
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

CODE ANALYSIS AND CS–XML

Kara A. Olson
C. Michael Overstreet

Department of Computer Science
Old Dominion University

Norfolk, VA 23529–0162, U.S.A.

E. Joseph Derrick

Department of Information Technology
Radford University

Radford, VA 24242–6933, U.S.A.
ABSTRACT

The automated analysis of model specifications is an area that
historically receives little attention in the simulation research
community but which can offer significant benefits. A
common objective in simulation is enhanced understanding
of a system; model specification analysis can provide insights
not otherwise available as well as time and cost savings
in model development. The Condition Specification (CS)
(Overstreet and Nance 1985) represents a model specification
form that is amenable to analysis. This paper discusses the
motivations for and the creation of CS-XML; a translator
for CSes into XML-based Condition Specifications; and a
translator for CS-XML into fully-executable C/C++ code. It
presents initial results from analysis efforts using CodeSurfer
(Anderson et al. 2003), a software static analysis tool, and
discusses future work. In conclusion, it is argued that the CS-
XML can provide an essential foundation for Web Services
that support the analysis of discrete-event simulation models.

1 INTRODUCTION AND MOTIVATION

Model analysis can be beneficial in many ways. Such anal-
ysis can support development and verification of a model,
aid in debugging, or help a modeler gain additional insights
into the model both during and after completion. Observing
and analyzing the behaviors produced by the simulation are
currently the main techniques for improving understanding
of a system being simulated. However, static analysis of
the model specification itself can often reveal characteristics
of a model not readily apparent from observing merely its
run-time behavior. Furthermore, automated model diagno-
sis supports model verification and validation in the early
stages of the model development process, thereby leading
to savings in project development time and costs as well
as yielding improvements to overall process quality (Balci
and Nance 1987).

The Condition Specification (CS) is a way of organiz-
ing primitives by which time and state relationships can be
7561-4244-1306-0/07/$25.00 ©2007 IEEE
formalized (Overstreet and Nance 1985) and is discussed in
Section 2. Condition Specifications and Simulation Graphs
(Schruben 1983) are among the few specification formalisms
that have demonstrated promise and amenability to auto-
mated diagnosis of discrete-event systems.

Extensible Markup Language (XML) has become a
standard for representing data and information in a way
that is easy and convenient for storage, retrieval, sharing,
and processing in a distributed environment and among Web-
based component applications. It is “playing an increasingly
important role in the exchange of a wide variety of data
on the Web and elsewhere” (World Wide Web Consortium
2006). Important XML-based related research includes:

• The OWL Web Ontology Language (Lacy and Ger-
ber 2004), an evolving open standard initiative of
the World Wide Web Consortium (W3C) to improve
the representation of semantic information on the
Web and enable better processing by supporting
software applications;

• The Extensible Modeling Simulation Framework
(XMSF), “a set of Web-based technologies and
services, applied within an extensible framework”
that bridges the gap between the new commercial
technologies and defense systems and enables the
creation of cutting-edge distributed modeling and
simulation applications (Tolk 2004);

• Base Object Models (BOMs) (Gustavson and Chase
2004), an XML standard to enable building sim-
ulations and environments and promote interoper-
ability and reusability; and

• The Simulation Reference Markup Language
(SRML) (Reichenthal 2004), an XML technology
for describing model data and behavior and for en-
abling execution of the model using a simulation
engine.

Given the focused interest and significant existing body
of work in model diagnosis and analysis, the authors decided

Olson, Overstreet, and Derrick
to modernize the Condition Specification using XML to
explore additional ideas in Web-based model analysis. This
work should support the growing body of work in model
understanding.

The first step that was addressed was updating the Con-
dition Specification to have a complete, modern grammar.
Next, an XML Schema was created (details are available
from the authors). Using this Schema, a translator was
written that translates a given CS into an XML-based CS;
this result yields CS-XML, discussed in Section 3. With
CS-XML, we derive several important benefits:

• Semantic power of the XML representation due to
its “extensible” nature,

• Ease and adaptability of use as a markup language
document over other formats such as binary, fixed-
length, or even delimited text data (Qian et al.
2007),

• Portability and supportability of its text-based for-
mat between diverse systems and platforms pro-
moting the transfer of model specification data,
and, ultimately,

• Wider availability of model, diagnosis and analysis
techniques to the simulation community.

The authors have written a second translator to convert
CS-XML into fully functional C/C++ code for additional
analyses; translation into a conventional programming lan-
guage provides access to additional existing analysis tools
without incurring the overhead of converting said tools to
process XML.

Standard processing via Web Services (e.g., providing
various techniques for model diagnosis) is now possible;
these future plans are discussed in Section 4. Conclusions
are discussed in Section 5.

2 MODEL DIAGNOSIS AND THE CONDITION
SPECIFICATION

The Condition Specification was created to facilitate auto-
mated transformation among the classical world views of
event scheduling, activity scanning, and process interaction.
Serendipitously, supporting these transformations requires a
representation that also enables several forms of useful diag-
nostic and informative analysis. The diagnostic capabilities
of the CS are detailed in Overstreet, Page, and Nance (1994)
and Page and Nance (1994); an overview of its structure
and possible analyses based on it are described herein. Our
goal in this on-going research is to assess the feasibility
and benefits of model analysis. We have chosen the CS as
a basis for this work because of its demonstrated support of
model analysis. If the results of this effort are encouraging,
we expect to explore analyses based on additional model
specification forms in the future.
757
In a CS, a model consists of a set of Objects; the state of
each Object is captured in a set of Object Attributes. Similar
to Finite State Machines and Zeigler’s DEVS formalism
(Zeigler 1990), model execution consists of a sequence of
changes to Object Attributes over simulation-driven time
advances. While a complete CS has several components,
only the Transition Specification is of immediate interest for
the analysis discussed herein. A Transition Specification
describes both what triggers Attribute changes and how
new values for them are computed. The triggers are called
Conditions and the changes are called Actions. Table 1
illustrates, in conceptual form, a Transition Specification
for a CS.

Table 1: Structure of transition specification.

Conditions Actions
Condition 1 Action Sequence 1
Condition 2 Action Sequence 2

.
Condition n Action Sequence n

The Conditions are boolean expressions of Object At-
tributes and are of three basic types. Those that only
depend on the value of simulation time (enabling actions to
be scheduled to occur at a particular future time) are called
Time-based, or Alarms. Those that depend on Object At-
tributes not including simulation time are called State-based.
Those that depend on both simulation time and other Object
Attributes are called Mixed. For our purposes, Alarms are
considered booleans that are only true at the instant that
simulation time matches their scheduled time.

At (exactly) the beginning of a simulation, the special
boolean condition Initialization, which must be included
in a Transition Specification, is true. Hence, the Action
associated with Initialization occurs only once, at startup.
It may schedule one or more Alarms for future times or it
may change the values of several Object Attributes so that
some Condition that was not previously true becomes true.
The simulation proceeds accordingly with Actions causing
some Conditions to become true, either in the same instant
as the Action occurrence or at a future value of simulation
time using Alarms.

With this structure, a Condition Specification can be
analyzed to provide data and information which will poten-
tially lead modelers and users of models to a better under-
standing of the system under consideration. The results of
these analyses include items such as explicit identification
of causal relationships among Actions, possible sequences
of actions, detection of certain types of errors in a speci-
fication, assistance in creating efficient model implementa-
tions, and creation of helpful model documentation. The CS
has extensive analytic and diagnostic capabilities that offer
significant benefits to modelers in the areas of analytical

Olson, Overstreet, and Derrick
(existence of certain properties), comparative (differences
among model representations), and informative (extraction
or derivation of characteristics) diagnostic assistance. A
variety of directed graph and matrix structures are derivable
which effectively include the embedded relationships among
object attributes and from which cause-effect relationships
among model events can be readily determined. Analysis
of these structures reveal information regarding attributes
(utilization, classification, initialization, completeness, and
consistency), the strength of relationships between equiva-
lent conditions and the associated actions (called cohesion),
and model components (connectedness, accessibility). This
information can be extremely useful to modelers during the
model development phases (e.g., measuring model com-
plexity, simplifying model representations). Studies have
been completed on the direct execution of CS forms for both
sequential and parallel execution (Page and Nance 1994);
continuing research focuses on maximizing the utility of CS
diagnostic capabilities – for example, simplification tech-
niques to recognize and eliminate redundancies (Nance,
Overstreet, and Page 1999).

An example of analyses supported in a CS is the iden-
tification of both possible causes and consequences of each
Condition-Action Sequence pair. This is an informative
form of analysis with several potential benefits; for exam-
ple, a modeler might detect either unexpected or missing
causes or consequences for a Condition-Action Sequence
pair, indicating a modeling error; in cases where no error
has occurred, it might provide additional insight into model
characteristics not easily observed during model execution.
It also has obvious use as model documentation.

3 AN EXAMPLE OF CS-XML

The authors have built a Condition Specification parser that
produces an XML representation, dubbed CS-XML, as out-
put. The feasibility of building static code analysis tools
(Nance, Overstreet, and Page 1999, Cherinka, Overstreet,
and Ricci 1998) has been demonstrated locally, using stan-
dard parsing, data- and control-flow analysis techniques in
said tools. However, the authors have come to realize that
in order to extend this work, they must build on existing
tools which use standard representations. XML is such
a representation and is well-supported by several existing
tool sets. (Some of these tools include an abundance of
editors for creating XML documents, tools based on the
mature DOM (Document Object Model) and SAX (Simple
API for XML) technologies for reading and parsing XML
documents, as well as a host of other associated developer
APIs and tools for XML processing, validation, XSL (XML
Stylesheet Language) transformation, and Web Services that
are part of the standard Sun Java JDK/SDK distributions.)

Figures 1 and 2 provide an example of CS-XML. Since
the complete CS-XML for even a simple model is quite
75
large, only a pair of snippets are provided: part of the
Transition Specification for a model, and the corresponding
CS-XML generated by the translator from this part of the
Specification. In Figure 1, the first line is a comment. The
second contains the boolean Condition (in parentheses after
the key work when). The remaining three lines are the
Action Sequence that is to occur whenever the Condition
holds; it includes a set alarm for the Alarm arr facility.
Figure 2 presents the corresponding CS-XML for this part
of the Transition Specification.

// travel to facility
when ((for some i: facility[i].failed == true) &&

(repairman.status == available)) {
j := closest failed fac(facility, repairman.location);
set alarm(repairman.arr facility, j,

traveltime(repairman.location, j));
repairman.status := traveling;

}
Figure 1: Part of a transition specification.

As can be seen from Figure 2, the CS-XML contains
sufficient details from a Transition Specification to support
both traditional static code analysis and other types of
analysis technologies which could be incorporated into Web
Services.

4 INITIAL ANALYSES

Using CodeSurfer and working with backward slices (Weiser
1984), the authors were able to find several unnoticed errors
in Nance, Overstreet, and Page (1999), involving a simula-
tion of a harbor model with a simple dependency graph as
most models go. The main purpose of this graph, derived
from source code, is to show which events can cause which
events.

In the harbor model from Nance, Overstreet, and Page
(1999), ships arrive at a harbor and wait for both a berth
and a tug boat to become available. A ship is then escorted
to a berth, unloaded, and escorted back to sea. This model
is used to study tug boat utilization and ship in-harbor time.
This version of the harbor model appears in Buxton and
Laski (1963) and Schriber (1974).

In Figures 3 and 4, a solid line indicates that event a
can cause event b to occur at the same instance in time;
a dashed line indicates that event a can cause event b
at a future instance in time. For example, in Figure 3, a
move tug to ocean event can cause a deberth event to occur;
also, a deberth event can cause a move tug to ocean event
to occur. A dotted line in Figure 4 indicates a correction
or addition.

These figures also illustrate a prime problem with model
descriptions whether in textual or graphical notations: even
in simple models, the descriptions are often difficult to
8

Olson, Overstreet, and Derrick
<transition>

<boolean expression>

<for some>
<index>i</index>

<comparison>

<attribute>facility[i].failed</attribute>
<is equal to />
<value>true</value>

</comparison>

</for some>
<and />
<comparison>

<attribute>repairman.status</attribute>
<is equal to />
<value>available</value>

</comparison>

</boolean expression>

<assignment>
<attribute>j</attribute>
<equals />
<result>
<function>

<name>closest failed fac</name>
<argument>facility</argument>
<argument>repairman.location</argument>

</function>

</result>
</assignment>
<set alarm>

<argument>repairman.arr facility</argument>
<argument>j</argument>
<function>

<name>traveltime</name>
<argument>repairman.location</argument>
<argument>j</argument>

</function>

</set alarm>

<assignment>
<attribute>repairman.status</attribute>
<equals />
<value>traveling</value>

</assignment>
</transition>

Figure 2: Corresponding part of CS-XML.

fully comprehend (even if automatically derived from source
code). The type of tools we hope to develop may help with
the problem of having “too much information” by allowing
the interactive exploration of a model so that only relevant
information is presented. A central goal in this research
is to determine the feasibility of presenting modelers with
only relevant information, based on current interests, as they
examine a model. Model documentation as well as other
static representations of models can easily obscure useful
7

enter

tug_arr_

end_unload

to_pier
move_tug_

termination
at_pier

initialization

to_ocean
move_tug_

unload

end_deberth

deberth

ocean
tug_arr_at_

arrival

Figure 3: The original dependence graph.

enter

to_pier
move_tug_

termination
at_pier

initialization

to_ocean
move_tug_

unload

end_unload

end_deberth

deberth

ocean
tug_arr_at_

arrival

tug_arr_

Figure 4: The updated dependence graph.

information in the volume of what is presented. Additionally,
as the problem of interest changes, what information is
considered relevant also changes.

5 FUTURE WORK AND INTERESTS

As mentioned in Section 1, once an XML-based CS has
been created, a translator can be used to produce a fully
functional C/C++ program. While this in and of itself is
extremely useful, two of the authors primary interest is in
code analysis. Hence, we are planning continued work of
applying CodeSurfer for model analysis, as we are confident
in its potential for additional useful analyses.

We also plan to use XML parser tools for Simple API
for XML (SAX) and Document Object Model (DOM) (Ray
2003) to process CS-XML in order to produce various and
appropriate graph-based results and to accomplish the analyt-
ical, comparative, and informative diagnostic tests discussed
in Section 2. The intent is to create and distribute these tests
as Web Services utilizing a Service-Oriented Architecture
(SOA) approach, making the analyses readily accessible
to both developers and simulationists. The first service
now under development is a validation service to validate
59

Olson, Overstreet, and Derrick
a given XML-based CS against its XML Schema. Fur-
thermore, Extensible Stylesheet Language Transformations
(XSLT) will be investigated for transforming the CS-XML
and displaying these results.

6 SUMMARY AND CONCLUSIONS

This paper has established CS-XML and discussed its back-
ground and development. The authors have provided a
sample of the CS to CS-XML translation and discussed a
CS-XML to C/C++ translator, as well as multiple directions
of future work, including the creation of Web Services for
discrete-event simulation model diagnosis using the CS. CS-
XML provides access in to the many diagnostic capabilities
of the CS – until now, a resource that has been largely
untapped – and opens the doors of many potential research
opportunities into new and advanced analysis techniques.

REFERENCES

Anderson, P., T. W. Reps, T. Teitelbaum, and M. Zarnis.
2003, July/August. Tool support for fine-grained soft-
ware inspection. IEEE Software 20 (4): 42–50.

Balci, O., and R. E. Nance. 1987, August. Simulation model
development environments: A research prototype. J.
Opl Res. Soc. 38 (8): 753–763.

Buxton, J. N., and J. G. Laski. 1963. Control and simulation
language. Comput. J 5 (3): 194–199.

Cherinka, R. D., C. M. Overstreet, and J. A. Ricci. 1998.
Maintaining a COTS integrated solution - are traditional
static analysis techniques sufficient for this new pro-
gramming methodology? In 14th IEEE International
Conference on Software Maintenance (ICSM ’98), 160–
169.

Gustavson, P., and T. Chase. 2004, December. Using XML
and BOMS to rapidly compose simulations and simu-
lation environments. In Proceedings of the 2004 Winter
Simulation Conference, 1467–1475.

Lacy, L., and W. Gerber. 2004, December. Potential mod-
eling and simulation applications of the web ontology
language - OWL. In Proceedings of the 2004 Winter
Simulation Conference, 265–270.

Nance, R. E., C. M. Overstreet, and E. H. Page. 1999, July.
Redundancy in model specifications for discrete event
simulation. ACM Trans. Model. Comput. Simul. 9 (3):
254–281.

Overstreet, C. M., and R. E. Nance. 1985, February. A
specification language to assist in analysis of discrete
event simulation models. Commun. ACM 28 (2): 190–
201.

Overstreet, C. M., E. H. Page, and R. E. Nance. 1994,
December. Model diagnosis using the condition speci-
fication: From conceptualization to implementation. In
76
Proceedings of the 1994 Winter Simulation Conference,
566–573.

Page, E. H., and R. E. Nance. 1994. Parallel discrete event
simulation: A modeling methodology perspective. In
Proceedings of the 8th Workshop on Parallel and Dis-
tributed Simulation (PADS ’94), 88–93.

Qian, K., R. Allen, M. Gan, and B. Brown. 2007. Java
web development illuminated. Boston, MA: Jones and
Bartlett.

Ray, E. T. 2003, September. Learning XML. Second ed.
O’Reilly & Associates, Inc.

Reichenthal, S. W. 2004, December. SRML case study: sim-
ple self-describing process modeling and simulation. In
Proceedings of the 2004 Winter Simulation Conference,
1461–1466.

Schriber, T. J. 1974. An introduction to simulation using
GPSS/H. New York, NY: John Wiley & Sons, Inc.

Schruben, L. 1983, November. Simulation modeling with
event graphs. Comm. ACM 26 (11): 957–963.

Tolk, A. 2004, December. XML mediation services utilizing
model based data management. In Proceedings of the
2004 Winter Simulation Conference, 1476–1484.

Weiser, M. 1984, July. Program slicing. IEEE Trans. Softw.
Eng. SE-10 (4): 352–357.

World Wide Web Consortium 2006. W3C architecture do-
main: Extensible markup language (XML). <www.
w3.org/XML>.

Zeigler, B. P. 1990. Object-oriented simulation with hi-
erarchical, modular models. Boston, MA: Academic
Press.

AUTHOR BIOGRAPHIES

KARA A. OLSON is pursuing her doctorate in Computer
Science at Old Dominion University. She holds a Master of
Science, Computer Science, Bachelor of Computer Science
and Bachelor of Science, Mathematics from Old Dominion.
Her research interests include analysis of simulation models
in order to facilitate user understanding. She is a member
of ACM, IEEE, IEEE Computer Society, and SIAM. She
can be reached by e-mail at <kara@cs.odu.edu>.

C. MICHAEL OVERSTREET is an Associate Professor
of Computer Science at Old Dominion University and
is currently Interim Associate Dean of the College of
Sciences. A member of ACM and IEEE/CS, he is a former
chair of SIGSIM, and has authored or co-authored over
80 refereed journal and conference articles. He received a
B.S. from the University of Tennessee, an M.S. from Idaho
State University and an M.S. and Ph.D. from Virginia Tech.
He has held visiting appointments at the Kyushu Institute
of Technology in Iizuka, Japan, and at the Fachhochschule
für Technik und Wirtschaft in Berlin, Germany. His current
research interests include analysis of simulation models to
0

http://www.w3.org/XML
http://www.w3.org/XML
mailto:kara@cs.odu.edu

Olson, Overstreet, and Derrick
enhance model understanding and static code analysis. Dr.
Overstreet’s home page is <www.cs.odu.edu/˜cmo>.
He can be reached by e-mail at <cmo@cs.odu.edu>.

E. JOSEPH DERRICK is an Assistant Professor in
the College of Science and Technology at Radford
University. He received Ph.D. and M.S. degrees in
Computer Science from Virginia Tech and a B.S. in
Electrical Engineering from the United States Naval
Academy. His research interests include software en-
gineering, network security, Web-based simulation and
emerging Web technologies. He is a member of the IEEE
Computer Society and the ACM. Dr. Derrick’s home page
is <www.radford.edu/ejderrick>. He can be
reached by e-mail at <ejderrick@radford.edu>.
761

http://www.cs.odu.edu/~cmo
mailto:cmo@cs.odu.edu
http://www.radford.edu/ejderrick
mailto:ejderrick@radford.edu

	INTRODUCTION AND MOTIVATION
	MODEL DIAGNOSIS AND THE CONDITIONSPECIFICATION
	AN EXAMPLE OF CS-XML
	INITIAL ANALYSES
	FUTURE WORK AND INTERESTS
	SUMMARY AND CONCLUSIONS

