical modeling in the realm of discrete-event

Röhl, Marquardt, and Uhrmacher
User

Service

Trading

Node

msgIn:

Message

call:Call

response:

Response

msgIn:

Message

call:Call

response:

Response

msgOut:

Message

msgOut:

Message

Figure 1: A network node as a coupled DEVS model.

simulation. DEVS models are basically time-triggered state
automatons with arbitrarily scaled state variables. DEVS dis-
tinguishes between atomic and coupled models. An atomic
model is described by a state set, a set of input and output
ports, an internal and external transition function, an output
function, and a time advance function. The later defines
after which time an internal event is due, whereas exter-
nal events are triggered by the arrival of inputs (Zeigler,
Praehofer, and Kim 2000).

Coupled DEVS models support the hierarchical, mod-
ular construction of models. A coupled model is described
by an input and output set, the set of its component models,
which may be atomic or coupled, and by the couplings that
exist among them. Coupled models enable the structuring
of large models into smaller ones.

In DEVS each model is only allowed to communicate
via its ports. Models do not know of each other (unless such
knowledge is explicitly communicated) and models do not
know with which models they become coupled. Coupling
schemes are always defined on the next higher level, i.e.
within the surrounding coupled model. Thereby, coupling
takes place at the time of deployment of a model and not at
the time of model definition. This is called delayed binding.
As closure under coupling holds for the DEVS formalism,
models can be constructed modular-hierarchical. Figure
1 shows a simple model of a network node defined as a
coupled model. The node contains a user and a service
trading model as sub models. Both these models may be
atomic or coupled ones.

Modelica and DEVS remain at the syntactical level
for checking compatibility. Furthermore, with these for-
malisms, interface are not entities in their own right, but
implicit in the definition of a model’s input and output ports
and thus are not separated from the model. Advertisements
of interface descriptions as in web service approaches are
hampered.

Therefore, explicit interface descriptions have been as-
signed to DEVS models (Yilmaz 2004). Role descriptions
formalize patterns of interactions with respect to a subset
of input and output ports, and focus on visible behavior.
Roles are defined as non-deterministic partial automata. Two
instances of such automata can be checked for compatibility.

Generally, semantic aspects can more easily be inte-
grated if a formalism is restricted to a specific application
8

Federate Federate

UserSim
Service

TradingSim

HLA-Interface HLA-InterfaceRTI

Figure 2: Composition of simulation models with HLA.

domain. For example, the Systems Biology Markup Lan-
guage (Hucka et al. 2004) refers to domain-specific ontolo-
gies and annotates variables and methods with additional
information (Le Novère et al. 2005) to enable semantic
compatibility checks.

2.2 Composition Based on Distributed Simulation

Simulation aims at the execution of operational models.
Consequently, composition of models may be realized via
coupling of (distributed) simulation systems. In trying to
combine different simulation systems, compatibility man-
ifests itself as the problem of interoperability. Prominent
example for a general distributed simulation approach is
HLA (IEEE 2000). HLA’s basic concept are federates. A
federate may be a model, observer, or an interface to a
human actor. A combination of federates for a particular
purpose is called a federation. The technical mean for
connecting federates is provided by the Run Time Infras-
tructure, abbreviated RTI. Figure 2 shows the coupling of a
user simulation and a service trading simulation via HLA.

Data to be exchanged via the RTI have to be defined
explicitly based on the Object Model Template (OMT). How-
ever, HLA was mainly designed to resolve heterogeneity at
a technical level. In the context of simulation-oriented com-
position approaches a framework has been developed, which
distinguishes several levels of interoperability: the Levels
of Conceptual Interoperability Model, abbreviated LCIM,
(Tolk and Muguira 2003). In its current form (Tolk 2006),
LCIM comprises six levels of interoperability. Technical in-
teroperability is reached if components are able to exchange
data. Syntactic interoperability requires an unambiguously
defined data format. Definition of meaning of data leads to
semantic interoperability. Please note, that semantic herein
refers to the semantics of exchanged data, not semantics
of the model. Visibility of data usage leads to pragmatic
interoperability. Dynamic interoperability requires success-
ful interaction over time. For conceptual interoperability, a
simulation model’s underlying abstractions and assumptions
have to be aligned.

The Base Object Model (SISO 2006), abbreviated BOM,
is aimed at achieving higher levels of interoperability for
simulation-oriented composition of models. BOMs enrich
operational model components with descriptions at the se-
34

Röhl, Marquardt, and Uhrmacher
Model

st imul i observations

Experimental

Frame

Figure 3: Formalization of validity by experimental frames.

mantic, dynamic, and conceptual level. As a first step to
achieve valid simulation models, composition of BOMs may
be based on a declarative description of an experimenter’s
intention, which is specified e.g. via SRML, the Simulation
Reference Markup Language (Reichenthal 2002).

However, the conceptual level of interoperability, i.e.
whether abstractions and assumptions realized in model
candidates are compatible, is not yet addressed in a formal
manner. Thereby, reasoning about a composition’s validity
is currently very limited.

2.3 Validity of Compositions

Validation is a process for substantiating that a model’s
accuracy is within acceptable bounds with respect to a
specific purpose (Sargent 2005), also known as experimental
frame.

The concept of experimental frame was introduced by
Zeigler already in the 80s (Zeigler 1984). The experimental
frame can be perceived as a system itself. An experimental
frame reflects the experimental conditions explicitly and
is intended to be coupled to the system to be validated,
i.e. it provides input to the model under consideration and
evaluates its output.

Zeigler (Zeigler 1984) introduced a hierarchy of system
specifications to capture knowledge about timed systems at
different levels of detail in a formal manner. At the lowest
level a system is described as a black box. Climbing up
the hierarchy knowledge about behavior, internal states, and
structure are added successively. The hierarchy of systems
specifications is accompanied with a hierarchy of system
morphisms which express property preserving relations be-
tween systems at different levels. Morphisms at higher
levels imply morphism at lower levels.

Given the hierarchy of system specifications, validity
can be expressed as a relation between a reference model
and the model under consideration. The reference model
represents the model that fulfills all requirements defined
in the experimental frame, i.e. all conditions to be fulfilled
w.r.t. a certain objective. An experimental frame may be
defined as a system that provides input values (stimuli) to
the model and receives output values (observations) from
the model (cf. Figure 3). To account for a certain degree
of accuracy, morphism can be relaxed to approximate mor-
phisms (Zeigler, Praehofer, and Kim 2000), e.g. equality
of values may be relaxed to values being in a certain range.
8

Furthermore, different kinds of validity can be distin-
guished, depending on the level of the hierarchy that is used
as a reference system (Zeigler 1984). Replicative validity
requires equivalence at level 1 of the hierarchy, which es-
sentially means replication of input/output data. According
to Zeigler, predictive validity requires equivalence at level
2, i.e. incorporation of knowledge about the initial state
of a system. Structural validity can be checked based on
knowledge about internal states of a system. Compositions
are expressed at a still higher level. As systems at higher
levels can be mapped to system descriptions at lower lev-
els, flattening a composed model is one possibility to make
it in principal available to validity checks at lower levels.
However, these concepts and their exploitation for model
composition are currently of a rather theoretical nature.

Work in the area of theoretical computer science is
aimed at providing a whole spectrum of relations between
system descriptions amenable to algorithmic evaluation (van
Glabbeek 2001). First steps to adopting these techniques for
modeling and simulation has been done under the term The-
ory of Semantic Composability (Petty and Weisel 2003b).

Within the theory of semantic composability models
are expressed as computable functions and simulation as
execution of functions (Petty, Weisel, and Mielke 2005).
Formally, simulation is defined via a deterministic labeled
transition system (LTS). Validity of models can now be
expressed as an equivalence relation over LTS, namely by
weak bisimulation equivalence. Same as with Zeigler’s
approach a somehow perfect model is used as a reference
and strict equivalence relations can be relaxed, e.g. based
on a metric.

Formalization of validity is central to automation of
validation. At the level of structural validity, bisimula-
tion equivalences are an elegant means of reasoning about
validity of models. Weak bisimulation equivalence formal-
izes the notion of observational equivalence in conformance
with recent advances in theoretic computer science. The
challenge is to find an appropriate reference system, i.e.
a formal representation of the intended model. Validation
of simulation models remains challenging. As it requires
creativity and insight (Balci et al. 2002), it cannot be easily
automated.

3 COMPOSITION OF WEB SERVICES

Technically interoperability of Web Services is ensured by
the protocol stack of the Internet.

At the syntactical level, the Web Service Descrip-
tion Language (WSDL) describes a web service by its
in- and outputs, its location, and potential error exceptions.
WSDL is standardized by the World Wide Web Consor-
tium (W3C) (W3C 2006). The semantic web initiative
of the W3C aims to complement syntactical descriptions
with computer processable semantic information (Fensel,
35

Röhl, Marquardt, and Uhrmacher
network

:Nutzer :Anbieter

:Registry

DB

ServiceImpl

NetworkProt

Application

NetworkProt

request

< <WSD> >
offer

< <WSD> >

NetworkProt

Figure 4: Composition of web services.

Hendler, and Liebermann 2003). Recent approaches like
OWL-S take additionally the dynamic aspect of interop-
erability into account. It is an extension of basic OWL
and consits of three parts; the services profile, its model
and its grounding. The grounding represents the WSDL
description of the service. The model contains the process
description of the service, wherein atomic, combined and
abstract processes are distinguished. Furthermore pre- and
postconditions of the service are included. The service pro-
file contains a short description of what the service does.
It is used for service discovery.

Similar to validity in the area of modeling and sim-
ulation, web service compositions are subject to quality
requirements, which pertain to the context of use, e.g. con-
nectivity, nonfunctional quality-of-service properties, cor-
rectness, and scalability (Milanovic and Malek 2004).

3.1 Web Service Composition in General

Each composition method aims at combining existing ser-
vices to fulfill a specific more complex purpose. These
purposes may be defined as tasks or as goals. The wording
primarily depends on the area of research and the involved
algorithms. Composition in the web service domain focuses
on creating more or less sequential plans for service execu-
tions also called service chains (Ponnekanti and Fox 2002).
Composing services happens in a concurrent and dynamic
manner (Kuter et al. 2004). The main challenges in web ser-
vice composition are finding appropriate services (semantic
dimension) and matching their in- and outputs (syntactic
dimension). Among these a lot of smaller problems arise in
web service composition. Each of which faces again a set
of diverse problems. E.g. matching has to deal with multi-
ple effects and potential side-effects of the services (Küster
et al. 2007). Most approaches to web service composition
utilize workflow methods or AI-planning methods (Rao and
Su 2004).
83
World altering

effects

WebserviceInputs

Outputs

Errors

Effects
Preconditions

Figure 5: Plan operator representation of a web service.

3.2 Workflow Methods

Workflow methods originate in describing business pro-
cesses (van der Aalst, ter Hofstede, and Weske 2003). A
workflow usually represents a static model, which can be
described as a graph whose nodes are definitions of services
and whose edges represent the exchange of data between
services. The workflow model comprises descriptions of
required services and does not contain the concrete services
themselves. Searching and matching of available services
according to the description of each service node can be
performed at the time of instantiation or during execution
time.

To face the nature of high dynamic environments like
the Internet where previously used services might no longer
be available, searching and matching of a service must
be performed every time a node is executed. Business
Process Execution Language for Web Services (BPEL) is
an OASIS standard to define workflows that integrate web-
services (Andrews et al. 2003). Workflow methods for
web services composition require a priori knowledge about
the information flow and connections between the involved
services. Major parts of the systems’ semantics are included
in the workflow description implicitly.

3.3 Planning

In order to express web service composition as a planning
problem some requirements must be fulfilled. An initial
description of the world, a set of acceptable goal states of
the world, a list of available actions, their pre-conditions
for being executable, and their effects are needed (Carman,
Serafini, and Traverso 2003). All required information,
including parameters, are defined as inputs to web services.
The output of web services is made up of data, errors and
possibly world altering effects (cf. Figure 5).

Planning assumes a “closed world.” This assumption
is one of the most discussed constraints in adopting AI-
planning methods for web service composition as every
knowledge of the Internet must be considered partial and
dynamic. Despite this problem planning approaches have
6

Röhl, Marquardt, and Uhrmacher
been successfully applied to web service composition (Peer
2005, Küster, Stern, and König-Ries 2005). Among them,
Hierarchical Task Networks (HTN) using OWL-S Service
descriptions have shown to be a promising approach (Sirin
et al. 2004).

4 ADAPTING WEB SERVICE COMPOSITION
TECHNIQUES TO SIMULATION MODELS

Web service standards and techniques are currently mainly
adapted to simulation-based approaches focusing on the
lower levels of interoperability, i.e. the syntactical and
technical level.

4.1 Adaptation at Lower Levels

Application of web-service techniques are already in use
in the area of simulation-based composition (Tolk 2004,
Pullen et al. 2005, Möller and Dahlin 2006). Adaption
of web service techniques to simulation-based composition
can be done in a rather straightforward manner. Technical
and syntactical interoperability issues can be resolved by
using SOAP and WSDL for simulation systems. This allows
to integrate heterogeneous simulation systems and thereby
different kinds of modeling formalisms. Model implemen-
tations can be fully encapsulated behind interfaces and kept
private. Treating simulation systems as software entities
is currently the predominant way of web service adaption.
However, an a priori partitioning of a simulation model and
communication via declarative messages at runtime ham-
per an efficient execution of a composed simulation model
(Möller and Dahlin 2006).

While web services assume a rather coarse grained ex-
change of information, simulation models are characterized
by frequent bi-directional interactions. Run-time overhead
follows directly from the decoupling of implementations by
means of declarative interface descriptions. Furthermore,
as each model is wrapped by a simulator, the distribution of
simulation components enforces the distribution of model
components. However, computational complexity of models
does not necessarily have to coincide with the component
distribution scheme. Finally, simulation models often re-
quire multiple instances of a certain model component.
While web service techniques naturally support functional
modularization of execution logic very nicely, web services
are from the experimenter’s point of view sub-optimal.

There is an alternative, yet largely unexplored, way to
adapt web service description techniques to the problem
of simulation model composition. Web service descrip-
tions may also be adapted to model-oriented composition
approaches. Instead of letting an WSDL interface declare
a set of operations of a simulation system, an interface
definition may comprise a set of event port declarations
that announce the exchange of typed events as defined in a
83
Service Transport

Service

Trading

call:Call

msgOut

:Message

response

:Response

msgIn

:Message

Service

Trading

Figure 6: Model interfaces exhibiting roles.

certain modeling formalism, preferably represented in XML
(Röhl 2006). Such model definitions are usually not directly
executable pieces of software, but become simulated by a
certain simulation engine. Therefore, interface descriptions
of model components need binding elements. These will
not define the technical details of information transmission
but relate abstract event ports of a role definition to concrete
ports of a model definition (cf. Figure 6).

Interface descriptions for model definitions need to be
published to become queried and, eventually, to form the
input to a composition engine. Figure 7 depicts an archi-
tecture for model components on global scale. Selection of
model components is solely based on publicized interface
descriptions. If a component is selected, the model imple-
mentation will be retrieved from the component provider
and will be deployed by the experimenter. The executable
simulation model is produced at the experimenter’s site
(Röhl and Uhrmacher 2006). Whether a simulation model
becomes distributed at the time of execution, is completely
independent of the distribution of component providers and
the composition process. Thus, a flexible and efficient ex-
ecution of the entire composed model becomes possible.
The composed model can be executed in a sequential or
parallel manner, on demand, only depending on the simu-
lation facilities of the experimenter. In addition, it becomes
possible to let certain parts of the model be executed by
specific simulators. These simulators could then be coupled
together by using HLA type of synchronization protocols.

Unlike with simulation-oriented composition ap-
proaches, which are designed for reaching technical inter-
operability, compatibility at the technical level is a challeng-
ing problem for model-oriented composition approaches. If
models need to be integrated that are encoded in different
kinds of modeling formalism, model components have to
be equipped with a set of different model implementations,
each for a certain formalism and simulator engine. Alterna-
tively, transformations to a certain kind of super formalism,
e.g. DEVS, may be done (Vangheluwe 2000, Sarjoughian
2006). This is avoided if the simulation engine at the ex-
perimenters site supports a sufficient number of formalisms
and their combination (Eker et al. 2003).

Model-oriented composition approaches comes with
a further drawback. Model implementations are not com-
pletely hidden as in the case of simulation-based approaches,
where implementations reside at the providers site. In model-
7

Röhl, Marquardt, and Uhrmacher
simRoot

sim2:simnode

:Registry

DB

WWW

CompositionTool

SimEngine

RTI

SimEngine

simN:simnode

SimEngine

...

com1:Provider

comM:Provider

...

com1

com z

Figure 7: Architecture for model-oriented composition.

based composition approaches privacy issues need to be
handled separately and require a special kind of security
architecture.

4.2 Aiming at the Conceptual Level and Validity

Simulation-based composition approaches that build upon
WSDL (Tolk 2004, Pullen et al. 2005, Möller and Dahlin
2006) may directly benefit from workflow composition tech-
niques. Additional to the description of component inter-
faces, a description of the workflow is needed. Using
interface descriptions, a model composer has first to find
appropriate components, and then to match those into the
nodes of a BPEL workflow. If a proper model component
was found for every node of the workflow, the simulation
model is complete.

In comparison to workflow approaches, planning ap-
proaches promises more flexible solutions, however also a
lot more challenges. To this end, the model composition
problem has to be encoded as a planning problem similar
to web services. Web services and model components both
encapsulate functionality and interact merely via their in-
and outputs. Both are designed for special purposes that
can be summarized in semantic descriptions. However, dif-
ferences exist. The validity relation (quality of service) for
web services refers to and depends on the time of execu-
tion, i.e. whether certain non-functional requirements are
fulfilled. Once a composition for several web services is
found, it cannot be guaranteed that all involved services
will remain available. For simulation and model compo-
sition their “validity” can be checked during composition
generation.

The biggest problem for applying planning to model
composition stems from the nature of interaction between
model components. Whereas composition of web services
83
Model component

Parameter

Observations

Required

Interfaces

Provided

Interfaces

Preconditions

Effects

Figure 8: Representing a model component as a plan oper-
ator.

results mostly in a sequence of service executions, simulation
models are not likely to be chained but act concurrently and
interact with each other during the whole simulation run.
Thus, planning over model compositions is only feasible if
it is constrained to the conceptual level and validity. For
composition, planning should operate on the compatibility
of realized abstractions within composition candidates and
the interaction of the composition with the experimental
frame. All technical, syntactical, semantic, and dynamical
details have to be left out. Compatibility checking at those
levels has to be done independently.

Figure 8 illustrates the concept for encoding a model
component interface description as a plan operator. Model
components may have initial parameters and may provide a
set of possible observations. With respect to the purpose of
an experiment, parameters and observations are interpreted
as a requirement of the user, i.e. a model has to provide a
set of observations and a set of parameters to be suited for
a certain experiment. Thus, for planning parameters and
observations are considered to be effects of the planning
operator representing a model component. To account for
the conceptual level, exhibited roles of model components
(cf. Figure 6) can be interpreted as indicating the provision
of or the dependence on a certain abstraction (in addition
to the port descriptions at the syntactical level). Required
roles are encoded as pre-conditions and provided roles as
effects of the plan operator.

Thus, a set of model components, more precisely their
interface descriptions, are represented as planning opera-
tors and thereby serve as the backbone of planning. The
concrete planning problem must be described by the set
of available model components and a goal state G. The
planning process will try to apply plan operators to the set
of model components to reach the goal state. According to
the definition of an experimental frame the goal state can
be formulated as a set of parameters and a set of operations
a simulation model has to provide.

No functional in- or outputs of model components may
occur in the goal state G, i.e. G is orthogonal to the
inter-component data flow. Furthermore, all variables in
G must be disjunctive since it can not be allowed to have
8

Röhl, Marquardt, and Uhrmacher
User

Movement

Service

ServiceReqT, OnlineT

OnlineTVar, ArrivalT

Service

Trading

ServiceTransport

Network
Environ-

ment

Movement
Transport

Transmissions

Radio

Radio

Positions

wait4SearchT

maxPartit ions

Figure 9: Example components.

two or more different assignments of initial parameters
or observations. Available model components have to be
known at composition time. The selection of components
happens depending on the goal definition G. As soon as
a set of promising model components is identified, plan
generation can start. In addition to checking whether all
desired observations have been met, the plan generation takes
the interface description of the individual model components
into account. Required interfaces have to be matched to
offered interfaces.

4.3 Example

Assume a network simulation should be conducted
that investigates the effect of different service request
frequencies on the number of network transmissions.
These data variables form the goal state, i.e. G =
{ServiceReqT,Transmissions}. The set of component can-
didates may be gained via a keyword or arbitrary meta-data
based query to a model repository. Component descrip-
tions are transformed to planning operators as depicted in
Figure 9. Based on these operator definitions the planning
process tries to fulfill the goal state. E.g. the compo-
nent Network provides the observation Transmissions and
the component User provides a parameter ServiceReqT.
Both components depend on abstractions realized by other
components, namely Network requires a model component
providing Radio propagation and User requires other mod-
els offering Movement management and handling of Service
calls. If planning is able to resolve all pre-conditions, it will
come up with a plan representing the set of components to
be used and the coupling scheme among them. Figure 10
shows a possible plan for the example setting.
83
Goal

Network

Transport,

Environment

Radio

Start

User

ServiceReqT

ServiceTrading

ø

Service

Transmissions

Movement

Figure 10: Example plan for a composition.

5 CONCLUSION

Efficient experimentation poses specific requirements on the
representation of models at the time of execution. These
are partly at odds with the assumptions underlying the web
service style to achieve interoperability. While web services
aim to minimize interactions and strive for a coarse grained
exchange of information, sub components of a simulation
model usually exhibit a frequent, close style of interaction.
To this end, adapting declarative web service descriptions to
models rather than to simulation systems seems to be promis-
ing. Thereby, the execution of a simulation model may be
completely decoupled from the distribution of component
providers and the process of composition. However, model-
oriented composition implies other problems that have to
be solved, e.g. if model components shall be combined,
which are defined in different formalisms, or the model
implementation needs to be kept private.

Web service composition techniques have leaped for-
ward to address higher levels of interoperability. Planning
approaches promise flexible, however also challenging solu-
tions for reasoning about compositions. We explored how
planning techniques can be adapted for approaching the
validity dimension of model composition. Transforming
the model composition into a planning problem requires to
enrich component interfaces with descriptions about param-
eters, observations, and required and provided abstractions.
Still the question has to be answered, how this meta in-
formation about models shall be represented. Furthermore,
the implementation of concepts and an evaluation based on
a model library are required to assess the practical value
of planning approaches for contributing to the challenge of
model composition.
9

Röhl, Marquardt, and Uhrmacher
REFERENCES

Andrews, T., F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte,
I. Trickovic, and S. Weerawarana. 2003, May. Business
process execution language ofr web services.

Balci, O., R. E. Nance, J. D. Arthur, and W. F. Ormsby. 2002.
Expanding our horizons in verification, validation, and
accreditation research and practice. In Winter Simulation
Conference, 653–663.

Carman, M., L. Serafini, and P. Traverso. 2003, June. Web
service composition as planning. In Workshop on Plan-
ning for Web Services. Trento, Italy.

Davis, P. K., and R. H. Anderson. 2004, April. Improving the
composability of DoD models and simulations. JDMS 1
(1): 5–17.

Eker, J., J. W. Janneck, E. A. Lee, J. Liu, X. Liu, J. Ludvig,
S. Neuendorffer, S. Sachs, and Y. Xiong. 2003, Jan-
uary. Taming heterogeneity — the Ptolemy approach.
Proceedings of the IEEE, Special Issue on Modeling
and Design of Embedded Software 91 (1): 127–144.

Elmqvist, H., S. E. Mattsson, and M. Otter. 2001. Object-
oriented and hybrid modeling in modelica. Journal
Européen des systèmes automatisés 35 (1): 1–10.

Fensel, D., J. A. Hendler, and H. Liebermann. (Eds.) 2003.
Spinning the semantic web. The MIT Press.

Hucka, M., A. Finney, B. Bornstein, S. Keating, B. Shapiro,
J. Matthews, B. Kovitz, M. Schilstra, A. Funahashi,
J. Doyle, and H. Kitano. 2004, June. Evolving a lin-
gua franca and associated software infrastructure for
computational systems biology: The systems biology
markup language (SBML) project. Systems Biology 1
(1): 41–53.

IEEE 2000, September. Standard for modeling and sim-
ulation (M& S) High Level Architecture (HLA) —
Framework and Rules. Document 1516-2000.

Kelton, W. D., R. P. Sadowski, and D. T. Sturrock. 2003.
Simulation with arena. 3rd ed. McGraw-Hill.

Küster, U., B. Köning-Ries, M. Klein, and M. Stern. 2007.
Diane - a matchmaking-centered framework for au-
tomated service discovery, composition, binding and
invocation. Submisson for Special Issue of IJEC (Inter-
national Journal of Electronic Commerce) on Semantic
Matchmaking and Retrieval.

Küster, U., M. Stern, and B. König-Ries. 2005, December.
A classifcation of issues and approaches in automatic
service composition. In Engineering Service Compo-
sitions: First International Workshop, ed. C. Zirpins,
G. Ortiz, W. Lamerdorf, and W. Emmerich, Volume
WESC05: Yorktown Heights: IBM Research Devision.

Kuter, U., E. Sirin, D. Nau, B. Parsia, and J. Hendler. 2004.
Information gathering during planning for web service
composition. In Proceedings of the Third International
Semantic Web Conference. Hiroshima, Japan.
840
Le Novère, N., A. Finney, M. Hucka, U. S. Bhalla, F. Cam-
pagne, C. J. Vides, E. J. Crampin, M. Halstead, E. Klipp,
P. Mendes, P. Nielsen, H. Sauro, B. Shapiro, J. L.
Snoep, H. D. Spence, and B. L. Wanner. 2005, Decem-
ber. Minimum information requested in the annotation
of biochemical models (MIRIAM). Nat Biotechnol 23
(12): 1509–1515.

Milanovic, N., and M. Malek. 2004. Current solu-
tions for web service composition. IEEE November
December:51–59.

Möller, B., and C. Dahlin. 2006, June. A first look at the
HLA evolved web service api. In Proceedings of 2006
Euro Simulation Interoperability Workshop. Simulation
Interoperability Standards Organization. 06E-SIW-061.

Overstreet, C. M., R. E. Nance, and O. Balci. 2002. Issues
in enhancing model reuse. In International Conference
on Grand Challenges for Modeling and Simulation,
Jan. 27-31. San Antonio, Texas, USA.

Peer, J. 2005. Web service composition as ai planning -
a survey. Technical report, University of St. Gallen,
Switzerland.

Petty, M. D., and E. W. Weisel. 2003a. A composability
lexicon. In Proceedings of the Spring 2003 Simulation
Interoperability Workshop, 181–187. Orlando FL.

Petty, M. D., and E. W. Weisel. 2003b. A formal basis for a
theory of semantic composability. In Proc. of the Spring
2003 Simulation Interoperability Workshop, 416–423.

Petty, M. D., E. W. Weisel, and R. R. Mielke. 2005. Compos-
ability theory overview and update. In Proceedings of
the Spring 2005 Simulation Interoperability Workshop,
431–437.

Ponnekanti, S. R., and A. Fox. 2002. Sword: A developer
toolkit for web service composition. In Proceedings of
the 11th International WWW Conference (WWW2002).
Honolulu, HI, USA.

Pullen, J. M., R. Brunton, D. Brutzman, D. Drake, M. Hieb,
K. L. Morse, and A. Tolk. 2005. Using web services to
integrate heterogeneous simulations in a grid environ-
ment. Future Generation Computer Systems 21:97–106.

Rao, J., and X. Su. 2004. A survey of automated web
service composition methods. In Proceedings of the 1st
International Workshop on Semantic Web Services and
Web Process Composition, SWSWPC2004, LNCS. San
Diego, USA.

Reichenthal, S. W. 2002. SRML – simulation reference
markup language. W3C Note 18 December 2002.

Röhl, M. 2006, May 28th-31th. Platform independent spec-
ification of simulation model components. In ECMS
2006, 220–225. Bonn, Sankt Augustin, Germany.

Röhl, M., and A. M. Uhrmacher. 2006. Composing simula-
tions from XML-specified model components. In Pro-
ceedings of the Winter Simulation Conference, 1083–
1090: ACM.

Röhl, Marquardt, and Uhrmacher
Sargent, R. G. 2005. Verification and validation of simulation
models. In WSC ’05: Proceedings of the 37th Winter
simulation conference, 130–143: Winter Simulation
Conference.

Sarjoughian, H. S. 2006. Model composability. In WSC
’06: Proceedings of the 37th conference on Winter
simulation, 149–158: Winter Simulation Conference.

Sirin, E., B. Parsia, D. Wu, J. Hendler, and D. Nau. 2004.
Htn planning for web service composition using shop2.
Journal of Web Semantics 1 (4): 377–396.

SISO 2006, March. Base object model (BOM) template
specification. SISO-STD-003-2006.

Tolk, A. 2004, April. Composable mission spaces and
M&S repositories – applicability of open standards.
In Spring Simulation Interoperability Workshop. Wash-
ington, D.C.: SISO. paper no. 04S-SIW-009.

Tolk, A. 2006. What comes after the semantic web – pads
implications for the dynamic web. In PADS ’06: Pro-
ceedings of the 20th Workshop on Principles of Ad-
vanced and Distributed Simulation, 55. Washington,
DC, USA: IEEE Computer Society.

Tolk, A., and J. Muguira. 2003, September. The level of
conceptual interoperability model. Fall Simulation In-
teroperability Workshop (SISO), Orlando.

van der Aalst, W., A. H. ter Hofstede, and M. Weske. 2003.
Business process management: A survey. In BPM ’03,
1–12: Springer-Verlag Berlin Heidelberg.

van Glabbeek, R. 2001. The linear time – branching time
spectrum i: the semantics of concrete, sequential pro-
cesses. In Handbook of Process Algebra, ed. J. A.
Bergstra, A. Ponse, and S. A. Smolka, 3–99. Amster-
dam: Elsevier.

Vangheluwe, H. 2000, September. DEVS as a common de-
nominator for multi-formalism hybrid system modeling.
In Proceedings of the IEEE International Symposium
on Computer Aided Control System Design, 129–134.
Anchorage, Alaska.

W3C 2006, March. Web services description language
(WSDL) version 2.0 part 1: Core language. W3C Can-
didate Recommendation.

Weisel, E. W., M. D. Petty, and R. R. Mielke. 2004, April. A
survey of engineering approaches to composability. In
Fall Simulation Interoperability Workshop. Washington,
D.C.

Yilmaz, L. 2004, July–August. Verifying collaborative be-
havior in component-based devs models. Simulation 80
(7–8): 399–415.

Yilmaz, L., and T. I. Ören. 2006, September. Prospective
issues in simulation model composability: Basic con-
cepts to advance theory, methodology, and technology.
The MSIAC’s M& S Journal Online 6 (2): 1–7.

Zeigler, B. P. 1984. Multifacetted modelling and discrete
event simulation. Academic Press.
841
Zeigler, B. P., H. Praehofer, and T. G. Kim. 2000. Theory of
modeling and simulation. 2nd ed. London: Academic
Press.

ACKNOWLEDGMENTS

This research is supported by the German Research Founda-
tion (DFG) within the context of the projects CoSA (Com-
ponent based framework for an effective and efficient simu-
lation of agent systems) and MuSAMA (Multimodal Smart
Appliance Ensembles for Mobile Applications).

AUTHOR BIOGRAPHIES

MATHIAS RÖHL holds a MSc in Computer Science from
the University of Rostock. His research interests are on
component-based modeling and agent-oriented simulation.
He is currently a research scientist at the Modeling and Sim-
ulation Group at the University of Rostock. His e-mail ad-
dress is <mroehl@informatik.uni-rostock.de>.
Web address of his homepage is <www.informatik.
uni-rostock.de/˜mroehl>.

FLORIAN MARQUARDT holds a Diploma in computa-
tional visualistics from the University of Magdeburg. His
field of interesst are web services and smart environments.
He received a research fellowship of the German Research
Foundation (DFG) and is member of the Modeling and
Simulation Group at the University of Rostock. His email
adress is <fm@informatik.uni-rostock.de>

ADELINDE M. UHRMACHER is an Associate Profes-
sor at the Department of Computer Science at the Univer-
sity of Rostock and head of the Modeling and Simulation
Group. Her research interests are in modeling and sim-
ulation methodologies, particularly agent-oriented model-
ing and simulation and their applications. Her e-mail ad-
dress is <lin@informatik.uni-rostock.de> and
her Web page is <www.informatik.uni-rostock.
de/˜lin>.

mailto:mroehl@informatik.uni-rostock.de
http://www.informatik.uni-rostock.de/~mroehl
http://www.informatik.uni-rostock.de/~mroehl
mailto:fm@informatik.uni-rostock.de
mailto:lin@informatik.uni-rostock.de
http://www.informatik.uni-rostock.de/~lin
http://www.informatik.uni-rostock.de/~lin

	INTRODUCTION
	COMPOSITION OF SIMULATION MODELS
	Composition within Modeling Formalisms
	Composition Based on Distributed Simulation
	Validity of Compositions

	COMPOSITION OF WEB SERVICES
	Web Service Composition in General
	Workflow Methods
	Planning

	ADAPTING WEB SERVICE COMPOSITIONTECHNIQUES TO SIMULATION MODELS
	Adaptation at Lower Levels
	Aiming at the Conceptual Level and Validity
	Example

	CONCLUSION

