Proceedings of the 2007 Winter Simulation Conference

S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

COMPOSING SIMULATION MODELS USING INTERFACE DEFINITIONS BASED ON WEB SERVICE
DESCRIPTIONS

Mathias Rohl
Stefan Morgenstern

University of Rostock
Albert-Einstein-Str. 21
18059 Rostock, GERMANY

ABSTRACT

Using models in different contexts poses major integration
challenges, ranging from technical to conceptual levels.
Independently of each other developed model components
cannot be expected to coincide in all description details,
even if based on the same abstractions and assumptions.
Variations in interface descriptions of model components
have to be resolved. XML-based description languages from
the area of web services provide standardized means for
bridging diversities of implementations. This paper presents
an adaption of the Web Services Description Language
(WSDL) combined with XML Schema Definitions (XSD)
to the specific requirements of model components in the
area of discrete-event simulation. XML-based interface
descriptions are integrated into a general model component
architecture. Schema matching approaches provide the basis
for syntactical compatibility checking of interfaces at the
time of composition.

1 INTRODUCTION

To find model components and (re)use them in different
contexts is still an issue of ongoing research in the area of
modeling and simulation (Davis and Anderson 2004, Over-
street, Nance, and Balci 2002). To become interoperable,
variations have to be addressed at different levels ranging
from technical to conceptual ones (Tolk and Muguira 2003).

XML-based standards from the area of web services
and the semantic web are recognized to play a major role
for model integration (Tolk 2006). XML is particularly
well suited for importing and exporting models in standard
exchange formats and building repositories of model com-
ponents. However, current XML-based standards are de-
veloped for describing software implementations not model
components. An unaltered adoption of these standards to
the domain of modeling and simulation hinders to tap the
full potential of XML and its related technologies. Fur-

1-4244-1306-0/07/$25.00 ©2007 IEEE

815

thermore, integrating independently developed descriptions
automatically remains a challenging task even in the domain
of XML (Tolk and Diallo 2005).

The paper starts with an introduction of a basic archi-
tecture for model components based on XML and UML’s
Composite Structure Diagrams. It continues with a review
of XML-based standards for describing interfaces of dy-
namic web resources. Afterward these standards are adapted
to allow the description of model component interfaces.
Compatibility checking of these interfaces is presented and
related to schema matching approaches from the domain of
distributed databases.

2 AN ARCHITECTURE FOR MODEL
COMPONENTS

The Unified Modeling Language 2.0 (OMG 2005) provides
standardized means to define components and composition
structures. A slight adaption of UML constructs allows to use
them within the domain of discrete-event simulation (Rohl
2006). Same as software components, model components
can be described as comprising a set of ports, a set of parts,
a set of connectors, and a behavior.

2.1 Component Model

Components need to publicize their provisions and context
dependencies. UML 2.0 Composite Structure Diagram uses
ports to declare an entity’s points of interactions. Ports are
typed by interface definitions. Interfaces typically contain
method declarations in the realm of software engineering.
Within discrete-event modeling and simulation, models gen-
erally do not call methods of other models but exchange
events. By replacing method declaration of UML’s inter-
face definitions with event declarations, UML diagrams are
suited for defining model components and compositions
(Rohl 2006). A Port of a component refers to exactly one
interface specification by means of the interface’s identifier

Rohl and Morgenstern

Node

move:MovingEntity

user:
User

move:MovingEntity

protocol:

[] Protocol []
serv:ServiceProv

serv:ServiceReq

net:TransportReq

net:TransportReq

Figure 1: Composition of a node from a user and a protocol
component.

and a name attached to it. Using ports instead of direct
references to interfaces increases flexibility as multiple ports
can be typed by the same interface while carrying different
names, e.g. a component can exhibit a role multiple times
to different peers. A special flag indicates whether a port is
required for a component to function. If set to true the port
has to be connected to a compatible interface of another
component at the time of composition. If set to false, a
port is interpreted as providing a functionality.

For the purpose of composition a component refers to
other components as sub components and becomes itself a
composite component. Composite components support the
hierarchical, modular construction of models and thereby
facilitate the development of large models from smaller
ones.

Couplings connect ports of one model component to
compatible ports of another component. Communication
between models is only allowed along these connections.
Components may be connected in two different ways. First
it is possible to connect provided and required ports by a
so called assembly connector. In contrast, the delegation
connector connects two ports of the same type between a
component and one of its sub components. Within com-
positions all required ports of a component need to be
connected to a compatible counterpart, either by assembly
or by delegation connectors.

Figure 1 shows a simple example for using UML’s
composite structure diagram for specifying compositions of
model components. The example is taken from an ongoing
simulation study in the area of mobile ad-hoc networks (R6hl,
Konig-Ries, and Uhrmacher 2007). A network node is
defined as the composite component Node that exhibits
two ports and contains and connects two other components.
The user has a port named serv that exhibits an interface of
type ServiceReq. An assembly connector connects this
port to the serv port of the protocol component, which is
typed by ServiceProv. The composite component Node
delegates the contextual dependency of the protocol sub
component, indicated by a port of type TransportReq,
to its own net port. The move port of the user is also
delegated to an according port of Node.

Composite structure diagrams offer two kinds of ab-
stractions. First, for composition within a certain context a

816

component has to be connected via its ports. At the level
of a node, the User and Protocol component are black
boxes except their published ports. Besides the references
to the published ports of user and protocol, the node makes
no further assumptions about the implementation of both.
Compositions abstract from internal details of the parts
being composed. Second, component implementations of
connected components are hidden to each other. The knowl-
edge of components ends at its borders. A component can
interact with its environment only via its ports. Thereby,
direct dependencies between components and their contexts
of use are eliminated. The user and the protocol component
can be developed independently of each other.

2.2 XML Representation of Components

Decentralized development and usage of components in
the large depends on a flexible representation format and
integration with the world wide web. XML-based formats
provide this flexibility. Storage of UML specifications is
usually done with XMI. For the specification of model
components and composition structures, we developed an
XML Schema Definition (W3C 2004c) particularly suited
for the purpose of discrete-event simulation (Rohl 2006).
Schema Definitions mainly define the syntax of an XML
document and thereby provide the basis for rendering XML
documents syntactically valid or invalid.

An XML component definition, cf. Figure 2, com-
prises a unique identifier, a set of parameters, a reference
to a parameter mapper, a set of ports, a set of sub com-
ponents, a set of connections (between sub components),
and a reference to a model definition. The actual model
definition of a component has to be done with an additional
XML document. Component definitions refer to models by
unique identifiers, i.e. URIs. This makes component de-
scriptions independent from a concrete modeling formalism.
Of course, the modeling formalism used for defining the
model implementations must be able to refine the abstract,
public visible descriptions of a component. Elements of
type binding associate the declarations of a component’s
published ports to “real” ports of the actual model definition.

For providing customizable model components, a com-
ponent may exhibit a set of parameters. Internally, a com-
ponent definition refers to a parameter mapper, which will
evaluate set parameters and adapt the internal structure of
a component at the time of composition.

We first defined interfaces by hard-coded types, i.e. by
Java classes (Rohl 2006). Unfortunately, hard coded types
limit a decentralized development of components dramati-
cally. The programming language for executing the model
is prescribed by the interface definitions. Only very limited
variation is allowed for interfaces that become connected,
e.g. types that inherit from the same base class of a particular
programming language. Thereby, platform independence is

Rohl and Morgenstern

<?xml version="1.0" encoding="UTF-8" 7>
<component xmlns="http://www.../component”™>
<id>unihro/com/node/v2</id>

<param name="id” type="int” value="0"/>

<param name="radiorange” type="double”
value="250"/>

<mapper>unihro.com.node.v2.Mapper</mapper>

<port name="move” required="true”>
<type>MovingEntity /2.0</type>

</port>

<port name="net” required="true”>
<type>TransportReq/2.0</type>

</port>

<model>unihro/com/node/v2/model</model>

<composition>
<type>unihro/com/flooding/v2</type>
<name>protocol</name>
</composition>
<composition>
<type>unihro/com/user/v2</type>
<name>user</name>
</composition>
<connection fromComponent="protocol”
fromPort="serv” toComponent="user”
toPort="serv”/>
<connection fromComponent="this”
fromPort="net” toComponent="protocol”
toPort="net”/>
<connection fromComponent="this”
fromPort="move” toComponent="user”
toPort="move” />
</component>

Figure 2: The node component in XML.

lost. Furthermore, implemented types do not integrate well
with data bases, whereas completely XML-based interface
definitions can be queried flexibly.

3 XML-BASED DESCRIPTIONS OF WEB
SERVICES

Web Services (W3C 2004b) provide a general architecture
for distributed systems on the web. Central to the idea
of web services is the decoupling of service provider and
consumer. To this end, descriptions of services are encoded
in a standard format and publicized.

Web Service Description Language, abbreviated
WSDL, (W3C 2006b) is the standard to describe the syn-
tactic part of a web service’s interface. WSDL documents
define the interface of a web service as a set of abstract
operations. Each operation is intended to provide a certain
functionality. Type definitions form the basis for publishing
interfaces of a web service, i.e. they are used for declaring
operation signatures and error values. WSDL allows to de-
fine simple and complex types by means of XML schema
languages, e.g. W3C’s XML Schema Definitions (W3C
2004c¢).

817

<xs:schema
xmlns:xs="http: //www.w3.0rg/2001/XMLSchema”
targetNamespace="http: //www.ex .../ service/v2”>

<xs:complexType name="Call”>
<xs:choice>
<xs:element name="call”
type="ServiceSearchCall”/>
element name="call”
type="ServiceOfferCall”/>
:element name="call”
type="ServicelnvokeCall”/>
<xs:element name="call” type="LogInCall”/>
<xs:element name="call”
type="LogOutCall” />
</xs:choice>
</xs:complexType>

<XS:

<XSs

<xs:complexType name="ServiceSearchCall”>
<xs:sequence>
<xs:element name="inquirer”
type="Address” />
<xs:element name="serv” type="xs:string”/>
<xs:element name="id” type="xs:integer”/>
</xs:sequence>
</xs:complexType>

</xs:schema>

Figure 3: Types defined by XML schema definitions.

Technically, WSDL descriptions are XML documents
consisting of four main elements. The kind of messages to
be transmitted are defined within the types element. The
interface element holds a set of operations that will be
provided by the web service. The binding section defines
how the messages, defined in the interface section, are
exchanged. It assigns concrete message formats and trans-
mission protocols such that the service can be accessed.
The service element specifies where the service is located
and can be accessed.

The attractiveness of WSDL stems from its compat-
ibility to a number of related web standards that address
technical issues for communications on the one hand and
higher levels of interoperability on the other hand. With
respect to transmission details, WSDL-descriptions bind to
SOAP. As regards higher levels of interoperability, WSDL-
descriptions may form the basis for semantic interface def-
initions of web services, e.g. by means of OWL-S (OWL
Services Coalition 2003).

4 ADAPTING WSDL FOR MODEL COMPONENTS

The central idea of WSDL is suited for describing model
components as well. WSDL specifies abstract interfaces by
referring to type definitions made with a declarative and
standardized schema language.

Rohl and Morgenstern

<description xmlns="http: //www.../xmli”
xmlns:ser="http: //www.ex .../ service /v2”>

<id>ServiceReq/2.0</id>

<types>
<xs:schema
xmlns:xs="http: //www.w3.0rg/2001/XMLSchema”>
<xs:import
namespace="http: //.../ service/v2” />
</xs:schema>
</types>

<interface>

<eventport name="call” isIlnput="false”>
<type element="ser:Call”/>
</eventport>

<eventport name="response” islnput="true”>
<type element="ser:Response”/>
</eventport>
</interface>
</description>
Figure 4: Definition of port type ServiceReq/2 .0 based
on XSD imports.

4.1 Type Definitions

Defining types by means of XML schema languages is a
very flexible approach for abstracting from platform specific
details. Whether these types are used for messages transmit-
ted between web services or they define events that can be
exchanged between models, is irrelevant for the definitions
as such.

Figure 3 illustrates the definition of the complex type
Call. Such type definitions may be used by model definitions
to announce the type of events they are able to send and
receive.

While, the WSDL-approach for type definitions can be
used for model components without modifications, this is
not the case at the level of interface definitions.

4.2 Interface Definitions

Similar to UML, WSDL aims at describing the interface of
software implementations. Both WSDL and UML announce
points of interactions by means of interfaces. WSDL shares
also the method-oriented view on components, which is not
well suited for model components in the area of discrete-
event simulation. Furthermore, WSDL’s mechanisms for
exception handling is not very meaningful for interacting
model components. Models are preferably implemented in
a certain kind of modeling formalism, which usually does
not have facilities for exception handling.

Instead of letting an interface declare a set of operations,
in our adaption of WSDL an interface definition comprises
a set of event port declarations that announce the exchange
of typed events. Events may flow in two directions. The

818

special attribute isInput indicates whether a port declaration
denotes a potential flow of events toward an entity, or it
declares a port that is intended to emit events from an entity.

4.3 Usage of Interface Descriptions

UML and WSDL agree on the abstraction from implemen-
tations by means of interface specifications that are ex-
hibited by communication endpoints. Compared to UML,
WSDL benefits from rooting its interface definitions in XML
Schema languages and URI. Thereby, a type system can be
established decentralized on a global scope.

Nevertheless, UML’s support for hierarchical composi-
tion structures, has no counterpart in WSDL. For modeling
and simulation purposes, modular hierarchical modeling is
an important feature. WSDL defines the syntactic part of
an implementation’s interface in a single document. In our
component architecture based on UML’s composite struc-
tures, communication endpoints are already contained in the
top-level description document for a component (cf. Figure
2).

Model components are usually not directly executable
pieces of software, but become simulated by a certain simu-
lation engine. Therefor, our model components use binding
elements not to define the technical details of transmission
but relate abstract event ports of an interface definition to
event ports of a model definition.

WSDL’s types and interface concepts provide descrip-
tion elements complementary to the ones pertaining to
UML’s composite structures. Only the type of single ports
has to be defined by WSDL-like descriptions. Thus, we use
pruned WSDL-like descriptions for specifying interfaces
that can be used within composite structures to type com-
munication endpoints, i.e. ports. The glue between both
types of documents are URIs. That is, a port declaration
of a component definition refers to an interface declaration
via a URIL.

An example for the adaption of WSDL interfaces is
listed in Figure 4. The document imports the XSD-types
defined above. Based on these types the interface description
declares two ports: one for receiving events of type Call
and one for sending Response events.

5 COMPATIBILITY OF INTERFACES

The flexibility of XML-based interface descriptions poses
a challenge for composition. Independently of each other
developed interface definitions usually induce syntactic and
semantic variations. Names of elements or attributes and
the sequence of elements may vary between interface defi-
nitions. These variations have to be resolved at the time of
composition.

Rohl and Morgenstern

<?xml version="1.0"7>

<xs:schema xmlns:xs="http: //www.w3.0rg/2001/
XMLSchema”

xmlns:sawsdl="http: //www.w3.0rg/2002/ws/sawsdl/
spec/sawsdl#7>

<xs:complexType name="Adress”

sawsdl:modelReference="http: //www. example . org/
IPAddress”™>

<xs:attribute
<xs:attribute
<xs:attribute name="p3”
<xs:attribute name="p4”
</xs:complexType>

</xs:schema>

name="p1l”
name="p2"

type="xs:integer”/>
type="xs:integer” />
type="xs:integer”/>
type="xs:integer” />

Figure 5: Type definition enriched with semantic annota-
tions.

5.1 Matching

Within our component architecture a composition is consid-
ered to be sound, if all required ports of all sub components
are connected to compatible counterparts. For each con-
nection, compatibility has to be checked between two con-
crete interface types. As interface types are defined within
schemas, compatibility checking can be based on schema
matching approaches. Two types of two different schemes
can be judged compatible, if a mapping between these
two types can be established. Schema matching is a basic
problem in many database and integration applications (Do,
Melnik, and Rahm 2003). With schema matching, com-
patibility can be weaken from syntactic equivalence (Walsh
2004) of interface types to a less restrictive relation. It is
usually carried out semi-automatically, since fully automatic
solutions are usually not possible and manual matching of
data by domain experts is time-consuming and tedious.

There exist different approaches to compare schemas
in practice. Simple matchers compare two schema elements
only with respect to one property. Examples are simple name
matchers, phonetic matchers, structural similarity matcher,
or synonym matchers based on dictionaries. Simple stan-
dalone matchers are too limited for practical matching tasks.
Instead, powerful matching relies on a set of different (sim-
ple) matcher modules that can be combined on demand (Do
and Rahm 2002). A modular matching architecture turns
out to be especially beneficial for the modeling and simu-
lation domain. As a simulation model may contain a huge
number of different instances from a limited set of model
component definitions, the integration of a matcher, which
reuses previous matching results, saves a lot of checking
effort.

5.2 Integrating Semantics
Syntactic descriptions provide information about the struc-

ture of input and output messages of an interface. Schema
matching approaches try to deal with variations of type

819

check reuse

[already matched]

[not yet matched]

transform

evaluate

store for
reuse

Figure 6: Matching activities.

return result

definitions. To really disambiguate descriptions, e.g. in the
case of homonyms, semantic information are needed.

Semantic Annotations for WSDL, abbreviated
SAWSDL, (W3C 2006a) allow to add semantic information
to WSDL and XML Schema definitions. Semantics are in-
troduces by URI references to ontological definitions, e.g.
made with the Web Ontology Language (W3C 2004a).

Figure 5 shows the definition of the type Address that
was used in the definition of type ServiceSearchCall
above (cf. Figure 3). Additionally to the schematic definition
of an Address, the modelReference attribute states
that an IP-Address is meant.

With SAWSDL syntactic differences in type defini-
tions can be addressed explicitly by optionally referencing
aschema mapping. However, the schema matching approach
presented above requires no explicit mapping, as it is able to
generate the mapping function from the matching process.
Thereby, syntactic compatibility checking provides the de-
tails of how interfaces are made compatible, after semantic
checkers have decided whether they are compatibility.

5.3 Tool Support

Figure 6 shows the activities as carried out by the match
engine. First, it checks whether the types under consideration
were already checked. If not, they are transformed to an
internal representation, which basically is an attributed,
directed acyclic graph (cf. Figure 7). Matching is then
carried out on these type trees with a set of matchers made
known to the tool. The overall outcome of matching is
determined based on configuration. Table 1 shows a possible
configuration for the match engine. It defines which matcher
to use for which type information. Furthermore it assigns
weights to the atomic matchings and how they are going to
be combined. Finally, the result is compared to a constant

Rohl and Morgenstern

name=ServiceReq
type=http://...ServiceReq/2.0

name=serviceSearchCall name=logoffCall
type= ...ServiceSearchCall type=http://...LogoffCall

canBeChosen=from1To1 canBeChosen=from1To1

| —

name=inquirer name=id name=serv

type= ...net/Address type= ...:integer | | type=.../XMLSchema:string
name=p1 name=p1 name=p1 name=p1

type= ..:integer || type= ..:integer | |type= ..:integer type= ...:integer

Figure 7: Internal representation of type ServiceRedq.

Table 1: Configuration for matching and evaluation.

Information Matcher Weight Mode
ModelRef Equivalence 0.3 -
PathName TriGram 0.15 -
PathName EditDistance ~ 0.15 -
TypeName TriGram 0.1 -
TypeName EditDistance 0.1 -

Y leave types EditDistance 0.1 avg
V children types EditDistance 0.1 avg

value, expressing the minimum acceptable matching value,
and stored for reuse.

Both the matcher 7riGram and EditDistance referenced
in Table 1 compare strings. EditDistance essentially calcu-
lates the Levenshtein distance. TriGram calculates the ratio
between the number of equal character sequences of length
three to the number of possible equal sequences.

Obviously, matching will only be successful if types
refer to the same semantic concept and are syntactically
similar. The kind of acceptable syntactic similarity can
be varied by plugging different kind of matchers into the
engine and using different combination modes. The degree
of similarity may be configured with a global constant.
Furthermore, the matching process can be supported by
providing additional knowledge to it, i.e. known matches
can be specified in a special configuration file.

Spin-off producst of the compatibility checking process
are mappings between compatible types. For simulation-
oriented composition approaches these mappings can be
used to generated run-time adapters for communication
between involved components. In the case of model-oriented
composition approaches (Rohl and Uhrmacher 2006) the
mappings can be used to generate message implemenations.

6 RELATED WORK

The presented approach for defining components and com-
positions orientates on UML’s 2.0 Composite Structure Di-
agrams (OMG 2005). Interface type definitions draw their

820

basic ingredients from WSDL (W3C 2006c). Both provide
a method-oriented approach to interface definitions. Re-
cently, UML’s limitation of a purely operation-centric style
was addressed by deriving a language, which aims at sys-
tems engineering. SysML (OMG 2006) provides flow ports
in addition to standard method-oriented ports. In contrast to
SysML, this paper combines elements of UML and WSDL
for the purpose of defining model components and compo-
sitions. Selected concepts were adapted and integrated into
a component framework for discrete-event simulation.

The adaption of web service standards and technolo-
gies to the domain of modeling and simulation has been
done previously (Pullen et al. 2005, Moller and Dahlin
2006). These approaches adapt web service techniques in
a rather direct manner at the software level. Models are
wrapped by simulation engines and together treated as exe-
cutable software entities, technically integrated via runtime
infrastructure like HLA (IEEE 2000). We propose to adapt
selected concepts from the area of web services technologies
to models, not simulations.

Our approach is close to Gustavson and Chase (2004)
in exploiting the flexibility of XML together with XSD
and striving for platform independent specifications. Both
approaches suggest to transform platform independent XML
representations into platform specific models. While BOMs
focus on HLA compliance, the approach presented here puts
a strong emphasize on component definitions close to UML.

In the field of (distributed) data bases it is a known
problem to find correspondences between elements of differ-
ent data sources. Structure of data is prescribed by schema
languages and the problem of finding correspondences be-
tween data schemas referred to as schema matching (Do
and Rahm 2002). The challenge induced by differences in
data type descriptions is also mentioned in the context of
modeling and simulation (Tolk and Diallo 2005). This paper
provides a concrete strategy for dealing with variations in
interface descriptions based on schema matching and seman-
tic annotations (W3C 2006a). It focusses on compatibility
matching at the syntactical level and thereby complements
ontology-based matchmaking approaches, (e.g. Yilmaz and
Paspuleti 2005).

7 CONCLUSION

Component-based modeling faces the challenge to integrate
descriptions that show syntactic and semantic deviations.
Standards and technologies from the area of software de-
velopment and web services provide a solid basis for the
modeling and simulation domain, if adapted cautiously.
The presented approach combines complementary spec-
ification elements of UML and WSDL to allow a decentral-
ized development of model components based on declarative
interface definition. UML’s hierarchical composition struc-
tures are enriched with type definitions inspired by WSDL.

Rohl and Morgenstern

The flexibility of the approach stems from the use of XML
Schema languages for defining and referencing types and
interfaces.

XML-based interface descriptions decouple the devel-
opment of components. Models can be developed inde-
pendently of each other and be equipped with their own
interface definition. Component developers are not forced
to build their component definitions on the base of cen-
tral type repositories. Instead, references can be limited to
(decentralized) ontology definitions.

At the time of composition syntactical variations have
to be reflected in compatibility checking procedures. The
important question is, when to judge differences in interface
definitions as neglect-able and when as hazardous. Schema
matching approaches and semantic annotations provide an
automatable answer to this. Both integrate well with the
proposed component architecture.

The presented component specifications are currently
used for a simulation study in the area of mobile ad-hoc
networks (Rohl, Konig-Ries, and Uhrmacher 2007). The
until to now used Java-typed interface descriptions shall be
replaced with schema-defined types. The focus of future
work is to generate Java implementations for interface types
from type mappings.

REFERENCES

Davis, P. K., and R. H. Anderson. 2004, April. Improving the
composability of DoD models and simulations. JDMS 1
(1): 5-17.

Do, H. H., S. Melnik, and E. Rahm. 2003. Comparison of
schema matching evaluations. In Revised Papers from
the NODe 2002 Web and Database-Related Workshops
on Web, Web-Services, and Database Systems,221-237.
London, UK: Springer-Verlag.

Do, H. H,, and E. Rahm. 2002. COMA - a system for
flexible combination of schema matching approaches.
In VLDB 2002, 610-621.

Gustavson, P., and T. Chase. 2004. Using XML and BOMs
to rapidly compose simulations and simulation environ-
ments. In Proceedings of the 2004 Winter Simulation
Conference, 1467-1475.

IEEE 2000, September. Standard for modeling and sim-
ulation (M& S) High Level Architecture (HLA) —
Framework and Rules. Document 1516-2000.

Moller, B., and C. Dahlin. 2006, June. A first look at the
HLA evolved web service api. In Proceedings of 2006
Euro Simulation Interoperability Workshop. Simulation
Interoperability Standards Organization. 06E-SIW-061.

OMG 2005, July. UML superstructure specification version
2.0 (document formal/05-07-04). <www.omg.org/
cgi-bin/doc?formal/05-07-04>.

OMG 2006, May. SysML final adopted specification. <www .
omg.org/cgi-bin/doc?ptc/06-05-04>.

821

Overstreet, C. M., R. E. Nance, and O. Balci. 2002. Issues
in enhancing model reuse. In International Conference
on Grand Challenges for Modeling and Simulation,
Jan. 27-31. San Antonio, Texas, USA.

OWL Services Coalition 2003. OWL-S: Semantic markup
for web services. <www.daml.org/services/
owl-s/1.0/owl-s.html>.

Pullen, J. M., R. Brunton, D. Brutzman, D. Drake, M. Hieb,
K. L. Morse, and A. Tolk. 2005. Using web services to
integrate heterogeneous simulations in a grid environ-
ment. Future Generation Computer Systems 21:97-106.

Rohl, M. 2006, May 28th-31th. Platform independent spec-
ification of simulation model components. In ECMS
2006, 220-225. Bonn, Sankt Augustin, Germany.

Rohl, M., B. Konig-Ries, and A. M. Uhrmacher. 2007.
An experimental frame for evaluating service trading
in mobile ad-hoc networks. In Mobilitit und Mobile
Informationssysteme (MMS 2007), Volume 104 of Lect.
Notes Inform., 37-48.

Rohl, M., and A. M. Uhrmacher. 2006. Composing simula-
tions from XML-specified model components. In Pro-
ceedings of the Winter Simulation Conference, 1083—
1090: ACM.

Tolk, A. 2006. What comes after the semantic web — PADS
implications for the dynamic web. In Proceedings of
the 20th Workshop on Principles of Advanced and
Distributed Simulation (PADS’006).

Tolk, A., and S. Y. Diallo. 2005. Model-based data engi-
neering for web services. IEEE Internet Computing 9
4): 65-70.

Tolk, A., and J. Muguira. 2003, September. The level of
conceptual interoperability model. Fall Simulation In-
teroperability Workshop (SISO), Orlando.

W3C 2004a. OWL Web Ontology Language:
Overview. <www.w3.org/TR/2004/
REC-owl-features—-20040210/>. Ww3C

Recommendation 10 February 2004.

W3C 2004b. Web services architecture. <www.w3.org/
TR/2004/NOTE-ws—arch-20040211/>. W3C
Working Group Note 11 February 2004.

W3C 2004c, October. XML Schema part 0: Primer
second edition. <www.w3.o0rg/TR/2004/
REC-xmlschema-0-20041028/>. W3C Recom-
mendation 28 October 2004.

W3C 2006a. Semantic annotations for WSDL. <www . w3 .
org/TR/2006/WD-sawsd1-20060928>. W3C
Working Draft 28 September 2006.

W3C 2006b. Web services description language (WSDL)
version 2.0 part O: Primer. <www.w3.org/TR/
2006/CR-wsdl20-primer-20060327>. W3C
Candidate Recommendation 27 March 2006.

W3C 2006c. Web services description language (WSDL)
version 2.0 part 1: Core language. <www.w3.org/

http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?formal/05-07-04
http://www.omg.org/cgi-bin/doc?ptc/06-05-04
http://www.omg.org/cgi-bin/doc?ptc/06-05-04
http://www.daml.org/services/owl-s/1.0/owl-s.html
http://www.daml.org/services/owl-s/1.0/owl-s.html
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-0-20041028/
http://www.w3.org/TR/2006/WD-sawsdl-20060928/
http://www.w3.org/TR/2006/WD-sawsdl-20060928/
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327
http://www.w3.org/TR/2006/CR-wsdl20-primer-20060327
http://www.w3.org/TR/2006/CR-wsdl20-20060327
http://www.w3.org/TR/2006/CR-wsdl20-20060327

Rohl and Morgenstern

TR/2006/CR-wsd120-20060327>. W3C Candi-
date Recommendation 27 March 2006.

Walsh, N. 2004, May. Infoset equality. <norman.walsh.
name/2004/05/19/infoset—equal>. From the
Technical Plenary, a URI that got lost: a quick “off-
the-cuff” definition for XML chunk equality based on
the Infoset.

Yilmaz, L., and S. Paspuleti. 2005, July. Toward a meta-
level framework for agent-supported interoperation of
defense simulations. JDMS 2 (3): 161-175.

ACKNOWLEDGMENTS

This research is supported by the DFG (German Research
Foundation)

AUTHOR BIOGRAPHIES

MATHIAS ROHL holds a MSc in Computer Science from
the University of Rostock. His research interests are on
component-based modeling and agent-oriented simulation.
He is currently a research scientist at the Modeling and Sim-
ulation Group at the University of Rostock. His e-mail ad-
dressis <mroehl@informatik.uni-rostock.de>.
Web address of his homepage is <www.informatik.
uni-rostock.de/~mroehl>.

STEFAN MORGENSTERN is currently finishing his
Diploma in Computer Science at the University of Ro-
stock. His email adress is <stefan.morgenstern@
informatik.uni-rostock.de>

822

http://www.w3.org/TR/2006/CR-wsdl20-20060327
http://norman.walsh.name/2004/05/19/infoset-equal
http://norman.walsh.name/2004/05/19/infoset-equal
mailto:mroehl@informatik.uni-rostock.de
http://www.informatik.uni-rostock.de/~mroehl
http://www.informatik.uni-rostock.de/~mroehl
mailto:stefan.morgenstern@informatik.uni-rostock.de
mailto:stefan.morgenstern@informatik.uni-rostock.de

	INTRODUCTION
	AN ARCHITECTURE FOR MODELCOMPONENTS
	Component Model
	XML Representation of Components

	XML-BASED DESCRIPTIONS OF WEBSERVICES
	ADAPTING WSDL FOR MODEL COMPONENTS
	Type Definitions
	Interface Definitions
	Usage of Interface Descriptions

	COMPATIBILITY OF INTERFACES
	Matching
	Integrating Semantics
	Tool Support

	RELATED WORK
	CONCLUSION

