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ABSTRACT 

Conceptual models serve as abstractions of user’s percep-
tions of a system. The choice and detailing of these ab-
stractions are key to model use and understanding for ana-
lyst and project stakeholders. In this article we consider 
guidance for the analyst in his creative job of conceptual 
modeling. More in particular, we discuss guidance offered 
by diagramming techniques and simulation tools. There-
fore we “unhide” their underlying engineering principles. 
The notion of such principles is helpful in judging tech-
niques and tools for their conceptual richness and com-
pleteness, in educating simulation engineers and as a basis 
for a more structured approach towards conceptual model 
engineering.  

1 INTRODUCTION 

Conceptual modeling is almost certainly the most im-
portant aspect of a simulation project (Robinson 2007). 
Conceptual models serve as abstractions of user’s percep-
tions of a system – being either real or proposed. Important 
purposes of conceptual models are: (1) to foster analyst’s 
understanding of a domain (2) to help developers and users 
to communicate, (3) to serve as a basis for design, and (4) 
to serve as documentation of the original requirements of 
the system (Kung and Solvberg 1986). Clearly, quality of 
conceptual modeling does influence project management 
(time scales, organization, iterations), project contents 
(problem definition, model development, experimenting, 
validation & verification), and – last but not least – project 
success in terms of credibility and acceptance of solutions. 
This makes the creation of a conceptual model one of the 
crucial jobs of the analyst.  

Conceptual model creation entails two activities: (1) 
the identification of the phenomena to be modeled and (2) 
the mapping of the phenomena into grammar’s constructs 
(Wand and Weber 2002). In the context of simulation, 
grammar may refer to diagramming techniques, such as, 
for example, Petri Nets, activity cycle diagrams, flow 
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charts, and – of course – (graphical) representations fol-
lowing the analyst’s own definitions and logic. In this arti-
cle we will mainly address the first phase of conceptual 
model creation. Our primary focus will be on guidance for 
the analyst in the development of the conceptual model. 

In his survey on conceptual modeling for simulation 
Robinson (2007) distinguishes between three basic ap-
proaches in guiding the analyst: principles of modeling, 
methods of simplification, and modeling frameworks. 
Principles of modeling advocate an evolutionary develop-
ment of models – start small and simple, and adapt and ex-
tend the model incrementally. On the other hand, methods 
of simplification work the other way around by suggesting 
ways for model pruning. While both approaches offer rele-
vant assistance for conceptual modeling they do not a-
priori address the creation of the conceptual model, i.e., the 
identification of elementary model components appealing 
to a domain and to project’s stakeholders. Modeling 
frameworks distinguish themselves from the aforemen-
tioned approaches by specifying a procedure for detailing a 
model in terms of its elements, their attributes and their re-
lationships. Examples include the general case of systems 
representation and domain related cases. The general case 
of systems representation anticipates conceptualization 
building on elementary system elements, i.e., components, 
including their variables and parameters, and mutual rela-
tionships, see, for example Shannon (1975). Domain re-
lated cases refer primarily to the military field, see for ex-
ample Nance (1994). Outside this domain, examples are 
scarce. Guru and Savory (2004) address a framework for 
modeling physical security systems. Also our previous 
work on a modeling framework for manufacturing systems 
(Van der Zee and Van der Vorst 2005, Van der Zee 2006) 
may be included in this category. 

With the exception of the aforementioned modeling 
frameworks for specific fields of interest, guidance for the 
analyst’s in his creative job of conceptual modeling seems 
scarce. Not surprisingly, conceptual modeling is often typi-
fied as being more of an art than a science. This seems not 
only true for the simulation field (Shannon 1975), but also 
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for the wider context of systems analysis (Weber 1997, 
Lieberman 2003). Analyst’s “works of art” tend to be 
guided by their own implicit reference models, concepts 
underlying diagramming techniques, and the libraries of-
fered by simulation tools. Obviously, next to the skills of 
the analyst and the tool developer, also the characteristics 
of the project at hand influence conceptual model quality 
in terms of an explicit and insightful representation of key 
decision variables. Here relevant project characteristics in-
clude, for example, the available resources, budget restric-
tions, time horizon, client’s interest in modeling, and mod-
eling efforts as they follow from problem complexity. 

Clearly, the “implicit” practice of conceptual modeling 
has an impact on model quality in terms of its transparency 
and completeness with respect to key decision variables. 
Hence, model effectiveness may be impaired. However, 
also modeling efficiency may be harmed as this implicit 
practice does not directly contribute to, for example, edu-
cation, i.e., analysts’ or stakeholders’ learning from each 
other experiences, model re-use, and the setup of robust 
simulation libraries. Moreover, the interest in innovative 
chain configurations in business, such as for example, sup-
ply chains, health care chains, and transportation networks, 
stress the importance of high quality conceptual modeling. 
This follows both from systems’ complexity, and the pres-
ence of multiple autonomous stakeholders. System com-
plexity of chain configurations sets higher demands on an 
insightful representation of model elements, both for the 
analyst and the stakeholders – in their strengthened role as 
domain experts. At the same time the presence of multiple 
autonomous stakeholders puts pressure on a joint under-
standing and creation of solutions. This implies the need 
for a shift from communicative models (Balci 1986) to par-
ticipative models (Van der Zee 2007). 

In this article we attempt to evaluate the current prac-
tice of conceptual modeling for the manufacturing field to 
some extent. We do so by assessing the choice of model 
components for diagramming techniques, and simulation 
tools. We relate this choice of components to their underly-
ing model decomposition principles. Typically, diagram-
ming techniques, and simulation tool libraries are built 
starting from these principles, which should relate to a spe-
cific field of interest. Unhiding these principles is assumed 
to: 

• Create awareness on the way conceptual modeling 
may be supported and steered by diagramming 
techniques and simulation tools. 

• Assist in understanding applicability and short-
comings of diagramming techniques and simula-
tion tools with respect to conceptual modeling. 

• Provide an initial set of decomposition principles 
which may be communicated and applied for 
practical or educational use. 

• Establish a preliminary basis for creating, improv-
ing and extending conceptual frameworks under-
77
lying simulation tools and diagramming tech-
niques. 

 As a first step in our evaluation we categorize engi-
neering principles underlying conceptual modeling (Sec-
tion 2). Next, in Section 3, we consider a few well-known 
diagramming techniques and illustrate their support for 
conceptual modeling by highlighting their underlying de-
composition principles. In a similar way we consider two 
simulation packages (Section 4). Starting from the observa-
tions in Section 3 and 4, in Section 5, we review literature 
as it critisized tools and models for conceptual richness, 
and completeness. This results in the identification of an 
other set of decomposition principles, that is somewhat tai-
lored to the manufacturing field. On the other hand, an ex-
planation is offered for the conceptual model quality as it 
results from the dominating implicit approach. Section 6 
introduces an alternative, structured, approach towards 
conceptual model engineering. Finally, main conclusions 
are summarized in Section 7. 

2 CONCEPTUAL MODEL CREATION – 
CATEGORIZING ENGINEERING PRINCIPLES 

In this section we briefly categorize principles underlying 
conceptual model creation. Two cognitive approaches are 
suggested as being fundamental in the process of identify-
ing the phenomena to be modeled (Burton-Jones and Meso 
2006):  

• Decomposition: breakdown of a system into semi-
independent components corresponding to its 
many functional parts (Simon 1996). 

• Classification: grouping of similar types of ob-
jects (Parsons 2002). 

 Basically, decomposition starts from a top down ap-
proach towards modeling, while classification works the 
other way around. Essentially, classification boils down to 
an abstraction of similarities among individual things for 
supporting cognitive economy, inference, and communica-
tion, see, for example, Smith and Medin (1981). 

Starting from these fundamental approaches other ap-
proaches may be adopted to refine model engineering. We 
mention the principles of modeling, and methods of simpli-
fication introduced in Section 1. They may be helpful, in 
choosing the right amount of detail, and to tailor model 
scope. Further Liebermann (2003) mentions the possibility 
of obscuring or emphasizing model components. Obvi-
ously, the application of suchlike principles assumes a 
thorough notion of the stakeholders’ objectives, both with 
respect to system analysis and visualization. In this article 
we restrict ourselves to the evaluation of the fundamental 
principles for simulation model engineering. 
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3 BASIC PRINCIPLES – DIAGRAMMING 
TECHNIQUES 

Diagramming techniques are often used as the initial 
(home made) grammar for representing and visualizing a 
system. Several techniques exist, see Pooley (1991) for a 
first introduction. In this section we will consider just three 
of these techniques: Activity Cycle Diagrams, Petri Nets 
and  Flow charts. Reasons for choosing just these tech-
niques lie in the fact that they are well-known, and address 
the general systems case. With this choice of techniques 
we aim to contribute to simple and insightful reasoning. 
For all three techniques multiple implementations exist – 
either formalized in literature or not. Hence, they should be 
considered as families of techniques, rather than being 
characterized as stand-alone. In this section we will discuss 
one specific implementation for each technique. 
 As a starting point for our discussion we consider a 
small case example – a simple job shop. The job shop is 
modeled by applying each of the three diagramming tech-
niques, and illustrates model component use and meaning, 
see Figure 1. Next, we consider each technique in some-
what more detail, and unhide their underlying decomposi-
tion principles, by inference from their choice of compo-
nents. 
 The job shop may be characterized by three entities: 
(1) products, arriving according to an irregular pattern, (2) 
a single machine, capable of processing all types of prod-
ucts, and (3) an operator, being responsible for machine 
setups. The machine may require maintenance. This need 
is to be established every time processing for a product has 
been completed. The machine has to be setup for each in-
dividual product. However, machine setups are not se-
quence dependent, i.e., do not depend on the type of prod-
uct to be processed. The operator also has specific tasks at 
other departments. 
 Figure 1a represents the job shop by an activity cycle 
diagram. Activity cycle diagrams make use of two sym-
bols: the dead state, i.e., waiting for some condition to be 
77
fulfilled, and the active state, i.e., some activity other than 
waiting. Activities for each entity are described in terms of 
a cycle of these states. Relationships between entities fol-
low from their cooperation in active states. For example, 
the execution of an operation requires the availability of 
both a product and a machine. Use of Activity cycle dia-
grams is advocated in case of a system with a strong 
queueing structure (Pidd 1998). 
 An alternative way of modeling of the job shop is 
shown in Figure 1b. Here a Petri Nets formalism is used 
for modeling the job shop. Petri Nets consist of four types 
of components: (1) movable entities called “tokens”, (2) 
transitions, concerning transformations of tokens, (3) 
places, for temporarily storing tokens, and (4) arcs, for 
connecting places and transitions. In Figure 1b, tokens de-
pict products, the machine and the operator, while transi-
tions model shop activities. Further, Petri Nets foresee in 
an explicit notion of dynamics, i.e., transitions are allowed 
to execute (“fire”) if tokens are available at all its input 
places. For example, the distribution of tokens in Figure 1b 
allows for a start of the “operation”. Note how this rule 
also implies the need for an additional transition for model-
ing machine setup. Many alternative choices are described 
in literature as far as the definition of Petri Nets’ compo-
nents and their dynamics are concerned, see Murata (1989) 
for an introduction. Here we consider timed Petri Nets, 
where times are associated with the duration of a transition. 
 Flow charts, or logic flow diagrams, model the logic 
of the system rather than the process flow (Robinson 
2004). Figure 1c models shop behavior in case of a product 
arrival, as a sequence of decisions and processes. Note that 
this is a partial model. Similar diagrams may be developed 
for the case a machine completes service, a machine has 
been repaired or setup, and the arrival of an operator. 
 In Table 1 we give an overview of model components 
for the three diagramming techniques. We use this over-
view to infer seven underlying  decomposition  principles,  
 

 
Table 1: Choice of model components for diagramming techniques 

 
Model Compo-

nents 
 
Diagramming  
Technique 

Entities Activities Relationships Dynamics 

Activity cycle 
diagrams 

Entity – cycles between 
dead state and life state 

Dead state – waiting 
Active state – processing 

Arcs - joint active states  

Petri Nets Token – input and out-
put of a transition 
Transition – logically 
fixed operation; Place – 
storage for tokens 

Place – waiting 
Transition – processing 

Arcs – joint transitions Firing – transitions 
start if tokes are pre-
sent in all its input 
places  

Flow charts  Decision making 
Processing 

  
8



Van der Zee and Van der Vorst 

 

 

 

Figure 1: Diagrams for job shop example 
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Table 2: Relating model components to decomposition principles underlying diagramming techniques 
 

Decomposition principles Activity Cycle Diagrams Petri Nets Flow Charts 
I External and internal entities  X  
II Movable and non-movable entities  X  
III Active and passive entities  X  
IV Waiting and processing X X  
V Decision making and processing   X 
VI Relationships build on joint activities X X  
VII Dynamics follows from presence of input for processes  X  
 

see Table 2. Both Tables 1 and 2 start from the explicit 
(visual) notion of model components. 
 Let us now discuss the decomposition principles in 
somewhat more detail. For Petri Nets, the concept of a sys-
tem boundary (I) is made explicit. For example, the transi-
tion Product arrival acts as a source of products, while the 
transition Product leaves represents an external entity of 
type sink. Further, a distinction can be made between mov-
able and non-movable entities (II). Where tokens in Petri 
Nets depict movable entities, transitions may present infra-
structural entities. Remark, that infrastructure is related to 
the setup of the diagram, not a-priori to the physical or 
logic underlying the system. Both movable entities and 
non-movable entities may be further classified as being ac-
tive, i.e., initiating activities, or passive, i.e., being acted 
upon (III). Here transitions may be considered active, 
while places and tokens are passive. 
 In both activity cycle diagrams and Petri Nets activi-
ties waiting and processing (IV) are distinguished. Recall, 
how this makes them fit for modeling queueing systems. 
Alternatively, for flow charts, it is distinguished between 
decision making and processing (V). 

Relationships between entities follow from their joint 
participation in activities (VI). They are expressed by arcs. 
Finally, Petri Nets foresee in an explicit mechanism for 
representing dynamics, through the “firing” of transitions 
(VII). 
 Table 2 makes clear how each diagramming technique 
builds on a subset of decomposition principles. The inclu-
sion of specific decomposition principles may make it 
more or less fit for specific applications. For example, the 
explicit notion of decisions may make a flow chart a suit-
able vehicle for modeling a decision algorithm, but less 
suitable for modeling process flow. On the other hand, at 
first sight, Petri Nets may offer advantages in case of a dy-
namics representation of the system. A more general ob-
servation on the use of these diagramming techniques con-
cerns their contextual richness. As they build on a limited 
set of simple components their size may easily explode for 
real-life case settings. Consequently, diagrams often have 
to be enriched with supplemental texts or by modifications, 
following from the application of additional decomposition 
or classification principles. Next to model size, also model 
complexity may hinder practical use. For example, Kamper 
(1991), and Ryan and Heavey (2006) indicate that for real-
780
istic systems Petri Nets make it difficult for non-experts to 
reason with the logic contained within the model. 

4 TAILORED PRINCIPLES – SIMULATION 
PACKAGES 

Next to diagramming techniques also simulation tools may 
guide conceptual modeling. This may happen in an indirect 
way by relating the development and definition of initial 
diagrams to the foreseen tool for model coding, as well as 
in a direct way - in case simulation tools are used as a first 
basis for setting up preliminary (conceptual) models. In 
this section we assess underlying decomposition principles 
for simulation tools. We do so not with the idea of a full 
coverage of all tools, or even of a single tool. Clearly, the 
abundance of available simulation packages (Swain 2005), 
and their individual world view and level of detail hinders 
this. Rather, we seek to illustrate how simulation tools fur-
ther detail system decomposition, using an additional set of 
principles, which is tailored to the field of interest. There-
fore we studied just two of these packages: EM-PlantTM 
and Enterprise DynamicsTM. Both packages are object ori-
ented and are widely applied in manufacturing practice. As 
findings for both packages are rather similar we condense 
our discussion here by only highlighting observations on 
EM-PlantTM. 
 To infer basic decomposition principles underlying 
decomposition principles for EM-PlantTM we studied the 
components of its so-called basic library, its introductory 
manual (Tecnomatix 2003) and its help function. The basic 
library is the set of building blocks that is used as a start 
for all model development, including dedicated libraries – 
tailored to a specific field of interest. Table 3 shows how 
different types (classes) of entities are foreseen. In turn, 
each of these classes my be further decomposed in sub-
classes. Entity descriptions are derived from the definitions 
supplied by the tool builders. Original definitions are 
somewhat condensed in order to meet space requirements, 
and clarity in typifying entities. Note how we do not dis-
tinguish between classes and their graphical representation. 
In principle, class definitions and graphical representations, 
may concern alternative grammars for conceptualization, 
for which a one to one mapping is not always guaranteed. 
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Table 3: Decomposition of entities for EM-PlantTM 

 
EM-PlantTM Entity decomposition    

Active units: move on its 
own 

Transporter: object with a propulsion system allowing it to 
move on its own on tracks. It also has loading capacity for 
transporting MUs 

Moving units (MUs): 
physical or logical parts 
being transported or 
processed by material 
flow objects 

Passive units : parts be-
ing acted upon 

Entity: parts being produced and transported, but not trans-
porting other work pieces 
Container: object for transporting other Mus 

Active units: transport or 
process parts 

Source: produces MUs in a single station 
Drain: a single processing station for destroying MUs 
SingleProc: a single station for processing an MU. 
ParallelProc: concerns several stations for processing MUs in 
parallel 
Assembly: adds mounting parts to a main part 
DismantleStation: removes mounting parts from the main MU 
or it creates new MUs 
Buffer, PlaceBuffer: facility for temporary starage of MUs. 
Sorter: sorts the MUs located on it according to sort criteria 
Line: represents a conveyor system or a part thereof 

Material flow: 
objects repre-
senting, process-
ing, transporta-
tion or storage of 
materials 

Fixed units: work sta-
tions in a factory 

Passive units: store, 
route or display parts 

Store: stores any number of MUs you define 
Track: represents part of a transport line, with or without auto-
matic routing 
FlowControl: allows to model common strategies for diverging 
and converging the flow of materials 
Cycle: synchronizes the transfer of MUs from station to station 

Controls: Objects for 
programming controls 
and for commenting 
them 

Methods: program controls that other objects start 
Variable: global variable that other objects and methods can access during a simulation 
run 
Comment: explanatory notes to a simulation model 

Lists and tables: data 
storage 

TableFile, CardFile, StackFile, QueueFile: store data in alternative formats 
TimeSequence: controls and administers time-related values, such as shift plans or ma-
chine maintenance 

Time patterns: when and 
how moving objects are 
created 

Generator: time based activitation of methods 
ShiftCalendar: model shift patterns in systems 
Trigger: changes values of attributes and global variables according to a custom pattern 

Information flow: 
objects for pro-
viding the simu-
lation run with 
information 

Interfaces: Objects that 
allow to exchange data 
with other applications 

XMLinterface, FileInterface, FileLink: alternative types of interface 

Moving units (MUs): 
workers being idle or at 
work 

Worker: a movable working person who performs a job on a work place Resources:  
objects for rep-
resenting worker 
and worker ac-
tivities Fixed units: work sta-

tions in a factory 
Footpath: models walking distances between the WorkerPool and work stations or be-
tween work stations 
Worker pool: contains idle workers 
Work place: actual place at the station, where the worker performs his job 
Exporter, Broker: assign workers to stations 
 

 

 
 As a first step in model decomposition EM-PlantTM 
distinguishes between three elementary modalities, i.e., 
types of flow, for manufacturing systems: material flow 
information flow, and resources, see Table 3. For the mate-
rial flow, further decomposition is realized by applying ba 
sic principles I-III, see Table 2. This is illustrated in Figure 
2, which relates choice of entities to decomposition princi-
ples (in italics). Next, applying the concept of classifica-
tion, results in a number of subclasses per functional class. 
For resources a similar set of principles is used. Note how 
resources are restricted to workers, and their associated in-
frastructure, and control. 
 For the information flow, alternative decomposition 
principles are applied. Where material flow entities appeal 
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to the physical elements of a manufacturing system, the 
choice of information flow entities seems to be largely mo-
tivated by a general systems focus. This follows from enti-
ties, that may be characterized as programming facilities, 
rather than building blocks tailored to the manufacturing 
field. Next to the direct access to the internal language, i.e., 
SimTalkTM, via Methods, there is the explicit notion of data 
storage in alternative formats. Further, direct manipulation 
of the event list is foreseen for activating entities, and code, 
for example, to model shift patterns. Finally, the library 
contains interfaces with external software. 



 Van der Vorst 
Van der Zee and
 

Figure 2: Relating choice of entity for EM-PlantTM to de-
composition principles 
 
 For material flow EM-PlantTM distinguishes between 
three basic types of activities: production, transport and 
storage. In principle, most of the fixed units, see Table 3, 
may undertake each of these activities – as made explicit in 
performance registration. However, initialization for each 
entity allows for a specific choice of activity. For example, 
a SingleProc is associated with production, while a Store is  
related to  storage. This  implies an  initial entity classifica-
tion. For resources similar types of activities can be distin-
guished. However, they are restricted to a specific type of 
resource, i.e., the worker. 
 Decision making activities may be directly related to 
each fixed material flow entity through entrance and exit 
controls. These controls allow for calling on a method, i.e., 
code based on the internal language. Also standard or user-
defined priority rules for dispatching may be embedded in 
material flow entities, for example, to sort or route mov-
able entities. 

Objects representing alternative modalities 
Material flow 
 Movable and non-movable entities (II) 
 Movable entities 
  Active and passive entities (III) 
  Active entities 
   Objects with own propulsion 
  Passive entities 
    Object being produced and transported 
   Objects for transporting other objects 
 Non-movable entities 
  Active and passive entities (III) 
  Active entities 
   External and internal entities (I) 
   External entities 
    Sources and sinks 
   Internal entities 
    Single station and parallel stations 

 Type of dominant operation: Processing, 
 (dis)assembly, storage, transport, sorting 

  Passive entities 
   Type of function: store, display, route 
Information flow 
 Control logic, list and tables, time patterns, and 
 interfaces 
 Control logic 

 Elements for model control: Methods,  
 variables and comments 

 Lists and tables 
  Alternative means for data storage within model 
  context 
 Time patterns 
  Alternative types of time patterns 
 Interfaces 
  Alternative types of interface with external software 
Resources 
 Movable and non-movable entities (II) 
 Movable entities 
  Workers, movable working persons 
 Non-movable entities 
  Elements for modeling worker infrastructure: Foot  
  path, worker pool, work place, and assignment  
  controls 
78
 For information flow there is no clear notion of activi-
ties. This follows from the building blocks being pro-
grammers’ facilities rather than manufacturing systems’ 
elements, also see above. 
 Entity relationships may be specified for fixed mate-
rial flow units. Relationships are founded on the exchange 
of movable units. Here types of movable units exchanged 
determine the relationship. 
 Basically, model dynamics is related to the input of 
movable material flow elements at fixed material flow enti-
ties. Typically, this starts an activity. Note how activities 
include the possibility of waiting for a next activity. Other 
means to start activities are time patterns, for example 
worker shifts. While time patterns have an explicit notion, 
being part of the library, also “implicit” access to the event 
list is possible through model code. 

5 AN INITIAL ASSESSMENT OF CONCEPTUAL 
MODEL CREATION 

In previous sections we discussed a few examples of dia-
gramming techniques and their underlying decomposition 
principles. In this section we relate these initial observa-
tions to criticism in literature on manufacturing simulation 
models’ conceptual richness and completeness. We have 
two objectives in doing so: (1) explain criticism building 
on a more thorough notion of the creative principles under-
lying conceptual modeling (2) highlight additional princi-
ples that address the criticism. 
 Mize et al. (1992) point at the fact that traditional lan-
guages do not provide natural constructs for separately and 
distinctly modeling the three types of basic functions, i.e., 
physical, information and control/decision functions. In 
addition, the constructs provided for information and con-
trol are often hard coded and dispersed in the model (Pratt 
et al., 1994). Clearly, this hinders modification and re-use 
of code. A policy that adheres rather strictly to the “one 
component-one function” doctrine would suffer less from 
these drawbacks. In turn this provides a more natural mod-
eling environment as the modeler is forced to think about 
model elements independently. It is interesting to see how 
EM-PlantTM distinguishes between modalities. However, 
the notion of  the information flow – and especially – the 
decision flow is weak – leaving conceptual modeling to the 
model builder rather than offering guidance. 
 According to Lefrancois and Montreuil (1994), and 
Lefrancois et al. (1996) a distinction between intelligent 
and non-intelligent entities permits a more natural and 
richer presentation and implementation of systems mod-
eled. In such a context, intelligent beings are modeled as 
agents. Agents are used to implement decision rules inher-
ent to manufacturing system planning and control. Exam-
ples include routines for scheduling, dispatching and re-
leasing jobs for a machine or department. According to 
Lefrancois and Montreuil (1994), and Lefrancois et al. 
2
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(1996) workstations and work orders, are assumed to be 
non-intelligent. Note how their work assumes a further de-
tailing of the concept of passive and active entities with re-
spect to decision making. Such detail is not met by the dia-
gramming techniques and simulation tools studied here. 
 Van der Zee and Van der Vorst (2005) stress the sepa-
rate and explicit notion of activities in simulation model-
ing. They advocate to denominate all activities – including 
information processing and decision-making – in the 
manufacturing system as “jobs” The job concept is meant 
to bring two important advantages. Firstly, the use of this 
common denominator for all activities will provide a clear 
and natural mechanism for event scheduling, where events 
are related to the start and the completion of jobs. Sec-
ondly, an explicit notion and allocation of company activi-
ties, increases visibility and traceability of decision vari-
ables. Note how the modeling of decision logistics and 
supportive information processing is left largely to the ana-
lyst. Only basic support is offered for common dispatching 
rules.  

6 DISCUSSION – OFFERING STRUCTURE IN 
CONCEPTUAL MODEL CREATION 

The evaluation of diagramming techniques and simulation 
tools with respect to their conceptual backing brings us: (1) 
an initial insight in principles for model decomposition and 
classification, and (2) the logic of their application in terms 
of model completeness, and richness. Clearly, the explicit 
notion of such principles has a direct value for educating 
simulation engineers in setting up conceptual models. 
Moreover, it points at the need for a structured approach 
towards conceptual model creation, see Figure 3.  
 

 
 

Figure 3: Conceptual model engineering 
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 Figure 3 shows how conceptual model creation may be 
subdivided in 4 engineering steps: 

1. Domain analysis, resulting in definitions of prin-
ciples for model decomposition and classification. 

2. Framing, i.e., combining principles to develop a 
conceptual framework for defining model entities, 
activities, relationships, and their dynamics. 

3. The conceptual framework should be the basis for 
defining a grammar, i.e., a technique supporting 
an explicit (graphic) model notion. 

4. Model building, i.e., the application of the gram-
mar for a specific case example.  

 At the same time, the figure clarifies the current im-
plicit practice in terms of a pragmatic bypass of the afore-
mentioned steps. 

7 CONCLUDING REMARKS 

In this article we considered guidance for the analyst in his 
job of conceptual model creation. Starting from the obser-
vation that domain specific guidance in this respect is 
scarce, we evaluated a few basic diagramming techniques 
and simulation tools for their underlying principles for 
model decomposition and classification. Where literature 
critisizes manufacturing simulation models for conceptual 
richness and completeness, unhiding these principles helps 
in an in-depth explanation and adjustment of their short-
comings. Moreover, the explicit notion of principles for 
conceptual creation may be helpful in simulation engineer-
ing education. It is suggested that such an education should 
include a more structured approach towards conceptual 
model engineering. Such an approach distinguishes itself 
from many of the current implicit approaches, which may 
be characterized by a “pragmatic bypass” of key phases in 
conceptual model structuring, i.e., the isolation of relevant 
principles for conceptual model engineering, and their 
framing (combination) to make up a complete and rich 
conceptual framework underlying model grammar. 
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