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ABSTRACT 

We describe two variance reduction methods for estimating 
the mean time to to failure (MTTF) in Markovian models of 
highly reliable systems. The first method is based on on a ratio 
representation of the MTTF and employs importance sampl- 
ing. The second method is based on on a hybrid 
simulation/analytic technique where the number of simulated 
transitions are reduced by computing partial results analyt- 
ically. Experiments with a large example show the effective- 
ness of both techniques for highly reliable systems. 

1. INTRODUCTION 

The requirement for highly reliable systems, such as airborne 

computing systems, is increasing the importance of reliability 

and mean time to to failure (MTTF) prediction during the design 

phase of these systems. These systems are different than 

highly available systems, such as banking or airline reservation 

systems, where continuous operation (availability) is more 

important. In In highly reliable systems any system failure dur- 

ing the mission causes a mission failure. While such systems 

can typically be modeled as Markov chains (see, e.g., [6]), the 

size of the corresponding Markov model increases rapidly 

with complexity of the system. Thus conventional numerical 

solution techniques are only feasible for relatively small mod- 

els, i.e., simple systems. Simulation analysis is an alternative 

approach, however, because system failures are rare, ex- 

tremely long simulations may be required in order to to obtain 

accurate estimates of the measures of interest. 

Our goal is to to obtain variance reduction methods which are 

applicable to to a broad class of models. Specifically, we are in- 

terested in models defined by the reliability and availability 

modeling language described in [7], [7], so that the techniques can 

be implemented in a software package and made available to to 

designers in an automatic and transparent fashion. A typical 

system contains multiple component types with redundant 

units for each component type. Failure of these systems is 

usually caused by exhaustion of redundancy or by a combi- 

nation of component failures leading to to a system failure. 

Failed components may be repaired. If all components are 

repairable and component failures are Poisson, then a regen- 
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erative state for the. system (see, e.g., [4]) is the state where 

all units of all component types are operational. If, in addi- 

tion, all repair times are exponentially distributed, then, typi- 

cally, a continuous time Markov chain is obtained. As 

recommended in [ [ 1 1 I], we transform the continuous time chain 

into an appropriate discrete time Markov chain. In In [S] the 

estimation of steady state availability for such systems was 

discussed. In In this paper, we discuss estimation of the MTTF. 

Specifically, we consider an importance sampling method 

(see, e.g., [9]) and a hybrid simulation/analytic method. 

Importance sampling for rare event simulation has been suc- 

cessfully used in [2], [2], [3], [3], [8], [8], [12], [12], [ [ 131 131 and [ [ 141. 141. Proper se- 

lection of the importance sampling distribution makes the rare 

events more likely to to occur which results in a variance re- 

duction. The key, of course, is to to choose a good importance 

sampling distribution. The theory of large deviations was used 

in 131, 131, [13], [13], and [14] [14] to to select an effective distribution for 

problems arising in Markov chains with “small increments”, 

random walks, and queueing systems, respectively. 

Effective heuristics were used in [2] [2] and [12] [12] to to select impor- 

tance sampling distributions for steady state availability esti- 

mation in large machine repairmen-like models. For example, 

four orders of magnitude reduction in variance was reported 

in [2] [2] for a system with 70 70 components (the Markov chain for 

this model has 270 270 states). For regenerative systems, steady 

state performance measures can be expressed as a ratio. In In 

[2], [2], a single importance sampling distribution was used to to es- 

timate both the numerator and denominator of this ratio. The 

distribution used in [2] [2] is dynamic in the sense that it does not not 

correspond directly to to a time homogeneous Markov chain. 

We call this technique Dynamic Importance Sampling (DIS). 

In In [Xl, different dynamic importance sampling distributions 

were used to to estimate the numerator and denominator inde- 

pendently which resulted in additional variance reduction 

(actually, importance sampling was not not used at all to to estimate 

the denominator). We call this technique Measure Specific 

DIS (MSDIS). 

The importance sampling technique discussed in previous pa- 

pers does not not yield significant variance reductions for esti- 

mating the MTTF using the standard simple estimator. An 

intuuive reason for this is as follows. When we make failure 

events occur more often often by choosing an appropriate impor- 

tance sampling distribution, the value of the estimator ends 

up smaller than the actual value and, in addition, the likeli- 

hood hood ratio is less than one. This actually ends up producing 

variance rather than reducing it. However, if we formulate the 

MTTF problem as a ratio of two expectations (as shown in 

Section 2), then significant variance reductions can be 

achieved using importance sampling. In In Section 2, 2, both DIS 

and MSDIS methods are used to to estimate the ratio represen- 

tation of the MTTF. The MSDIS sampling scheme proposed 

in [8] [8] gives the best results. 

In In Section 3 3 we outline a hybrid simulation/analytic method 

described in [ [ 101 101 and describe its application in estimating the 

MTTF in simulations of highly reliable systems. In In highly re- 

liable systems, a large number of transitions typically occur 

before the system fails. The hybrid method transforms the 

original Markov chain into a different, but related, Markov 

chain. The expected value of an appropriately defined func- 

tional of the transformed Markov chain is identical to to the 

MTTF. Furthermore, the expected number of transitions until 

failure is less in the transformed chain than in the original 

chain. This reduction usually translates into a variance re- 

duction since, for a given number of total transitions simu- 

lated, more failures occur in the transformed chain than in the 

original chain. 
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In In Section 4, 4, we summarize the results, discuss the relative 

merits of the two methods and indicate future areas of re- 

search. 

2. RATIO METHOD 

Let jr,, s > 0) be a continuous time Markov chain (CTMC) 

with state space E = 10, 10, 1,2, 1,2, . . ..m (N may be either finite or 

infinite), and transition rate matrix Q = (q(ij)). Let 

q(i) = - q(i,i) = Zq(ij) denote the total rate out out of state i. 
i#l 

Pick a starting state, say state 0, 0, set Y0 = 0 0 and for any set B 

let aB be the first entrance time of the CTMC to to B. In In a reli- 

ability model, we generally take state 0 0 to to be the state for 

which all components are operational. Let F = E be a set of 

states (e.g., in a reliability model they might be the set of 

states where the system is failed) for which 0 0 p F. If state 0 0 

is a regenerative state and the set F represents a rare set of 

states, then Walrand [ [ 141 141 applies the approximation 

E[cw,]-E[u,]/P{a, < a03 and then uses direct simulation to to 

estimate the numerator E[cr,] and importance sampling to to es- 

timate the denominator P{+ < a,,]. (Since F is a rare set of 

states, Pja, < a03 is very close to to zero.) In In fact for any 

CTMC we have the exact relationship 

aa,1 = 
E[ min (q,, adI 

PlaF c qJ 
(2.1) 

which is easily obtained by considering the two cases 

{a, < cyJ and (1~~ > aFl, and applying the Markov property 

attimecu,ifor,<a, 

Given Equation 2.1 2.1 we can construct what appears to to be a 

new estimator for E[cr,]. The new estimator is a ratio estimator 

for the right hand side of Equation 2.1. 2.1. The observations for 

this estimator are obtained by sampling regenerative cyctes up 

to to min (0~~~ aJ. Perhaps surprisingly, it turns out out that this new 

estimator has the same asymptotic variance as the naive esti- 

mator. The reason is that the naive estimator is effectively 

identical to to the new estimator, in the sense that the two esti- 

mators are probabiistically identical at the instant at which 

failures occur. The difference comes from the fact that 

Equation 2.1 2.1 is formulated in terms of the probability of the 

rare event ( P{a, < a03 ) which can be estimated effectively 

using importance sampling. 

As recommended in [S] and [ll], we simulate only the em- 

bedded discrete time Markov chain {X., n n 1 1 01 01 and use 

deterministic holding times hi = l/q(i). The transition matrix 

of [X,, n n 2 2 01 01 is P = (PJ where P, = q(ij)/q(i) for i # # j and 

8, 8, = 0. 0. 

As in [8], [8], we consider two methods of estimating the ratio in 

Equation 2.1. 2.1. The first method, called dynamic importance 

sampling (DIS), uses the same importance sampling distrib- 

ution (and the same sample paths) to to estimate both the nu- 

merator and denominator of Equation 2.1. 2.1. The second 

method, called measure specific dynamic importance sampling 

(MSDIS), uses different importance sampling distributions for 

the numerator and denominator which are then estimated in- 

dependently. In In fact, like W&and, we use direct simulation 

(no importance sampling) to to estimate the numerator since 

very stable estimates of E[ min ((Y,,, c+)] can be obtained via 

direct simulation. In In addition, for such highly reliable systems, 

the expected number of transitions in a regenerative cycle is 

typically small. Expressions for the resulting asymptotic vari- 

ances are given in [8]; [8]; they are closely related to to the 

asymptotic variance obtained when applying the regenerative 

method. 

The advantage of MSDIS over DIS stems from the fact that, 

in MSDIS, by using different changes of measure for estimat- 

ing the numerator and denominator, we can reduce the vari- 

ance of each estimator, individually, as much as possible. In In 
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DIS a compromise has to to be reached because using a change 

of measure which re:duces the variance of one estimator might 

increase the -variance of the other (in addition to to the uncertain 

effect on on the covariance). 

We use the specific importance sampling method suggested in 

[8] [8] for simulating models of highly reliable systems of the 

general type described in the Introduction. Basically, we pick 

a change of measure which will take the system on on its most 

likely path to to a failure state from its current state. In In a given 

state during the simulation where both failure and repair 

transitions exist, we use the total combined probability of all 

failure transitions as Individual failure transitions could be 

selected from a discrete distribution which is in the ratio of 

their individual failure rates. However, we give more impor- 

tance to to those failure transitions which correspond to to the 

component types which have largest number of components 

failed, by selecting them with a total conditional probability 

p”. Thus, once a failure in a given component type occurs, the 

redundancy in that type is exhausted quickly. If all compo- 

nent types have the same number of components failed, then 

the above selection rule is not not used. We experimented with 

the values of and p” for a large example. 

To test the method., we considered a model having ten types 

of components, with two components of each type. Each 

component type has a failure rate of A and repair rate of p. 

There is one repairman in the system who services failed 

components with a service in random order queueing disci- 

pline. The system is functioning if at least one component of 

each type is functioning. 

Because the numerator and denominator are simulated inde- 

pendently, one must allocate computer time to to estimating each 

of these quantities when using MSDIS. A simple optimization 

problem ‘can be formulated to to minimize the asymptotic vari- 

ance. The optimal fraction of time allocated to to the numerator 

is fl,‘(l +- /3) where p = finJ(E[~~,]&o,) and tN (t,) is 

the expected time to to generate a sample for the numerator 

(denominator) and (r,,, ((TV) is the standard deviation of a 

sample for the numerator (denominator). In In this application 

setting, the optimal asymptotic allocation usually suggests de- 

voting so little time to to the numerator that, even in moderate 

sized samples, unstable estimates of its variance may be ob- 

tained. Therefore, for practical considerations, we always al- 

locate at least 10% of the run to to estimating the numerator. 

In In the example, a total of 4,000,OOO events were simulated for 

each case. For MSDIS, 400,000 400,000 events were used to to simulate 

the numerator and 3,600,OOO were used to to simulate the de- 

nominator (in accordance with our 10% rule of thumb). The 

results of our experiment are given in Table 1 1 for different 

values of h h with 11 11 = 1. 1. As can be seen there is considerable 

reduction in the confidence interval widths from Direct to to DIS 

to to MSDIS. As the values of and p” are increased we get a 

considerable variance reduction for MSDIS. Eventually for 

very large values of and p” the variance of the estimator 

starts increasing. In In fact, for these values the variance estima- 

tor took longest to to stabilize. 

The above heuristic works extremely well for balanced sys- 

tems where each type of component has approximately the 

same failure and repair rates and about the same amount of 

redundancy, such as the one described above, and we have 

found that it can also be very effective for unbalanced sys- 

tems. Different selection rules for p” may have to to be used to to 

get greater efficiency for unbalanced systems. 
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Table 1 1 

Mean Tie to to Failure Estimates for the 
Fault-Tolerant System Example with p = 1. 1. 

Simulation Run Lengths = 4,000,OOO Events 

MTTF with Half-Widths of 99% Confidence Intervals 

z p” DIS MSDIS 

h=lO-3 0.5 0.5 49304k 288 288 49303 49303 f 198 198 
Exact=49257 0.9 0.9 49215+ 427 427 492462 492462 51 51 
Direct=47745 f 0.99 0.99 5138324158 5138324158 491705243 491705243 

2714 2714 

h=lO-5 
Exact=4.999x lo* 
Direct=5.2642x 108f 

3.1x 108 108 

0.5 0.5 4.9923x lo*f3.0x 106 106 4.9978 4.9978 x 10s&2.1 x lo6 
0.9 0.9 5.0093x 108*4.4x 106 106 5.0000x 10s+6.3x lo5 
0.99 0.99 5.0309x 108f 1.3x 4.9999x log+ 1.8x 105 105 
0.999 0.999 5.0084x 108f4.1x 4.9993 4.9993 x 108+4.0x 104 104 
0.9999 0.9999 4.5994x log* 1.2x 108 108 5.0002x 108k3.4x lo4 

3. HYBRID METHOD 

The hybrid method we consider simulates a different Markov 

chain with the goal of reducing the number of transitions until 

failure. The method is described more generally in [lo] and 

is based on on the equations for the mean accumuiated reward 

until absorption into a set of states (see, e.g., [l] or [ll]). 

A certain amount of notation is inevitable. For sets A and B 

and any matrix M, let MAB = (ikf, : : i E A, j E B) and for a 

vector x let x, = (xi : : i l A). Let { X,, n n 2 2 O] denote a discrete 

time Markov chain with a finite state space E and transition 

matrix P = (PJ. Let AC denote the complement of the set A 

and let rB be the first entrance time to to the set B. Define the 
7,*-l 

random variable Y = ,zO f(X,). Let y be the vector whose i ‘th 

component is yi = E[ Y ] ] X, = i], and let be the matrix with 

elements pij = PjX,Ac =j]&=i]forieAandjeAC.Then 

yA satisfies the system of linear equations y” = f, + PAAyA 

where the vector f has i ‘th component f; = f(i). Assuming 

that &,, - PAA)-* exists, then 

Y.-l = (IA,4 - PAA)-‘fA 9 

= (IRA - PAa)-‘PAj 3 3 j E AC. 
(3.1) 

These equations form the basis for the hybrid method. Let F 

denote the set of states for which the system is considered 

failed, S, be the set of states for which fewer than k compo- 

nents have failed, and Fk = S; ; ; we assume S,tV = +. Con- 

sider a new Markov chain n n 1 1 01 01 with transition matrix 

P and reward vector f where pti = P{X,Fh = j]&, = il for 

i E S,, j E Fk (note that pU = 0 0 for i, j E Sk), pii = Pi, for 
TP, - 1 1 

i E = Ef &j-(X.) 1% = i] for i E S,, =f(i) 

for i E Fk. Let be the first entrance time to to the set F in this 
TP -1 1 1 

new Markov chain. If Z = nXOof(X,,) and = then 

E[Z I& = i] = = i], i.e., one could simulate either 

{X,1 or to to estimate the expected cumulative TeWaTd until 

failure. Note that if f(i) = hi where hi is the mean holding time 

in state i in the associated continuous time Markov Chain, 

then E[Zj is the MTTF (for an appropriately defined initial 

state). Appiication of this method requires pre-computing 
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and f which is accomplished by solving Equations 3.1 3.1 with 

A = S,. 

The Markov chain has the following interpretation: 

whenever the chain enters a state in S, with fewer thank failed 

components it jumps in one transition to to a state in Fk with at 

least k failed components (and the reward vector is modified 

to to be the expected reward earned by the original chain until 

exit from S,). Thus many transitions may be saved since, in 

models of highly reliable systems, the expected number of 

transitions to to go from S, to to Fk may be large. On the set Fkr 

and {X,1 are lstochastically identical. 

As discussed in [lo], if transitions in the two chains require 

the same amount of computer time, then an approximation to to 

the variance reduction is the ratio 

VR = E[T,]. If, as has been our expe- 

rience in reliability simulations, then 

VRZE[~‘J/E[TJ. If, in the original chain, the probability of 

a failme before a repair is 0(&,)x0 when there are j failed 

components, then the expected number of transitions until 
k-l 

reaching a state with k failed components is 0( l/jv,~j) and 

thus we expect the hybrid method to to produce a variance re- 
k-1 

duction of VRXO(~!,&~). If ej = E for allj, then VRXO(@-‘). 

This will be verified for several examples. 

Consider now the general class of models described in the In- 

troduction with M types of components and redundancy. 

Figure 1 1 depicts the transition structure on on the set S, and its 

interface to to the set F2. The set S, = 10, 10, 1, 1, . . . . . . , , M) with state 

0 0 corresponding to to no no component failures and state i corre- 

sponding to to one component of component type i. Because of 

this special structure, Equations 3.1 3.1 can be solved analytically 

for the case k = 2: 2: flo = (f, + jfrPOd)/(l - J!,PO#‘J and 

=A + for 1 1 5 5 i 5 5 M. Similarly, if E, is the proba- 

bility of exiting S, via state j given that X, = i, then 

E”j = P&l - PN)/(l - lflPr$“) for 1 1 2 2 j 5 5 M, E, = 

for1 z;i#:js:M,and.E,,=(l-P,)+P,E,,forl SisM. 

Transitions fra,m a state i E S, to to a state k E Fz can be simu- 

lated as follows: first an exit state j E S, is selected with 

prcbability Ei,, then a state k l Fk is selected with probability 

pjk/‘(l - &I. 

For k > 2, 2, systems of equations of size ] ] S, ] ] need to to be 

solved. This may be feasible for small values of k, but the 

number of states in S, depends on on the queueing discipline for 

the repairmen. For example, if each type of component has 

its own repairman, then ] ] S, 1 1 = O(Mz). 

We now consider the application of the hybrid method for 

estimating the MTTF in two examples. The fist example is a 

model of a fault-tolerant system with two types of compo- 

nents and two units of each type. All units are initially oper- 

ational. Units of component types 1 1 and 2 2 fail at rates h, h, and 

X,, respectively. They are repaired according to to a FCFS disci- 

pline by separate repair facilities at rates y, and pL2. respec- 

tively. The system is operational if at least one unit of any type 

is operational. The resulting Markov chain, while having only 

nine states, is illustrative of the performance of the hybrid 

method. We applied the hybrid method with k = 2,3 2,3 and 

computed the variance ratio numerically using the techniques 

described in [ll]. For ,n, ,n, = pL2 = 100 100 and h, h, = A, = 1, 1, we 

obtained VR = 0.03 0.03 for k = 2 2 and VR = 0.0004 0.0004 for k = 3. 3. 

If we increase the failure rates by setting h, h, = h, h, = 10, 10, then 

VR = 0.25 0.25 fork = 2 2 and VR = 0.028 0.028 fork = 3. 3. Most of the 

variance reductions are due to to the reduction in the expected 

number of transitions until failure and are consistent with the 
k-l 

prediction that VRXO(~~, E,). 

The second example is the model with ten types of compo- 

nents and two components of each type described in Section 

2. 2. The repair rate was set to to be n n = 1 1 and the component 

failure rate was X = 0.001. 0.001. This model was simulated with 
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Figure 1. 1. Transition structure on on the set S,. 

k = 2 2 and the estimated variance ratio was VR = 0.036. 0.036. For 

these parameter settings the predicted variance reduction is 

F, = 0.019 0.019 which is of the same order of magnitude as the 

observed variance reduction. The apparent factor of two dis- 

crepancy between the actual and predicted variance re- 

ductions is due to to the fact that hybrid method (as we 

implemented it) requires two transitions, rather than one, to to 

exit S, : : one to to select the exit state in S, and another to to select 

the entrance state in F2. For a general purpose simulator this 

represents a realistic implementation of the method. For this 

example, the best variance reduction using MSDIS yields a 

variance ratio of 0.00035 0.00035 (from Table 1, 1, with 

= p” = 0.9). 

4. SUMMARY 

In In this paper we described two methods for estimating the 

MTTF in a class of Markovian models of highly reliable sys- 

tems. The first (ratio) method relies on on a ratio representation 

of the MTTF. The numerator of the ratio is estimated using 

direct simulation while the denominator is, independently, es- 

timated using importance sampling. The second (hybrid) 

method combines simulation and numerical techniques. The 

hybrid method requires some preliminary computations, al- 

though in its simplest form these can be done analytically. A 

different, but related, Markov chain is then simulated. In In this 

Markov chain, the expected number of transitions until failure 

may be greatly reduced. Both methods produced significant 

variance reduction in simulations of a large model. 

Although the two methods are not not necessarily mutually ex- 

clusive, the hybrid method, while effective, has a number of 

disadvantages that reduce its utility when one considers its 

implementation into a broadly applicable availability simu- 

lation package. First, it requires preliminary numerical com- 

putations. Second, the method as described here is 

specifically designed to to estimate the MTTF and requires sim- 

ulation of its own stochastic process. Therefore, the output 

from this method may not not be useful for estimating other per- 

formance measures, such as as the steady state unavailability. 

Third, the method is best suited for situations in which the 

amount of redundancy is low since, in this case, the expected 

number of transitions to to failure in the modified chain remains 

reasonable. More specifically, the practical implementation 

of the hybrid method with k = 2 2 uses direct simulation 

whenever the system is in a state with two or more failed 

components, whereas the ratio method with importance sam- 

pling quickly moves the system through states with more than 

two failed components to to the failed state. Therefore the var- 

iance reductions using importance sampling are potentially 

(and in practice) greater than those using the hybrid method. 

It It might appear that since the ratio method requires simulation 

of two processes, it too too would be of limited value in estimating 
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other performance measures. However, the technique de- 

scribed in [8] [8] for estimating steady state unavailability also 

independently simulates the numerator and denominator of a 

ratio (in that case importance sampling is used for the numer- 

ator and direct simulation is used for the denominator). Fur- 

thermore, the samr: importance sampling distribution can be 

used in estimating both the MTTF and the steady state una- 

vailability so that both of these performance measures can be 

estimated simultaneously. In In addition, it should be possible 

to to apply this technique to to simultaneously estimate multiple 

performance measures at different parameter settings (e.g., 

different failure rates), since this is an inherent capability of 

importance sampling. 

Therefore, our current research is directed towards further 

experimentation with and extensions of the Importance sam- 

pling approach, including improved selection of importance 

sampling distributions for unbalanced systems, its application 

in estimating the failure time and interval availability distrib- 

utions, as well as extensions to to gradient estimation and slmu- 

lations of non-Markovian models. 
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