
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

GUIDING PRINCIPLES FOR CONCEPTUAL MODEL CREATION IN MANUFACTURING SIMULATION

Durk-Jouke Van der Zee Jack G.A.J. Van der Vorst

Production Systems Design Group Operations Research and Logistics Group
Faculty of Management & Organization Wageningen UR, P.O. Box 8130
University of Groningen, P.O. Box 800 6700 EW Wageningen

9700 AV Groningen, THE NETHERLANDS THE NETHERLANDS

ABSTRACT

Conceptual models serve as abstractions of user’s percep-
tions of a system. The choice and detailing of these ab-
stractions are key to model use and understanding for ana-
lyst and project stakeholders. In this article we consider
guidance for the analyst in his creative job of conceptual
modeling. More in particular, we discuss guidance offered
by diagramming techniques and simulation tools. There-
fore we “unhide” their underlying engineering principles.
The notion of such principles is helpful in judging tech-
niques and tools for their conceptual richness and com-
pleteness, in educating simulation engineers and as a basis
for a more structured approach towards conceptual model
engineering.

1 INTRODUCTION

Conceptual modeling is almost certainly the most im-
portant aspect of a simulation project (Robinson 2007).
Conceptual models serve as abstractions of user’s percep-
tions of a system – being either real or proposed. Important
purposes of conceptual models are: (1) to foster analyst’s
understanding of a domain (2) to help developers and users
to communicate, (3) to serve as a basis for design, and (4)
to serve as documentation of the original requirements of
the system (Kung and Solvberg 1986). Clearly, quality of
conceptual modeling does influence project management
(time scales, organization, iterations), project contents
(problem definition, model development, experimenting,
validation & verification), and – last but not least – project
success in terms of credibility and acceptance of solutions.
This makes the creation of a conceptual model one of the
crucial jobs of the analyst.

Conceptual model creation entails two activities: (1)
the identification of the phenomena to be modeled and (2)
the mapping of the phenomena into grammar’s constructs
(Wand and Weber 2002). In the context of simulation,
grammar may refer to diagramming techniques, such as,
for example, Petri Nets, activity cycle diagrams, flow
771-4244-1306-0/07/$25.00 ©2007 IEEE
charts, and – of course – (graphical) representations fol-
lowing the analyst’s own definitions and logic. In this arti-
cle we will mainly address the first phase of conceptual
model creation. Our primary focus will be on guidance for
the analyst in the development of the conceptual model.

In his survey on conceptual modeling for simulation
Robinson (2007) distinguishes between three basic ap-
proaches in guiding the analyst: principles of modeling,
methods of simplification, and modeling frameworks.
Principles of modeling advocate an evolutionary develop-
ment of models – start small and simple, and adapt and ex-
tend the model incrementally. On the other hand, methods
of simplification work the other way around by suggesting
ways for model pruning. While both approaches offer rele-
vant assistance for conceptual modeling they do not a-
priori address the creation of the conceptual model, i.e., the
identification of elementary model components appealing
to a domain and to project’s stakeholders. Modeling
frameworks distinguish themselves from the aforemen-
tioned approaches by specifying a procedure for detailing a
model in terms of its elements, their attributes and their re-
lationships. Examples include the general case of systems
representation and domain related cases. The general case
of systems representation anticipates conceptualization
building on elementary system elements, i.e., components,
including their variables and parameters, and mutual rela-
tionships, see, for example Shannon (1975). Domain re-
lated cases refer primarily to the military field, see for ex-
ample Nance (1994). Outside this domain, examples are
scarce. Guru and Savory (2004) address a framework for
modeling physical security systems. Also our previous
work on a modeling framework for manufacturing systems
(Van der Zee and Van der Vorst 2005, Van der Zee 2006)
may be included in this category.

With the exception of the aforementioned modeling
frameworks for specific fields of interest, guidance for the
analyst’s in his creative job of conceptual modeling seems
scarce. Not surprisingly, conceptual modeling is often typi-
fied as being more of an art than a science. This seems not
only true for the simulation field (Shannon 1975), but also
6

Van der Zee and Van der Vorst

for the wider context of systems analysis (Weber 1997,
Lieberman 2003). Analyst’s “works of art” tend to be
guided by their own implicit reference models, concepts
underlying diagramming techniques, and the libraries of-
fered by simulation tools. Obviously, next to the skills of
the analyst and the tool developer, also the characteristics
of the project at hand influence conceptual model quality
in terms of an explicit and insightful representation of key
decision variables. Here relevant project characteristics in-
clude, for example, the available resources, budget restric-
tions, time horizon, client’s interest in modeling, and mod-
eling efforts as they follow from problem complexity.

Clearly, the “implicit” practice of conceptual modeling
has an impact on model quality in terms of its transparency
and completeness with respect to key decision variables.
Hence, model effectiveness may be impaired. However,
also modeling efficiency may be harmed as this implicit
practice does not directly contribute to, for example, edu-
cation, i.e., analysts’ or stakeholders’ learning from each
other experiences, model re-use, and the setup of robust
simulation libraries. Moreover, the interest in innovative
chain configurations in business, such as for example, sup-
ply chains, health care chains, and transportation networks,
stress the importance of high quality conceptual modeling.
This follows both from systems’ complexity, and the pres-
ence of multiple autonomous stakeholders. System com-
plexity of chain configurations sets higher demands on an
insightful representation of model elements, both for the
analyst and the stakeholders – in their strengthened role as
domain experts. At the same time the presence of multiple
autonomous stakeholders puts pressure on a joint under-
standing and creation of solutions. This implies the need
for a shift from communicative models (Balci 1986) to par-
ticipative models (Van der Zee 2007).

In this article we attempt to evaluate the current prac-
tice of conceptual modeling for the manufacturing field to
some extent. We do so by assessing the choice of model
components for diagramming techniques, and simulation
tools. We relate this choice of components to their underly-
ing model decomposition principles. Typically, diagram-
ming techniques, and simulation tool libraries are built
starting from these principles, which should relate to a spe-
cific field of interest. Unhiding these principles is assumed
to:

• Create awareness on the way conceptual modeling
may be supported and steered by diagramming
techniques and simulation tools.

• Assist in understanding applicability and short-
comings of diagramming techniques and simula-
tion tools with respect to conceptual modeling.

• Provide an initial set of decomposition principles
which may be communicated and applied for
practical or educational use.

• Establish a preliminary basis for creating, improv-
ing and extending conceptual frameworks under-
77
lying simulation tools and diagramming tech-
niques.

 As a first step in our evaluation we categorize engi-
neering principles underlying conceptual modeling (Sec-
tion 2). Next, in Section 3, we consider a few well-known
diagramming techniques and illustrate their support for
conceptual modeling by highlighting their underlying de-
composition principles. In a similar way we consider two
simulation packages (Section 4). Starting from the observa-
tions in Section 3 and 4, in Section 5, we review literature
as it critisized tools and models for conceptual richness,
and completeness. This results in the identification of an
other set of decomposition principles, that is somewhat tai-
lored to the manufacturing field. On the other hand, an ex-
planation is offered for the conceptual model quality as it
results from the dominating implicit approach. Section 6
introduces an alternative, structured, approach towards
conceptual model engineering. Finally, main conclusions
are summarized in Section 7.

2 CONCEPTUAL MODEL CREATION –
CATEGORIZING ENGINEERING PRINCIPLES

In this section we briefly categorize principles underlying
conceptual model creation. Two cognitive approaches are
suggested as being fundamental in the process of identify-
ing the phenomena to be modeled (Burton-Jones and Meso
2006):

• Decomposition: breakdown of a system into semi-
independent components corresponding to its
many functional parts (Simon 1996).

• Classification: grouping of similar types of ob-
jects (Parsons 2002).

 Basically, decomposition starts from a top down ap-
proach towards modeling, while classification works the
other way around. Essentially, classification boils down to
an abstraction of similarities among individual things for
supporting cognitive economy, inference, and communica-
tion, see, for example, Smith and Medin (1981).

Starting from these fundamental approaches other ap-
proaches may be adopted to refine model engineering. We
mention the principles of modeling, and methods of simpli-
fication introduced in Section 1. They may be helpful, in
choosing the right amount of detail, and to tailor model
scope. Further Liebermann (2003) mentions the possibility
of obscuring or emphasizing model components. Obvi-
ously, the application of suchlike principles assumes a
thorough notion of the stakeholders’ objectives, both with
respect to system analysis and visualization. In this article
we restrict ourselves to the evaluation of the fundamental
principles for simulation model engineering.
7

Van der Zee and Van der Vorst

3 BASIC PRINCIPLES – DIAGRAMMING
TECHNIQUES

Diagramming techniques are often used as the initial
(home made) grammar for representing and visualizing a
system. Several techniques exist, see Pooley (1991) for a
first introduction. In this section we will consider just three
of these techniques: Activity Cycle Diagrams, Petri Nets
and Flow charts. Reasons for choosing just these tech-
niques lie in the fact that they are well-known, and address
the general systems case. With this choice of techniques
we aim to contribute to simple and insightful reasoning.
For all three techniques multiple implementations exist –
either formalized in literature or not. Hence, they should be
considered as families of techniques, rather than being
characterized as stand-alone. In this section we will discuss
one specific implementation for each technique.
 As a starting point for our discussion we consider a
small case example – a simple job shop. The job shop is
modeled by applying each of the three diagramming tech-
niques, and illustrates model component use and meaning,
see Figure 1. Next, we consider each technique in some-
what more detail, and unhide their underlying decomposi-
tion principles, by inference from their choice of compo-
nents.
 The job shop may be characterized by three entities:
(1) products, arriving according to an irregular pattern, (2)
a single machine, capable of processing all types of prod-
ucts, and (3) an operator, being responsible for machine
setups. The machine may require maintenance. This need
is to be established every time processing for a product has
been completed. The machine has to be setup for each in-
dividual product. However, machine setups are not se-
quence dependent, i.e., do not depend on the type of prod-
uct to be processed. The operator also has specific tasks at
other departments.
 Figure 1a represents the job shop by an activity cycle
diagram. Activity cycle diagrams make use of two sym-
bols: the dead state, i.e., waiting for some condition to be
77
fulfilled, and the active state, i.e., some activity other than
waiting. Activities for each entity are described in terms of
a cycle of these states. Relationships between entities fol-
low from their cooperation in active states. For example,
the execution of an operation requires the availability of
both a product and a machine. Use of Activity cycle dia-
grams is advocated in case of a system with a strong
queueing structure (Pidd 1998).
 An alternative way of modeling of the job shop is
shown in Figure 1b. Here a Petri Nets formalism is used
for modeling the job shop. Petri Nets consist of four types
of components: (1) movable entities called “tokens”, (2)
transitions, concerning transformations of tokens, (3)
places, for temporarily storing tokens, and (4) arcs, for
connecting places and transitions. In Figure 1b, tokens de-
pict products, the machine and the operator, while transi-
tions model shop activities. Further, Petri Nets foresee in
an explicit notion of dynamics, i.e., transitions are allowed
to execute (“fire”) if tokens are available at all its input
places. For example, the distribution of tokens in Figure 1b
allows for a start of the “operation”. Note how this rule
also implies the need for an additional transition for model-
ing machine setup. Many alternative choices are described
in literature as far as the definition of Petri Nets’ compo-
nents and their dynamics are concerned, see Murata (1989)
for an introduction. Here we consider timed Petri Nets,
where times are associated with the duration of a transition.
 Flow charts, or logic flow diagrams, model the logic
of the system rather than the process flow (Robinson
2004). Figure 1c models shop behavior in case of a product
arrival, as a sequence of decisions and processes. Note that
this is a partial model. Similar diagrams may be developed
for the case a machine completes service, a machine has
been repaired or setup, and the arrival of an operator.
 In Table 1 we give an overview of model components
for the three diagramming techniques. We use this over-
view to infer seven underlying decomposition principles,

Table 1: Choice of model components for diagramming techniques

Model Compo-

nents

Diagramming
Technique

Entities Activities Relationships Dynamics

Activity cycle
diagrams

Entity – cycles between
dead state and life state

Dead state – waiting
Active state – processing

Arcs - joint active states

Petri Nets Token – input and out-
put of a transition
Transition – logically
fixed operation; Place –
storage for tokens

Place – waiting
Transition – processing

Arcs – joint transitions Firing – transitions
start if tokes are pre-
sent in all its input
places

Flow charts Decision making
Processing

8

Van der Zee and Van der Vorst

Figure 1: Diagrams for job shop example

Product arrival

Machine
available?

Operation

Yes

No Do nothing

Repair ma-
chine?

Product leaves

Machine repair

Machine set up

No

Yes

Operator
available?

Yes

No Do nothing

Decision

Activity

Legend

(c)

Operation Setup Arrival

Repair

Idle

Ready

Available

Depart-
ment X

Repaired

MACHINE

OPERATOR

Arrival

Queue

PRODUCT

Else-
where

Dead state

Active state

Legend

(a)

Product arrival

Idle Ready Operation

Setup

Repair

SetupR

Arrival

Queue

Available

Repaired

Department X

Arc

Token

Legend

Place

Transition

Output

Product leaves

(b)
779

Van der Zee and Van der Vorst

Table 2: Relating model components to decomposition principles underlying diagramming techniques

Decomposition principles Activity Cycle Diagrams Petri Nets Flow Charts
I External and internal entities X
II Movable and non-movable entities X
III Active and passive entities X
IV Waiting and processing X X
V Decision making and processing X
VI Relationships build on joint activities X X
VII Dynamics follows from presence of input for processes X

see Table 2. Both Tables 1 and 2 start from the explicit
(visual) notion of model components.
 Let us now discuss the decomposition principles in
somewhat more detail. For Petri Nets, the concept of a sys-
tem boundary (I) is made explicit. For example, the transi-
tion Product arrival acts as a source of products, while the
transition Product leaves represents an external entity of
type sink. Further, a distinction can be made between mov-
able and non-movable entities (II). Where tokens in Petri
Nets depict movable entities, transitions may present infra-
structural entities. Remark, that infrastructure is related to
the setup of the diagram, not a-priori to the physical or
logic underlying the system. Both movable entities and
non-movable entities may be further classified as being ac-
tive, i.e., initiating activities, or passive, i.e., being acted
upon (III). Here transitions may be considered active,
while places and tokens are passive.
 In both activity cycle diagrams and Petri Nets activi-
ties waiting and processing (IV) are distinguished. Recall,
how this makes them fit for modeling queueing systems.
Alternatively, for flow charts, it is distinguished between
decision making and processing (V).

Relationships between entities follow from their joint
participation in activities (VI). They are expressed by arcs.
Finally, Petri Nets foresee in an explicit mechanism for
representing dynamics, through the “firing” of transitions
(VII).
 Table 2 makes clear how each diagramming technique
builds on a subset of decomposition principles. The inclu-
sion of specific decomposition principles may make it
more or less fit for specific applications. For example, the
explicit notion of decisions may make a flow chart a suit-
able vehicle for modeling a decision algorithm, but less
suitable for modeling process flow. On the other hand, at
first sight, Petri Nets may offer advantages in case of a dy-
namics representation of the system. A more general ob-
servation on the use of these diagramming techniques con-
cerns their contextual richness. As they build on a limited
set of simple components their size may easily explode for
real-life case settings. Consequently, diagrams often have
to be enriched with supplemental texts or by modifications,
following from the application of additional decomposition
or classification principles. Next to model size, also model
complexity may hinder practical use. For example, Kamper
(1991), and Ryan and Heavey (2006) indicate that for real-
780
istic systems Petri Nets make it difficult for non-experts to
reason with the logic contained within the model.

4 TAILORED PRINCIPLES – SIMULATION
PACKAGES

Next to diagramming techniques also simulation tools may
guide conceptual modeling. This may happen in an indirect
way by relating the development and definition of initial
diagrams to the foreseen tool for model coding, as well as
in a direct way - in case simulation tools are used as a first
basis for setting up preliminary (conceptual) models. In
this section we assess underlying decomposition principles
for simulation tools. We do so not with the idea of a full
coverage of all tools, or even of a single tool. Clearly, the
abundance of available simulation packages (Swain 2005),
and their individual world view and level of detail hinders
this. Rather, we seek to illustrate how simulation tools fur-
ther detail system decomposition, using an additional set of
principles, which is tailored to the field of interest. There-
fore we studied just two of these packages: EM-PlantTM
and Enterprise DynamicsTM. Both packages are object ori-
ented and are widely applied in manufacturing practice. As
findings for both packages are rather similar we condense
our discussion here by only highlighting observations on
EM-PlantTM.
 To infer basic decomposition principles underlying
decomposition principles for EM-PlantTM we studied the
components of its so-called basic library, its introductory
manual (Tecnomatix 2003) and its help function. The basic
library is the set of building blocks that is used as a start
for all model development, including dedicated libraries –
tailored to a specific field of interest. Table 3 shows how
different types (classes) of entities are foreseen. In turn,
each of these classes my be further decomposed in sub-
classes. Entity descriptions are derived from the definitions
supplied by the tool builders. Original definitions are
somewhat condensed in order to meet space requirements,
and clarity in typifying entities. Note how we do not dis-
tinguish between classes and their graphical representation.
In principle, class definitions and graphical representations,
may concern alternative grammars for conceptualization,
for which a one to one mapping is not always guaranteed.

Van der Zee and Van der Vorst

Table 3: Decomposition of entities for EM-PlantTM

EM-PlantTM Entity decomposition

Active units: move on its
own

Transporter: object with a propulsion system allowing it to
move on its own on tracks. It also has loading capacity for
transporting MUs

Moving units (MUs):
physical or logical parts
being transported or
processed by material
flow objects

Passive units : parts be-
ing acted upon

Entity: parts being produced and transported, but not trans-
porting other work pieces
Container: object for transporting other Mus

Active units: transport or
process parts

Source: produces MUs in a single station
Drain: a single processing station for destroying MUs
SingleProc: a single station for processing an MU.
ParallelProc: concerns several stations for processing MUs in
parallel
Assembly: adds mounting parts to a main part
DismantleStation: removes mounting parts from the main MU
or it creates new MUs
Buffer, PlaceBuffer: facility for temporary starage of MUs.
Sorter: sorts the MUs located on it according to sort criteria
Line: represents a conveyor system or a part thereof

Material flow:
objects repre-
senting, process-
ing, transporta-
tion or storage of
materials

Fixed units: work sta-
tions in a factory

Passive units: store,
route or display parts

Store: stores any number of MUs you define
Track: represents part of a transport line, with or without auto-
matic routing
FlowControl: allows to model common strategies for diverging
and converging the flow of materials
Cycle: synchronizes the transfer of MUs from station to station

Controls: Objects for
programming controls
and for commenting
them

Methods: program controls that other objects start
Variable: global variable that other objects and methods can access during a simulation
run
Comment: explanatory notes to a simulation model

Lists and tables: data
storage

TableFile, CardFile, StackFile, QueueFile: store data in alternative formats
TimeSequence: controls and administers time-related values, such as shift plans or ma-
chine maintenance

Time patterns: when and
how moving objects are
created

Generator: time based activitation of methods
ShiftCalendar: model shift patterns in systems
Trigger: changes values of attributes and global variables according to a custom pattern

Information flow:
objects for pro-
viding the simu-
lation run with
information

Interfaces: Objects that
allow to exchange data
with other applications

XMLinterface, FileInterface, FileLink: alternative types of interface

Moving units (MUs):
workers being idle or at
work

Worker: a movable working person who performs a job on a work place Resources:
objects for rep-
resenting worker
and worker ac-
tivities Fixed units: work sta-

tions in a factory
Footpath: models walking distances between the WorkerPool and work stations or be-
tween work stations
Worker pool: contains idle workers
Work place: actual place at the station, where the worker performs his job
Exporter, Broker: assign workers to stations

 As a first step in model decomposition EM-PlantTM
distinguishes between three elementary modalities, i.e.,
types of flow, for manufacturing systems: material flow
information flow, and resources, see Table 3. For the mate-
rial flow, further decomposition is realized by applying ba
sic principles I-III, see Table 2. This is illustrated in Figure
2, which relates choice of entities to decomposition princi-
ples (in italics). Next, applying the concept of classifica-
tion, results in a number of subclasses per functional class.
For resources a similar set of principles is used. Note how
resources are restricted to workers, and their associated in-
frastructure, and control.
 For the information flow, alternative decomposition
principles are applied. Where material flow entities appeal
781
to the physical elements of a manufacturing system, the
choice of information flow entities seems to be largely mo-
tivated by a general systems focus. This follows from enti-
ties, that may be characterized as programming facilities,
rather than building blocks tailored to the manufacturing
field. Next to the direct access to the internal language, i.e.,
SimTalkTM, via Methods, there is the explicit notion of data
storage in alternative formats. Further, direct manipulation
of the event list is foreseen for activating entities, and code,
for example, to model shift patterns. Finally, the library
contains interfaces with external software.

 Van der Vorst
Van der Zee and

Figure 2: Relating choice of entity for EM-PlantTM to de-
composition principles

 For material flow EM-PlantTM distinguishes between
three basic types of activities: production, transport and
storage. In principle, most of the fixed units, see Table 3,
may undertake each of these activities – as made explicit in
performance registration. However, initialization for each
entity allows for a specific choice of activity. For example,
a SingleProc is associated with production, while a Store is
related to storage. This implies an initial entity classifica-
tion. For resources similar types of activities can be distin-
guished. However, they are restricted to a specific type of
resource, i.e., the worker.
 Decision making activities may be directly related to
each fixed material flow entity through entrance and exit
controls. These controls allow for calling on a method, i.e.,
code based on the internal language. Also standard or user-
defined priority rules for dispatching may be embedded in
material flow entities, for example, to sort or route mov-
able entities.

Objects representing alternative modalities
Material flow
 Movable and non-movable entities (II)
 Movable entities
 Active and passive entities (III)
 Active entities
 Objects with own propulsion
 Passive entities
 Object being produced and transported
 Objects for transporting other objects
 Non-movable entities
 Active and passive entities (III)
 Active entities
 External and internal entities (I)
 External entities
 Sources and sinks
 Internal entities
 Single station and parallel stations

 Type of dominant operation: Processing,
 (dis)assembly, storage, transport, sorting

 Passive entities
 Type of function: store, display, route
Information flow
 Control logic, list and tables, time patterns, and
 interfaces
 Control logic

 Elements for model control: Methods,
 variables and comments

 Lists and tables
 Alternative means for data storage within model
 context
 Time patterns
 Alternative types of time patterns
 Interfaces
 Alternative types of interface with external software
Resources
 Movable and non-movable entities (II)
 Movable entities
 Workers, movable working persons
 Non-movable entities
 Elements for modeling worker infrastructure: Foot
 path, worker pool, work place, and assignment
 controls
78
 For information flow there is no clear notion of activi-
ties. This follows from the building blocks being pro-
grammers’ facilities rather than manufacturing systems’
elements, also see above.
 Entity relationships may be specified for fixed mate-
rial flow units. Relationships are founded on the exchange
of movable units. Here types of movable units exchanged
determine the relationship.
 Basically, model dynamics is related to the input of
movable material flow elements at fixed material flow enti-
ties. Typically, this starts an activity. Note how activities
include the possibility of waiting for a next activity. Other
means to start activities are time patterns, for example
worker shifts. While time patterns have an explicit notion,
being part of the library, also “implicit” access to the event
list is possible through model code.

5 AN INITIAL ASSESSMENT OF CONCEPTUAL
MODEL CREATION

In previous sections we discussed a few examples of dia-
gramming techniques and their underlying decomposition
principles. In this section we relate these initial observa-
tions to criticism in literature on manufacturing simulation
models’ conceptual richness and completeness. We have
two objectives in doing so: (1) explain criticism building
on a more thorough notion of the creative principles under-
lying conceptual modeling (2) highlight additional princi-
ples that address the criticism.
 Mize et al. (1992) point at the fact that traditional lan-
guages do not provide natural constructs for separately and
distinctly modeling the three types of basic functions, i.e.,
physical, information and control/decision functions. In
addition, the constructs provided for information and con-
trol are often hard coded and dispersed in the model (Pratt
et al., 1994). Clearly, this hinders modification and re-use
of code. A policy that adheres rather strictly to the “one
component-one function” doctrine would suffer less from
these drawbacks. In turn this provides a more natural mod-
eling environment as the modeler is forced to think about
model elements independently. It is interesting to see how
EM-PlantTM distinguishes between modalities. However,
the notion of the information flow – and especially – the
decision flow is weak – leaving conceptual modeling to the
model builder rather than offering guidance.
 According to Lefrancois and Montreuil (1994), and
Lefrancois et al. (1996) a distinction between intelligent
and non-intelligent entities permits a more natural and
richer presentation and implementation of systems mod-
eled. In such a context, intelligent beings are modeled as
agents. Agents are used to implement decision rules inher-
ent to manufacturing system planning and control. Exam-
ples include routines for scheduling, dispatching and re-
leasing jobs for a machine or department. According to
Lefrancois and Montreuil (1994), and Lefrancois et al.
2

Van der Zee and Van der Vorst

(1996) workstations and work orders, are assumed to be
non-intelligent. Note how their work assumes a further de-
tailing of the concept of passive and active entities with re-
spect to decision making. Such detail is not met by the dia-
gramming techniques and simulation tools studied here.
 Van der Zee and Van der Vorst (2005) stress the sepa-
rate and explicit notion of activities in simulation model-
ing. They advocate to denominate all activities – including
information processing and decision-making – in the
manufacturing system as “jobs” The job concept is meant
to bring two important advantages. Firstly, the use of this
common denominator for all activities will provide a clear
and natural mechanism for event scheduling, where events
are related to the start and the completion of jobs. Sec-
ondly, an explicit notion and allocation of company activi-
ties, increases visibility and traceability of decision vari-
ables. Note how the modeling of decision logistics and
supportive information processing is left largely to the ana-
lyst. Only basic support is offered for common dispatching
rules.

6 DISCUSSION – OFFERING STRUCTURE IN
CONCEPTUAL MODEL CREATION

The evaluation of diagramming techniques and simulation
tools with respect to their conceptual backing brings us: (1)
an initial insight in principles for model decomposition and
classification, and (2) the logic of their application in terms
of model completeness, and richness. Clearly, the explicit
notion of such principles has a direct value for educating
simulation engineers in setting up conceptual models.
Moreover, it points at the need for a structured approach
towards conceptual model creation, see Figure 3.

Figure 3: Conceptual model engineering

Model
building

Domain

Decomposition principles

Conceptual framework

Analysis

Framing

Grammar

Formalize

Model

Bypass:
Pragmatics
78
 Figure 3 shows how conceptual model creation may be
subdivided in 4 engineering steps:

1. Domain analysis, resulting in definitions of prin-
ciples for model decomposition and classification.

2. Framing, i.e., combining principles to develop a
conceptual framework for defining model entities,
activities, relationships, and their dynamics.

3. The conceptual framework should be the basis for
defining a grammar, i.e., a technique supporting
an explicit (graphic) model notion.

4. Model building, i.e., the application of the gram-
mar for a specific case example.

 At the same time, the figure clarifies the current im-
plicit practice in terms of a pragmatic bypass of the afore-
mentioned steps.

7 CONCLUDING REMARKS

In this article we considered guidance for the analyst in his
job of conceptual model creation. Starting from the obser-
vation that domain specific guidance in this respect is
scarce, we evaluated a few basic diagramming techniques
and simulation tools for their underlying principles for
model decomposition and classification. Where literature
critisizes manufacturing simulation models for conceptual
richness and completeness, unhiding these principles helps
in an in-depth explanation and adjustment of their short-
comings. Moreover, the explicit notion of principles for
conceptual creation may be helpful in simulation engineer-
ing education. It is suggested that such an education should
include a more structured approach towards conceptual
model engineering. Such an approach distinguishes itself
from many of the current implicit approaches, which may
be characterized by a “pragmatic bypass” of key phases in
conceptual model structuring, i.e., the isolation of relevant
principles for conceptual model engineering, and their
framing (combination) to make up a complete and rich
conceptual framework underlying model grammar.

REFERENCES

Balci O (1986). Credibility assessment of simulation re-
sults. In Proceedings of the 1986 Winter Simulation
Conference, 209-222. Piscataway, New Jersey: Insti-
tute of Electrical and Electronics Engineers, Inc.

Burton-Jones, A., and P.N. Meso. 2006. An Empirical Test
of Decomposition Principles in Object-Oriented
Analysis. Information Systems Research 17(1): 38–60.

Ryan J., and C. Heavey. 2006. Process modeling for simu-
lation. Computers in Industry 57: 437-450.

Guru, A., and P. Savory. 2004. A Template-Based Concep-
tual Modeling Infrastructure for Simulation of Physi-
cal Security Systems. In Proceedings of the 2004 Win-
ter Simulation Conference, ed. R.G. Ingalls, M.D.
Rossetti, J.S. Smith, and B.A. Peters, 866-873. Pis-
3

Van der Zee and Van der Vorst

cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers, Inc.

Kamper, S. 1991. On the Appropriateness of Petri Nets in
Model Building and Simulation. Systems Analysis
Modelling Simulation 8(9): 689-714.

Kung, C. H., and A. Solvberg. 1986. Activity modelling
and behavior modelling. In Information Systems De-
sign Methodologies: Improving the Practice, ed. T.W.
Olle, H.G. Sol, and A.A. Verrijn-Stuart, 145-171, Am-
sterdam, The Netherlands: IFIP, North-Holland.

Lefrancois P., and B. Montreuil. 1994. An object-oriented
knowledge representation for intelligent control of
manufacturing workstations. IIE Transactions 26(1):
11-26.

Lefrancois P., S. Harvey, B. Montreuil, and B. Moussa.
1996. Modelling and simulation of fabrication and as-
sembly plants: an object-driven approach. Journal of
Intelligent Manufacturing 7: 467-478.

Lieberman, B. 2003. The art of modeling: Part 1: Con-
structing an analytical framework. Rational Edge (Au-
gust). Available via <http://www-
128.ibm.com/developerworks/rational/
library/content/RationalEdge/aug03/
f_modeling_bl.pdf> [accessed March 26, 2007]

Mize, J.H., H.C. Bhuskute, D.B. Pratt, and M. Kamath.
1992. Modelling of Integrated Manufacturing Systems
Using an Object-Oriented Approach. IIE Transactions
24(3): 14-26.

Murata, T. 1989. Petri Nets : Properties, Analysis and Ap-
plications. Proceedings of the IEEE 77(4): 541-580.

Nance, R.E. 1994. The Conical Methodology and the Evo-
lution of Simulation Model Development. Annals of
Operations Research 53: 1-45.

Parsons, J. 2002. Effects of local versus global schema
diagrams on verification and communication in con-
ceptual data modeling. Journal of Management Infor-
mation Systems 19: 155–184.

Pratt, D.B., P.A. Farrington, C.B. Basnet,H.C. Bhuskute,
M. Kanath, and J.H. Mize. 1994. The separation of
physical, information, and control elements for facili-
tating reusability in simulation modelling. Interna-
tional Journal of Computer Simulation 4(3): 327-342.

Pidd, M. 1998. Computer Simulation in Management Sci-
ence. 4th ed. Chichester: Wiley.

Pooley, R.J. 1991. Towards a Standard for Hierarchical
Process Oriented Discrete Event Diagrams. Transac-
tions of the SCS 8(1): 1-41.

Robinson, S. 2004. Simulation – The practice of model de-
velopment and use. Chichester: Wiley.

Robinson, S. 2007. Conceptual modelling for simulation
Part I: definition and requirements. Journal of the Op-
erational Research Society (in press).

Shannon, R.E. 1975. Systems Simulation – The Art and
Science. Englewood Cliffs :Prentice Hall.
78
Simon, H. A. 1996. The Sciences of the Artificial. Cam-
bridge, MA: MIT Press.

Smith, E., and D. Medin. 1981. Categories and Concepts.
Cambridge: Cambridge University Press.

Swain J.J. 2005. 'Gaming' Reality- Biennial survey of dis-
crete-event simulation software tools. OR/MS Today
32(6), 44-55.

Tecnomatix. 2003. EM-Plant 7.0 – Step-by-Step. Stuttgart:
Tecnomatix.

Van der Zee, D.J. 2006. Modeling Decision Making and
Control in Manufacturing Simulation. International
Journal of Production Economics 100(1): 155-167.

Van der Zee, D.J. 2007. Developing participative simula-
tion models – framing decomposition principles for
joint understanding. Journal of Simulation (accepted
for publication)

Van der Zee, D.J., and J.G.A.J. van der Vorst. 2005. A
modeling framework for supply chain simulation –
Opportunities for improved decision-making. Decision
Sciences 36(1): 65-95.

Wand, Y., and R. Weber. 2002. Information systems and
conceptual modeling—A research agenda. Information
Systems Research. 13(4) 363–376.

Weber, R. 1997. Ontological Foundations of Information
Systems. Melbourne, Australia: Coopers & Lybrand
and Accounting Assoc. of Australia and New Zealand.

AUTHOR BIOGRAPHIES

DURK-JOUKE VAN DER ZEE is an Assistant Professor
in the department of Production Systems Design at the
Faculty of Management and Organization, University of
Groningen, The Netherlands. He received his M.Sc. and
Ph.D. in Industrial Engineering at the University of
Twente, The Netherlands. His research interests include
simulation methodology and applications, shop floor con-
trol and flexible manufacturing systems. He can be con-
tacted by email at <d.j.van.der.zee@rug.nl>

JACK G.A.J. VAN DER VORST is Professor in Logis-
tics and Operations Research at Wageningen University
and Research center (WUR) in The Netherlands. His Ph.D.
research concerned the assessment of food supply chain
redesign strategies using simulation and pilot studies. His
research interests include supply chain management, logis-
tics, performance measurement systems, and simulation
methodology and applications. He can be contacted by
email at <jack.vanderVorst@wur.nl>
4

