
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

BUILDING COMPOSABLE BRIDGES BETWEEN THE CONCEPTUAL SPACE AND

 THE IMPLEMENTATION SPACE

Paul Gustavson

Tram Chase

SimVentions, Inc.
11905 Bowman Drive, Suite 502

Fredericksburg, VA 22408, U.S.A.

ABSTRACT

Often times the process and effort in building interoperable
simulations and applications can be arduous. Invariably the
difficulty is in understanding what is intended. This paper
introduces the notion of composable bridges as a means to
help transition abstract ideas or concepts into concrete im-
plementations.
 We examine the key elements to achieve composabil-
ity, which includes the direction provided by a process, the
importance of a conceptual model, the use of patterns to
help characterize reusable aspects of a design, the impor-
tance of having good discovery metadata and well-defined
interfaces that can be implemented, the use of components,
and the practical use of libraries and tools. We suggest that
of all these elements a properly documented conceptual
model provides the basis for formulating a composable
bridge, and that things like patterns, discovery metadata,
and interfaces play a key role. We take a look at specific
standard known as the Base Object Model (BOM) and ex-
amine how it provides a means to define a composable
bridge. We explore how BOMs, in this capacity, can be
aggregated and used (and reused) to support the creation of
concrete implementations. We also explore how such com-
posability helps to achieve various levels of interoperabil-
ity.

1 INTRODUCTION

Whether we are architects, developers, analysts, educators,
or managers, composability is a desire we all seem to
share. There seems to be an insatiable need to assemble
capabilities and develop meaningful functionality from the
knowledge, tools, standards and components that we have
available to us.

 For some, the desire to create and compose is a
trait we have had since we were young (see Figure 1). And
for many, it has never left us. We have simply transferred
this early desire to the context of our work as we pursue
8041-4244-1306-0/07/$25.00 ©2007 IEEE
the creation of innovative things such as models, software
applications, distributed simulations, complex systems,
scenarios, games, stories, virtual experiences or new found
realities.

Figure 1: Composability.

Composability is defined by the DoD M&S Master

Plan as “the ability to rapidly select and assemble compo-
nents to construct meaningful simulation systems to satisfy
specific user requirements.”
 There are three aspects of composability that this defi-
nition identifies:

1. The selection and use of components
2. The construction of meaningful applications, and
3. The satisfaction of specific user requirements

We will briefly explore each of these.

1.1 The Selection and Use of Components

This first aspect of composability can be compared to the
Lego® mindset as illustrated in Figure 2 in which blocks
selected from the same source (i.e., Lego® bins) can be
used and reused to construct various creations. The Lego®
bricks serve as components.

Gustavson and Chase

Figure 2: Composability represented using Lego® bricks.

1.2 The Construction of Meaningful Applications

Composability all starts as an “idea” in the conceptual
space. For a child, such ideas start as a glimmer in the
mind’s eye; a mental picture of something that they could
potentially create from the bricks that lie in front of them.
The bricks are only an enabler, the fuel, for bringing to life
what starts out in the imagination. However, during the
process of building they may continue to formulate their
conceptual model mentally, until, at last, a meaningful
physical creation is complete. This is where, for a child,
the magic happens; when their idea has become something
real and tangible. This is where the conceptual space meets
the implementation space. The question though, is does it
satisfy what was intended?

1.3 The Satisfaction of Specific User Requirements

Once a Lego® composition is complete, a typical child
will revel in their creation. Eyeing it as if it were a prize;
satisfied in what they have built but only if it meets their
desired requirements.
 What happens for a child is not much different than
what happens in the workplace. Ideas are formulated some-
times captured on paper, as diagrams via a tool, or as draw-
ings on a white board. And if the passion and drive are
there, the ideas are churned and worked until a satisfying
product is conceived, whether it be a software application,
a PowerPoint, a proposal, or new system or simulation. But
what we create truly isn’t satisfying unless it has met our
requirements.
 Thus, there is a point for any successful project where
what has been implemented is compared to what was con-
ceptualized. Consider the questions that are pondered at the
conclusion of a project, especially large projects:

• How did it go?
• Did we meet all our requirements?
• Was the sponsor happy with the results?

It’s intriguing that we often wait to ask these questions

until after a project is completed. This may be a telltale
sign that that those involved in the project are perhaps not
communicating early enough regarding what is intended
(i.e., the concept) and they are not subsequently correlating
those intentions with what they are building or using (e.g.,
components) in their effort to realize an implementation.
What is needed, therefore, is a means to assist in bridging

80
well defined concepts with what is ultimately being im-
plemented. Considering that the process and effort in
building interoperable simulations and applications can be
arduous, this need for bridging the conceptual plane to the
implementation plane through composability is important.

2 FORMULATING COMPOSABLE BRIDGES

Typically, a bridge is defined as “a structure spanning and
providing passage over a gap or barrier.” In music it is de-
fined as “a transitional passage connecting two subjects or
movements” (Dictionary.com). And in the context of de-
velopment, a bridge should be defined as “a means to span
and provide a way to connect an idea (i.e., initial concept)
to something implementable.” This idea is conveyed in
Figure 3.

Concept Implementation

Developers,
Artists,
Builders

Sponsors,
Architects

Concept Implementation

Developers,
Artists,
Builders

Sponsors,
Architects

Figure 3: The development bridge.

 For projects that fail, it’s easy to determine that a
bridge encouraging communication among stakeholders
was never properly formulated. It fell short. But for pro-
jects that succeed, a bridge is formed, which makes the
journey however long or short, possible to bare. In fact,
what we all want for any project is to be able to bridge
quickly and easily from initial concept to implementation.
The question is how can that best be done?
 What if such bridges could be defined structurally as
means to convey a concept that can be mapped to one or
more potential implementations? What if the common de-
sired behaviors (understood first conceptually) could be
individually defined, described and cataloged providing a
means to assist in communicating an idea that can be
bridged to something implementable? And what if such
bridges could be reused and aggregated to formulate the
scaffolding needed for larger project specific bridges?
Wouldn’t such use of bridges increase our likelihood for
effective communication among stakeholders and for
achieving successful creation of meaningful applications?
 Our focus is to explore how to begin building and us-
ing composable bridges; bridges which gap ideas formu-
lated in the conceptual space with what can be realized in
the implementation space. We postulate that the conceptual
model provides the basis for a composable bridge. And we
consider what standards and various techniques could be
applied to better achieve composability and interoperability
within the M&S domain.
5

Gustavson and Chase

2.1 Why the Conceptual Model is Key
If a survey could be taken asking simulation professionals
what the key elements are for composing successful simu-
lations and interoperable applications, we might expect the
following answers:

• Following a process is important
• Requirements and good design are crucial
• The use of components is what helps expedite

development
• Having the right tools is key
• Complying to standards ensures success
• Effective communication is what it takes.

This is a compelling list, and it is hard to argue the merit of
any of these items for developing and integrating simula-
tions, especially interoperable simulations. However, there
is one other element often missed that is perhaps central to
all of these others, and that is that best practices encourage
the production of a conceptual model. For example, look at
the typical process prescribed for M&S development,
which is illustrated in Figure 4. This process identifies the
need for requirements within Step 1, but closely examine
what’s identified in Step 2. Notice this step is identified as
“Perform Conceptual Analysis”? This step precedes De-
sign and Development; Steps 3 and 4.

Define
Objectives

1

Perform
Conceptual

Analysis

2

Design

3

Develop

4

Define
Objectives

1

Define
Objectives

1

Perform
Conceptual

Analysis

2

Perform
Conceptual

Analysis

2

Design

3

Design

3

Develop

4

Develop

4

Define
Objectives

1

Perform
Conceptual

Analysis

2

Design

3

Develop

4

Define
Objectives

1

Define
Objectives

1

Perform
Conceptual

Analysis

2

Perform
Conceptual

Analysis

2

Design

3

Design

3

Develop

4

Develop

4

Figure 4: Common development process.

 Interestingly enough the number one most common
development issue is inadequate requirements and design
(Gustavson 2003). In other words, most development
shops are completely missing Step 2 of the process identi-
fied in Figure 4. The impact of missing Step 2 is that it of-
ten results in miscommunication and misunderstanding
among stakeholders, limiting the success of a project.
 Step 2’s goal is to produce conceptual models. Con-
ceptual models identify what needs to be represented, and
how things are supposed to behave. It's this artifact that
helps bridge the communication gap between multiple
stakeholders, providing a common framework for collabo-
ration and understanding. Such understanding leads to bet-
ter composability, and therefore better software and simu-
lations.
 Additionally, conceptual models need to be leveraged
throughout development. In other words, we need to keep
coming back to it, for it ties what it is we intend to build
(Objectives), with what we are designing and developing.
It creates a bridge.

80
Consider this, if the conceptual model is not carried
forward – applied, understood, visualized, and used at the
various stages of development – then how will it be known
that the objectives have been met and satisfied?

2.2 Discovering Patterns

The question that should then be asked is, “what should we
look for when we are trying to identify and define our con-
ceptual models?” This is where the concept of patterns
comes into play. Patterns result in a solution you can reuse
for supporting a common problem or need.
 Patterns are nothing really new. Noted author and pro-
fessor Christopher Alexander first pioneered the concept of
patterns years ago when he focused on aspects for improv-
ing upon the way building projects are designed and engi-
neered. In his landmark book titled “The Timeless Way of
Building” he describes the concept as follows:

“Each pattern describes a problem which occurs
over and over again in our environment, and then
describes the core of the solution to that problem,
in such a way that you can use this solution a mil-
lion times over, without ever doing it the same
way twice.”

 Within the software engineering realm many have also
embraced Alexander’s pattern concept, as evidenced by the
plethora of pattern books that are available. We find that in
software engineering patterns are being applied to support
analysis, design and aid in refactoring. Within the M&S
arena we are seeing the same type of opportunity for pat-
terns.
 Consider the overall concept of Patterns. A pattern be-
havior is something that occurs with consistency, which is
recognized and reproduced. Fowler describes patterns as
“an idea that has been useful in one practical context and
will probably be useful in others.” In short, our best in-
vestments are in patterns. And patterns are key aspect of
our conceptual model. Some common patterns that are em-
ployed within military M&S scenarios are depicted in Fig-
ures 5 and 6.

Pattern of InterplayPattern of Interplay

pattern actionspattern actions

Figure 5: Weapon’s effect.

6

Gustavson and Chase

 Typically patterns are discovered rather than invented.
In this example, we unveil a common pattern that has been
reused with great frequency in the DIS and HLA commu-
nity. Two entities are depicted. One that fires at another.
Of interest is the pattern associated to this Weapon’s Effect
behavior. When the firing entity propels an ordnance on
the target, two reciprocal actions will typically occur. The
Firing Entity, within a simulation, will then update the po-
sition of the projectile and then indicate when the munition
has detonated. And then, upon detonation, the target is then
responsible for sharing its damage state so that the firing
entity is aware of the target’s condition. This particular pat-
tern illustrated in Figure 5 is also decorated with the vari-
ous states associated to each type. It can be seen how an
action can transition a state change upon each entity. This
aspect of States of an entity, which is known as a State
Machine, is also a key aspect of a conceptual model.

Jammer
(Originator)

Radar

Threat Detected in
Range (Msg)

Threat /
Target

Emits
Reflects

Detect

Jam

DetectionDetection

Jamming Jamming

Pattern of Interplay
Figure 6: Jamming / detection patterns.

 In the example shown in Figure 6, two patterns are re-
vealed. We could conceivably use the “Detection” pattern
for other purposes besides just “Jamming” such as “Vec-
toring Interceptors.” What we learned from this example is
that the best way to discover a pattern is to perform a con-
ceptual analysis on the problem space. Otherwise, rather
than two patterns being revealed, we would have walked
away with a single pattern which was fairly bulky, special-
ized, with limited reuse.

2.3 Identifying Interfaces

In achieving composability though, it’s not enough to dis-
cover and document patterns. Step 3 of the process identi-
fies that Design is an important facet to the development
effort. A big part of design is to focus on the “interface” of
what will be provided and what should be supported by an
implementation whether that resulting implementation may
be a piece of hardware, software, or a service.
 Within the software and simulation engineering field
an interface is often described in terms of class structures

80
that collectively define the inherent capabilities of an ap-
plication, component or service.
 Bjarnes Stroustrup, who was responsible for the crea-
tion of the C++ language, shares the following insight re-
garding interfaces:

“…it is essential for the software industry's health that
key interfaces be well-specified and publicly avail-
able.” - Bjarne Stroustrup

 Interfaces provide a contract of what is available and
accessible, and provides a framework to resulting imple-
mentations (i.e., software components, simulations) that
support what’s described by the metadata and defined by
the interface.

2.4 Applying Components

Once a desired interface is known, the logical progression
is to look for available components that support the con-
ceptual model. If candidate components are not found, then
the framework for developing a new component is already
at hand.
 The DoD M&S composability definition, which was
described previously, referred to this concept of compo-
nents. Components in the M&S world, of course, are func-
tionally different than a Lego® brick, but the goal is the
same. Consider the definition for an M&S component.

 “Reusable building blocks which have a known
set of inputs and provide expected output behav-
ior, but the implementation details may be hidden.
Such components are useful for constructing
simulations and/or providing functionality for
simulation systems.” – COI M&S Metadata Focus
Group

 The unique thing with a Lego® brick is that it is clear
how to snap it into other bricks. The inputs and expected
outputs are known. We don’t really care about the specific
implementation aspects of the brick itself; whether it’s
plastic, hollow, or solid. But we do care about function and
form of each brick. Therefore we look for a brick that satis-
fies a part of our pattern, and can adhere to our interfaces.
For example we look for one that has the number of nubs
that we desire to complete some portion of what we intend
to create. When the brick we desire is found, there should
be enough information inherent in the brick for us to know
how it connects with other bricks.

We recognize that Lego® bricks are a fairly simplified
example of composability. In other words, it is easy to pick
up a brick and know how it can be used. Therefore, we
dare not trivialize the effort associated to M&S compos-
ability as being as simple as Lego® construction. M&S
components don’t reflect that intuitiveness that Lego®
7

Gustavson and Chase

bricks inherently have. But what Lego® bricks and M&S
components do share in common is that the inputs and out-
put behavior of a component should be known; that is its
interface should be exposed. This allows us to understand
the functionality a component provides in potentially ful-
filling a concept or objective. In this way a component
provides a means to satisfy a composable bridge.

2.5 Leveraging Metadata

Another key concept to help optimize composability and
reuse is to ensure the discovery of useful conceptual mod-
els, patterns, or supporting components. If the components
we are thumbing through aren’t described in a manner the
reveals its purpose then there is reason to be concerned.
Completing the bridge from concept to implementation
will be an arduous task.
 This is where the concept of metadata comes into play.
Metadata is data about data. It labels and describe what
something is. Metadata is formally defined as follows:

Metadata is “structured, encoded data that de-
scribe characteristics of information-bearing en-
tities to aid in the identification, discovery, as-
sessment, and management of the described
entities” (Gustavson 2003).

We want and need to use metadata to catalog patterns, in-
terfaces and components.

3 PUTTING IT ALL TOGETHER

Figure 7 provides a graphical summarization of the key
concepts we have identified.

Process

Libraries
Objectives

Conceptual
models

Software

Test
Plan

Execution
Results

Code

Tools

Composition

Tools

Patterns

M
ap

pi
ng

Metadata

Interfaces

Catalog

Capture

Ca
pt

ur
e

Capture

Classes

Construct

Create

Co
nf

ig
ur

eCodify Com
po

se

Craft

Components

Code Consum
e

Collaborate

What structure
allows us to
describe / capture
these things?

Figure 7: Summary of key concepts.

 The presentation form of this graphic, which in a for-
mal setting includes animation, helps in the story telling. It
starts off depicting what is common today. Software pro-
duced from our process is supported by tools and is often
maintained by libraries. Users of such tools build software

80
assets and access and manage software assets via libraries.
These tools also help us leverage the various software as-
sets to compose new applications / capabilities.
 What is often lacking is the metadata and conceptual
models, which provide a means to catalog and describe the
anticipated behavior which is behind such software or
simulation assets. Interfaces are also needed to properly
reuse and integrate such software and simulation assets
(i.e., components). The ability to map between our concep-
tual models and the various interfaces provides a means to
carry forward our conceptual model in our software
thereby increasing the likelihood of it being reused to sup-
port composability.
 The combination of the metadata, patterns, interfaces,
and how the interfaces and patterns elements map helps to
fulfill the core desire we asked earlier:

What if [reusable] bridges could be defined struc-
turally as means to convey a concept that can be
mapped to one or more potential implementa-
tions?

We now have identified a framework to support this

idea. The question now is simply the following:

What common structure allows us to represent
well understood, reusable assets?

 In order to answer this question, it is important to un-
derstand what the characteristics are of this desired com-
mon structure so we know what we are looking for. Visibly
we can see in Figure 6 that we need the following:

• discovery metadata,
• patterns,
• mappings of entity and events used for a pattern

to
• interfaces that describe the specific class struc-

tures of what will be modeled, and shared.

But collectively what does this all entail?
 Well, Christopher Alexander, who fathered the con-
cept of patterns even before software and simulations were
even an item of interest, expressed the following ideas per-
taining to desired characteristics. He shares, and we para-
phrase, that a pattern should support the following charac-
teristics:

• Identify and name the common problems in a

field of interest.
• Describe the key characteristics of effective solu-

tions for meeting some stated goal.
• Help the designer move from problem to problem

in a logical way.
8

Gustavson and Chase

• Allow for many different paths through the design

process.

 These characteristics need to be considered when iden-
tifying a common structure to represent well understood
and reusable assets; assets which are intended to be used as
means to formulate reusable and composable bridges,
which expedite the development process.

4 CHOOSING A COMMON STRUCTURE – THE
BOM

One standard that matches well with Alexander’s desired
characteristics of a pattern is the Base Object Model
(BOM) standard. The BOM is a recent Simulation Interop-
erability Standards Organization (SISO) Standard devel-
oped in the open community for the purpose of supporting
composable and interoperable object modeling. It is de-
fined as “a piece part of a conceptual model, simulation
object model, or federation object model, which can be
used as a building block in the development and/or exten-
sion of a simulation or federation” (SISO 2006).

 The idea behind BOMs actually can be traced back to
the mid 90s when HLA was first being cultivated. It was
then that this notion of a piece part concept was considered
which could serve as building blocks in respect to the de-
velopment process and the creation of interoperable object
models (DMSO 1996).
 The conceptual model aspect is one of the discrimina-
tors of the BOM; one of the things that sets itself apart.
Prior to the BOM standard, the M&S community did not
have a formal and easy way to describe and share concep-
tual model elements, and did not have an easy way to carry
that conceptual model forward through the development
process.
 Figure 8 peers under the hood of what the BOM stan-
dard provides. The subsections that follow dive further into
the BOM structure elements.

4.1 Model Identification

The first and foremost piece identified in Figure 8 is the
Model Identification, which represents the essential Dis-
covery Metadata. Metadata is important so that BOMs can
be described, discovered, and properly reused.
 The important thing to share about BOM metadata that
it offers not only a way to tag and “label” models, and
identify one or more POCs, but a way to collect and share
feedback usage through a Use History component. Con-
sider how one views books on Amazon before a book is
purchased, and the ability for that prospective buyer to read
other reviews – to garner the feedback of other readers /
users. That’s just one capability offered through this meta-
data piece. The Discovery Metadata provided by the BOM

809
is based on other standards, such as the DDMS, Dublin
Core, VV&A Recommended Practice guide (RPG), and
HLA, resulting in a well structured and clean means to
catalog BOMs.

Model Identification (Discovery Metadata)

Notes

Lexicon (definitions)

Object Model Interface

Object Classes

HLA Object Class Attributes

HLA Object Classes

Interaction Classes

HLA Interaction Class Parameters

HLA Interaction Classes

Data Types

Conceptual Model Definition

Pattern Of Interplay

State Machine

Entity Type

Event Type

Model Mapping
Entity Type Mapping

Event Type Mapping

Model Identification (Discovery Metadata)

Notes

Lexicon (definitions)

Object Model Interface

Object Classes

HLA Object Class Attributes

HLA Object Classes

Interaction Classes

HLA Interaction Class Parameters

HLA Interaction Classes

Data Types

Conceptual Model Definition

Pattern Of Interplay

State Machine

Entity Type

Event Type

Conceptual Model Definition

Pattern Of Interplay

State Machine

Entity Type

Event Type

Model Mapping
Entity Type Mapping

Event Type Mapping

Model Mapping
Entity Type Mapping

Event Type Mapping

Figure 8: The BOM structure.

4.2 Conceptual Model Definition

The BOM also offers a formal way to capture and share the
Conceptual Model. A Conceptual model provides a de-
scription of “what is to represented, the assumptions limit-
ing those representations, and other capabilities needed to
satisfy the user’s requirements” (IEEE). In regards to the
conceptual model what can be reflected is the Pattern of
Interplay, the States of an entity, the entity types and event
types.
 This idea of pattern discovery is very relevant. A Pat-
tern is “an idea that has been useful in one practical context
and will probably be useful in others” (Martin Fowler).
The Weapon’s Effect pattern shown in Figure 5 is an ex-
ample of something is done with some frequency in com-
bat simulations; it is a pattern. This is again is the differ-
entiator from other object modeling frameworks. And this
aspect is important, because if intent can be understood as
well as the anticipated behavior, then it is easier to know
how to reuse something. The conceptual model forms the
basis of defining a reusable bridge component.

Gustavson and Chase

4.3 Object Model Interface

There is also the aspect of model mapping, which will be
touched on in a moment. But first it’s important to examine
the Object Model Interface. In Figure 8, the first thing that
may be seen in regards to the Object Model Interface is an
HLA label tethered to Object Classes, Interaction Classes
and Data Types. Rightly or wrongly there is often a nega-
tive or positive reaction to the HLA label. But it’s impor-
tant to not be fooled by the HLA label. BOMs are not re-
stricted to HLA. There is a perfectly good explanation of
why this is here.
 It’s important to first explain what aspects are not
HLA about the Object Model Interface of the BOM. Notice
what is not identified are HLA Dimensions, HLA Time,
HLA Tags, HLA Synchronizations, HLA Transportations,
HLA Switches – they are not in there because they were
not seen as essential to document a BASE object model.
 All that is really needed at the object modeling level is
a way to describe data structures – specifically data types,
object classes and the types of interactions that stake-
holders need represented. HLA simply provided the most
accepted and understood class structure mechanism for de-
scribing data types, object classes and interaction classes
and that’s why it is reflected by the BOM. The develop-
ment group behind this standard didn’t want to re-invent
something that was already sufficient for M&S developers.

4.4 Model Mapping

It is important go back to the Model Mapping aspect. This
is one area where some of the magic happens. The focus
here is that the ABSTRACT things described in a Concep-
tual Model (entities and events) can be mapped to the ac-
tual types of things to be modeled and represented by a
system implementation. These models are described in the
Object Model Definition. Thus, if a firing entity is identi-
fied at the conceptual level (in the conceptual model), a
Model Mapping indicates what object classes (or interac-
tion classes) will fulfill the entities and events associated to
it.
 Incidentally it needs to be clearly understood that a
BOM does not require within itself both Conceptual Model
Definitions and Object Model Interfaces. Object Model in-
terfaces can live /reside in other BOMs (or FOMs). In
other words a Mapping can be made across one or more
BOMs, FOMs or other architectures models (such as
TENA) defining classes. This loose coupling capability is
vary important for bringing to bare composable bridges.

5 BOM USE CASE EXAMPLES

To date BOMs have been formulated and used to
document and communicate the conceptual space for the

8

Army, Navy, Air Force, Missile Defense Agency, and gen-
eral simulation community. For example, JHU/APL used
BOMs to represent a synergistic conceptual model of the
Airborne Electronic Attack (AEA) communications archi-
tecture for the Air Force. Such BOMs were developed
from the collection of DoDAF views that were originally
formulated by the JHU/APL architecture team. The BOMs
have helped to solidify mission objectives and capabilities.
Additionally, a mapping of the AEA conceptual space pro-
vided by such BOMs is being made using to the software
constructs representing JHU/APL’s simulation environ-
ment. This allows for effective communication and trace-
ability in the composition of AEA models.

BOMs have also recently been used by the surface
Navy to rapidly prototype and explore potential Mid-
Range Ballistic Attack Munitions (MR-BAM) concepts.
These BOMs provided the framework for a resulting proto-
type software model and simulation that was developed
and demonstrated within a very short period of time.

A set of BOMs, known as the Real-time Platform Ref-
erence (RPR) BOMs, have been also been developed for
the general simulation community. These BOMs define
building block components of what had been historically a
monolithic model set called the Real-time Platform Refer-
ence (RPR) FOM. By breaking the RPR FOM into a set of
manageable RPR BOMs, it is now much easier to custom-
ize and extend specific capability in respect to both the
simulations and the FOMs that such simulations use with
requiring significant rework and testing. This facet is ex-
plored further in Section 6.3.

6 THE PURSUIT OF INTEROPERABILITY

 According to the DoD M&S Master Plan, composabil-
ity is necessary to enable effective integration, interopera-
bility and reuse. We have already talked about integration
provided through mapping and reuse supported through
metadata, but it’s time to complete the thought and discuss
interoperability. Figure 9, illustrates two aspects of com-
posability: model composability and system composability.
Thus far we have focused our attention on Model Compos-
ability. Taking an idea from the Conceptual Space and
reaching a successful implementation. However, within a
world in which simulations must interoperate, there is an-
other facet of composability identified as System Compos-
ability which correlates with the idea of Interoperability.

It’s simply not enough to claim victory once the im-
plementation is complete, we must also explore how such
an implementation can integrate with other implementa-
tions

10

Gustavson and Chase

M1
M2
M3

Interoperable
Space

Conceptual
Space

S3

S1

Realizable Ideas
(conceptual models
describing patterns,
states, entities, events
w/ well described
metadata)

Levels of
Interoperability
(technical, syntactic,
semantic, pragmatic,
dynamic, conceptual)

Implementation
Space

Interfaces
(implementatable
classes,
aggregated software
components,
object models)

Implementation
(software,

simulation, system)

Model
Composability

Integration
(exposed interfaces,
system APIs,
object models)

System
Composability

I3
I2

I1

S2

I6
I5
I4

Figure 9: The BOM structure
6.1 Levels of Interoperability

 According to Tolk, there are six levels of interopera-
bility (Tolk and Muguira 2003) that need to be explored
and pursued to achieve the System Composability capabil-
ity desired. These levels of interoperability are identified in
Figure 10.

Figure 10: Tolk’s levels of conceptual interoperability
model (LCIM).

It’s important to understand what each of these levels of
interoperability entail:

• Level 1: Technical Interoperability requires an
agreed upon communication technology infra-
structure and protocols such as UDP or TCP/IP to

811
support the handshaking among networked sys-
tems.

• Level 2: Syntactic Interoperability is achieved
using technology such as XML, which offers a
means to define and use a common data structure
among the systems established in a network.

• Level 3: Semantic Interoperability is achieved
when a common reference model (i.e., definition
set) is used to perpetuate the understanding of the
level 2 data being shared.

• Level 4: Pragmatic Interoperability is achieved
when the systems, simulations or applications in-
volved in the exchange of data are aware of the
specific methods and/or procedures that a calling
system is requesting.

• Level 5: Dynamic Interoperability is achieved
when systems are able to come “on-line” and be-
gin to exchange and reflect data with other sys-
tems. Such systems are “able to comprehend the
state changes that occur in the assumptions and
constraints that each is making over time, and
they are able to take advantage of those changes”
(NATO 2002).

• Level 6: Conceptual Interoperability is
achieved when the anticipated capability that is
to be provided by the models and simulations to
be used are fully understood and agreed upon by
all the stakeholders. At this level of interoperabil-
ity there is no ambiguity in what is expected to be
shared.

We could spend significant time further discussing

each of these levels of intereroparability, and the standards

Gustavson and Chase

the are available to support each level, but the ability to
achieve Level 6 Conceptual Interoperability is what en-
sures the likelihood of success at any of the other lower
levels of interoperability. And, according to Davis what is
required for Level 6 interoperability is a “fully specified,
but implementation independent model” (Davis and
Anderson 2003). This is where the recent BOM standard
can be applied.

6.2 The Role of Conceptual Models and BOMs

 BOMs can be used to represent “piece parts of a con-
ceptual model that can be used as a building block in the
development and/or extension of a simulation or federa-
tion” (SISO 2006). It provides a candidate standard that
can help achieve the interoperability desired from Level 6
down to Level 2 by helping focus on:

• what needs to be shared conceptually within an

M&S environment,
• how the intended models are to perform prag-

matically,
• how qualifying interfaces, which map with the

conceptual space, are semantically defined, and
• how such models are syntactically structured

(i.e., it provides a template).

 That said, it should be noted that BOMs are not in-
tended to be a replacement of interoperability standards
like HLA. On the contrary, they are instead intended to
complement and facilitate the use of such interoperability
standards in an independent way.

6.3 Common Use of Object Model Interfaces

Interoperability standards such as HLA and TENA, while
serving different domains, share some interesting charac-
teristics. Principally the use of Object Models is shared by
the HLA and TENA communities. Object models offer
semantic interoperability, and BOMs, however, provide a
common object modeling mechanism that can be used
across different architectures such as HLA, TENA, and
DIS (Cutts, Gustavson, and Ashe 2006).
 The piece part and building block concept provided by
the BOM standard offers the modularity capability that is
sought for interoperability standards such as HLA and
TENA. Additionally the BOM standard can be applied to
support object modeling of other architectures.
 A key word to be emphasized is the word “Base” in
Base Object Model. It’s important to understand what is
meant by “Base”. A BOM serves as a base in several dif-
ferent ways:

812
1. It serves as an interface for “Base-level” compo-
nents that can be constituted with other base-level
components. BOMs offer foundational pieces that
can be leveraged as a basis for object modeling.
Like selecting components off a palette, BOMs
can be selected to construct object models of
simulations and federations. Thus the idea of a
building block. In this way it offers a flexible
component approach.

2. It also offers the “basic” elements needed for ob-
ject modeling. While there are some roots and
semantics borrowed from the HLA, what has been
stripped away are things that would have re-
stricted BOMs to just HLA implementations. This
is very important from the perspective of Syntac-
tic Interoperability, and this will be explored later.

3. Close examination of Figure 5 reveals a weapons
effect pattern that can be captured as a BOM . In
this pattern example one entity fires a munition on
a target. The munition detonates, and an update
regarding the damage state of the target is re-
flected. This is a commonly anticipated behavior
for most theater warfare exercises. We expect to
shoot at things – and this is how we typically do
it. Therefore “base” in this context refers to “fun-
damental patterns of interplay.” Such patterns
provide the basis for fulfilling the overall objec-
tives. The aggregate of these objectives, is what is
seen on the right hand side of Figure 11. Each
BOM provides a “basis” of understanding at the
conceptual model level, describing the fundamen-
tal behaviors and models that we can compose
into providing a much richer model set.

6.4 Supporting Different Interoperability
Architectures

As BOMs are stitched together it results in something
called a BOM Assembly. The combination of BOMs span-
ning both conceptual model and the structural elements of-
fered by object model can be selected, connected, and cou-
pled together to formulate a BOM Assembly. Through the
use of some transformations that assembly can be used to
represent an HLA Object Model or a TENA LROM as il-
lustrated in Figure 11.
 The benefit of this type of mapping using BOMs was
shared by Cutts and Gustavson at the I/ITSEC 2006 con-
ference in Orlando, Florida:

“the abstract things described in a Conceptual
Model (entities and events) can be mapped to the
actual types of things we are modeling, which are
described in the Object Model Definition of a
BOM. So, if I identify that there is a firing entity at
the conceptual level (in the conceptual model), my

Gustavson and Chase

BOMs

BOM 1

BOM 2

BOM n

Conceptual Model
View

Object Model
View

Weapons

Effe
ct

Detect /

Jam

Radio

Comms

BOM z
Sup

plie
r

BOM b

BOM a

Platfo
rm

Human

BOM c

BOM d Radar

Munitio
n

BOM z
Sup

plie
r

BOM b

BOM a

Platfo
rm

Human

BOM c

BOM d Radar

Munitio
n

Communic

atio
ns

CAP

Support
Collis

ion

BOM
Assembly

Composite
Interface

Composition Representation

BaseEntity

Time

HLA
Object Model

NCW Federatio
n

TSPI

Platform

Weapon

TENA LROM

PhysicalEntity

Figure 11: BOM assembly applied to different interoperability architectures.
mapping tells me what system architecture classes
[HLA, TENA, Navy OA or otherwise] can fulfill
the entities and events associated to it” (Cutts,
Gustavson, and Ashe 2006).

In this way, the mapping aspect of a BOM provides a

powerful construct for building composable bridges, by
spanning the conceptual space with the implementation
space.

7 GUIDANCE

So how does one begin to build and use highly reusable as-
sets that help bridge the conceptual space with the imple-
mentation space? Again it all starts with the conceptual
model, which needs to be carried forward into the other
products that are built, such as software. And conceptual
models and software need to be properly described with
metadata, and mapped so that appropriate building blocks
and supporting software implementations (e.g., compo-
nents) can be identified and used. This is best accom-
plished with iterative / incremental approach. Also known
as a spiral model. Build a little. Test a little. Learn a lot. Go
back and add. Share experiences via the metadata. That is
what is meant by this approach.
 And as patterns are being discovered and described
“Consider what should be variable in your design” and
“encapsulate the concept that varies” within the pattern
(Gamma et al. 1995, p. 29).
 Many software developers learn the power of class in-
heritance, and some begin to over use and abuse this exten-
sible methodology supported by object oriented languages.
However, in regards to reuse, inheritance can be a highly
limited aspect. We recommend instead to “favor object
composition over class inheritance” especially in respect to
conceptual modeling (Gamma et al. 1995, p. 20). It is far

81
more effective in regards to reuse to define a class that
“has a” an attribute of another class than to define a class
that “is a” an extension of another class. The “is a” rela-
tionship provides a hard dependency and binding on an-
other class which can limit the class in being affectively
used by others. Whereas, the “has a” relationship allows a
class to couple it self with other classes in a very loose and
flexible way. The attributes of that class which associate to
another class, can adapt to other classes being used with
out affecting the class for which the attribute is associated
to.
 Within a BOM such classes are defined at the concep-
tual model as entities. And attributes are defined as charac-
teristics. Furthermore, a BOM does permit inheritance at
the Conceptual Model Definition layer. It does, however
allow for inheritance of classes that are being defined
within the Object Model interface layer, which may yield
opportunities for appropriate use of inheritance. But at the
conceptual model definition layer, it is neither recom-
mended nor feasible.
 Another very important aspect is that a BOM (or con-
ceptual model for that matter) should always be designed
to an interface rather an implementation (Gamma et al.
1995, p. 18). It’s important to ensure separation of inter-
face from the implementation. This mirrors the Model
Driven Architecture (MDA) concept of Platform Inde-
pendent Models (PIM), which are provided by the BOM,
and with Platform Specific Models (PSM), which, within
BOM speak, are identified as BOM Component Implemen-
tations (BCIs) and defined for a particular platform or lan-
guage. Having the ability to have BOMs that characterize
capability without regard to platform and language, and an
available set of BCIs (i.e., components) that fulfill the ca-
pability for my platform and language of choice is desir-
able. It provides the fuel needed to bring conceptual ideas
to life, and in a composable way.
3

Gustavson and Chase

8 SUMMARY

In this paper we defined a bridge as “a means to span and
provide a way to connect an idea (i.e., concept) to some-
thing implementable.” We have identified that such a
bridge can be and should be represented and supported by
a well-defined conceptual model. That such a conceptual
model should act as a bridge, providing an effective way to
communicate among stake holders.
 We suggested that such bridges could be defined struc-
turally as a means to convey a concept describing common
patterns, which can then be mapped to one or more poten-
tial implementations. We suggested that such bridges could
be built for reuse. We then explored the aspects of building
composable bridges linking the conceptual space and the
implementation space. The goal of such bridges is to help
bring to life satisfying interoperable systems, simulations
and applications quickly and easily.

As an analogy we explored the art of composing
Lego® creations in how it relates with our desires within
the M&S domain. We have stated that the difference be-
tween building a Lego® creation and an M&S creation is
the complexity of what is intended, and have recognized
that the clarity provided by a conceptual model is what
helps bring a concept to implementation to a potential state
of interoperability. We concluded that a conceptual model
provides an effective bridge that could be easily reused to
support multiple projects and interoperability efforts.

As an enabling technology, we explored how the
BOM, which is a recent SISO standard, offers a means to
define and share composable bridges. That it offers a com-
ponent-based standard for reflecting conceptual models
and linking such conceptual models to implementable in-
terfaces. Interfaces that can be supported by a variety of
architectures including various software languages (C++,
Java) and interoperability standards (HLA, TENA, DIS).

In conclusion we recommend that a standard such as
BOMs be used and applied as a common framework for
defining and sharing reusable bridges that can be com-
posed with other bridges thereby serving as a building
block, which helps facilitate communication among stake-
holders and help realize implementation needs.

REFERENCES

Cutts, D., P. Gustavson, and J. Ashe. 2006. LVC interop-
erability via application of the base object model
(BOM). I/ITSEC.

Davis, P. K., and R. H. Anderson. 2003. Improving the
composability of Department of Defense models and
simulations. RAND Corporation. Available via
<http://www.rand.org/publications/MG
/MG101/> [accessed July 1, 2006].

Dictionary.com, bridge. The American Heritage® Diction-
ary of the English Language, 4th ed. Houghton Mifflin

814
Company, 2004. Available via
<http://dictionary.reference.com/bro
wse/bridge> [accessed June 19, 2007].

DMSO. 1996. The high level architecture (HLA) object
model template specification, Version 1.1.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1995.
Design patterns: elements of reusable object-oriented
software. Addison Wesley.

Gustavson, P. 2003. Capturing intent-of-use for the con-
ceptual model – a key to component reuse. 03F-SIW-
080, Fall SIW.

IEEE. The HLA federation development and execution
process (FEDEP), 1516.4.

NATO Research and Technology Organization. 2002. The
NATO code of best practice for command and control
assessment, revision 2002. Available via the Com-
mand and Control Research Program, NATO.

SISO. 2006. BOM template specification. SISO-STD-003-
2006.

Tolk, A., and J. A. Muguira. 2003. The levels of concep-
tual interoperability model (LCIM). Simulation Inter-
operability Workshop (SIW), SISO.

AUTHOR BIOGRAPHIES

PAUL GUSTAVSON is a co-founder and Chief Technol-
ogy Officer of SimVentions, Inc.
<www.simventions.com> and is focused on the de-
velopment and integration of technology for creating inno-
vative and engaging experiences and solutions. Paul is a
graduate of Old Dominion University, with a B.S. in Com-
puter Engineering (1989), and has supported a wide variety
of modeling and simulation, system engineering, web
technology, and mobile computing efforts within the DoD
and software development communities. He is a principal
author of “C++ Builder 6 Developer’s Guide”; and con-
tributor to other books and articles; and, has presented at
numerous conferences. He is also a long-time advocate and
pioneer of the Base Object Model (BOM) concept for ena-
bling simulation composability, interoperability, and reuse.

TRAM CHASE is a software engineer at SimVentions,
Inc. <www.simventions.com> and is focused on the
development and integration of technology for creating in-
novative and engaging experiences and solutions. In sup-
port of BOMs, Tram has been the lead developer of
BOMworks™, a tool used to build, edit and compose
BOMs. Tram is a graduate of Virginia Tech, with a B.S. in
Mathematics (1994), and has supported a wide variety of
modeling and simulation and system engineering efforts
within the DoD.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [1440.000 1440.000]
>> setpagedevice

