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ABSTRACT

Models of real world systems are being increasingly gen-
erated from data that describes the behaviour of systems.
Data mining techniques, such as Artificial Neural Networks
(ANN), generate models almost independently and deliver
accurate models in a very short time. These models (some-
times called black box models) have complex internal struc-
tures that are difficult to interpret and we have very limited
information about the credibility of their output. A model
can be trusted just for certain configurations of input vari-
ables, but it is hard to determine which output is based
on training data and which is random. In this paper, we
present visualization techniques for exploration of models.
Primary goal is to consider the behavior of the model in the
neighborhood of the data vectors. The next goal is to esti-
mate and locate the ranges in input space where the models
are credible. We have developed visualization techniques
both for regression and classification problems. Finally, we
present an algorithm that is able to automatically locate the
most interesting visualizations in the vast multidimensional
space of input variables.

1 INTRODUCTION

The real world is a very complex system, which is driven
by unknown (currently) laws. These laws are what people
want to describe, to be able to perform predictions or
approximations of the real world’s behaviour.

When we want to model the real world, we must firstly
describe it’s behaviour in terms of input and corresponding
output (behavioral analysis). Input and output are always
taken as N-dimensional vectors of scalars, and each part of
these vectors can be measured in some quantity.

Then we must select and develop an appropriate model
type, which will estimate real world behaviour. This devel-
oping process consists from learning of model upon given
measured data. After this learning process, the model should
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be able to return an output for the given input, which is an
estimation of the real world’s response to the same input.

We measure the input and output data, and these pairs
serve to us as a training (and/or testing) dataset for the
model creation process. ANNs trained on such data should
return the right answer on any given input vector from
the measured data, but also they give an answer for an
arbitrary input vector (we say that they have generalization
capability).

One question which we often deal with is: How is the
output of the artificial model related to the measured input?
Well-trained models should have the correct response to
every input from the measured dataset, but we are also
interested in how the model generalizes. If the model
generalizes in the right manner it can be claimed as credible,
therefore revealing some knowledge about the world (eg.
knowledge about how the set of input features is interrelated
and how input is related to output). And here we need
some mechanism for the model’s exploration together with
measured inputs and outputs. And, in turn, we are dealing
with the problem of the dimensionality of input space.

In our work we concentrate on the visualization of such
models in order to obtain better knowledge about them and
perform some credibility analysis. We also strive to find
some interesting areas in model (i.e. areas where the model’s
output changes rapidly in respect to input).

There are not many works dealing with the visualization
of the black box model’s output. The main problem is the
dimensionality of the domain space of black boxes. Feature
space often consists of more than three features, and the
main problem is seeing if the model is credible and has a
reasonable output. Also, there are a lot of publications about
visualizing multidimensional data, but only a minority of it
deals with the problem of visualizing the model’s behaviour
itself.

A very large survey of visualization techniques used
up to now can be taken from a lecture by Keim (1997).
Here we can find commonly known techniques, such as
30
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parallel coordinate plots, scatter plots or projection methods,
along with techniques for interacting with visualizations.
Distortion techniques are also often used, but we recognize
much of them as too confusing for the experts, so it is better
to represent the dimensions as they are.

We are mainly concerned with geometric techniques, so
we were aimed in this direction in our research. One geomet-
ric approach for dealing with multidimensional functions in
their visualizations is to slice and project multidimensional
space into 3D/2D space. Many solutions have emerged
in this field; for example Santos and Brodlie (2002) de-
veloped hypercell slicing. This technique is designed in
such a way that users create multidimensional workspaces
(i.e. region of interest) and in these workspaces they create
3D slices (i.e. projections) from multidimensional space.
Authors have claimed that the solution is practical, but it is
commonly known that such techniques need a lot of user
attention in order not to get lost in the multidimensional
space.

Instead of visualizating multidimensional functions by
projections, some authors (Jardins and Rheingans 1999)
explored the possibility of exploring artificial models trained
over some data by mapping multidimensional space into 2D
space. They used Self-Organizing Maps and their solution
proved to be quite interesting; they enable users to perform
tasks like testing model confidentiality and comparison of
several models. The only thing we must accept when we
use such maps is that we lose the sense of cartesian space,
with which we are familiar and it may cause confusion for
the experts.

Also we try to use visualization to reveal model sensi-
tivity with respect to inputs, so we want to perform model
sensitivity analysis in some form. There are two practical
options for performing such a task: direct observation of
the model or some kind of computation.

Sensitivity analysis through direct observation can give
us very good information, but it is very hard to find where the
interesting regions are positioned (especially in more than
three dimensions). Such approaches are often combined
with some type of automatic exploration mechanism (as we
will see in the description of our solution).

Some survey of sensitivity analysis methods based on
computation can be found in M. Gevrey (2003). There
are mainly methods, that were originally developed for
ANNs, but some of them can be used directly for any
black-box model analysis. Among the tested methods are
the classic partial derivatives method (PaD) or Perturb
method. Authors have compared methods to each other and
concluded that very good results were offered by PaD, and
as the second most informative, the Profile method, was
introduced.

Also, we find it interesting when authors deal with
the visualization of computed sensitivity for some ANN,
as in Theron and Paz (2006). Their solution consists of
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completing sensitivity analysis in areas which are positioned
at training points. For each training point, they find the
sensitivity of the black-box model in each dimension (i.e.
input) of data. These results are then represented as some
kind of stacked-bar graph, where each column represents
the sensitivity analysis for one training point. They also use
parallel coordinates, which serve as some additional tool
for analysis. Their solution is not oriented only towards
ANN; it is also black-box oriented.

Some authors (Tzeng and Ma 2005) have developed a
method of visualizing input data along with an ANN inner
structure. As a result, we can see an artificial network with
its topology, but augmented by the importance of inputs and
the interconnections between the layers. Therefore, experts
can directly modify their ANN to achieve a simpler network
or to better understand it.

In our research, we are also interested in the ensemble
of models (Hansen and Salamon 1990) also called model
committees (Abdel-Aal 2005). These are frequently used
to improve the accuracy of weak learners (decision forests,
nearest neighbor techniques, etc.). Improved accuracy is
not the only task where the combination ensemble models
can help. Ensembles of various models in climatology were
also recently used to estimate the credibility of predictions
(Stocker 2003). We have several model outputs and the
end result is obtained by combining these. What we want
to know is where such a combination is credible. This
question is solved by finding regions where the output of
partial models is somehow similar to the others. As we
will see next, such a search can be performed directly by
observation or by a genetic search over the model’s feature
domain.

This paper is organized as follows: In the next section
we present how the ensemble of models can be used to
estimate the credibility of models. We propose visualization
techniques that allow us to study the relationships between
variables for regression models and classification boundaries
for classifiers. In the last section, we propose a solution
that shows how interesting plots can be located in vast
multidimensional space. This was achieved by a genetic
algorithm with a specially designed fitness function that
defines the “interestingness” of particular plots.

2 PROPOSED APPROACH

As was previously stated, when a single model is generated
from a data set, it usually reacts well to data similar to that
used for training. To compute the accuracy of this model,
we can use a so-called testing data set, a collection of data
measured together with a training set, but not used in the
model’s learning phase. Then we statistically evaluate the
output error of our model compared to the original measured
output (we can use, for example, cross-validation or simple
percentage split).
1



Kondapaneni, Kordı́k, and Slavı́k
Ensemble of models

Black box
model

(2)

y2

x1 xnx2

Black box
model

(1)

y1

x1 xnx2

Black box
model

(n)

ym

x1 xnx2

x1

xn
x2

Sensitivity analysis of x1 input variable:
x1 (x1min ,x1max), x2 , ... , xn = const.∈

Figure 1: Sensitivity analysis of input variables can be per-
formed according to the picture. We change the value of
the corresponding input variable from minimum to max-
imum whereas other input variables stay constant. The
output variable shows sensitivity to the input variable in the
configuration of other variables.

The problem with this approach is that the information
about the model’s accuracy on the testing data is just an
indicator of the generalization abilities of the model. It
does not say anything about the credibility of the model for
particular regions of the input space, that were not covered
by the testing dataset.

Our approach exploits the visualization of model en-
sembles (Zhou, Wu, and Tang 2002) to estimate credibility
for any combination of input variables. In our visualizations,
we adopt the principle of sensitivity analysis (see Figure
1). Selected input variables are varied from minimum to
maximum, whereas other inputs stay constant. Sensitivity
(output) of the ensemble to the selected variable is recorded
and, together with input data records, provide source data for
the visualization techniques proposed below. Then we can
directly see in the visualization, how the output of particu-
lar models correspond to each other and make conclusions
about credibility regions for some point in space.

Our visualization techniques can be used to estimate
the credibility of any black-box models, providing that the
models in the ensemble are diverse enough.

The ensemble of models used in sensitivity analysis can
be built, for example, by means of the Group of Adaptive
Models Evolution method (GAME). This method generate
hybrid inductive models consisting of a network of inter-
connected units similar to artificial neurons. To learn more
about this method, please refer to Kordı́k (2006).

In the next two sections, we show concrete visualization
techniques and how they can be used. Both utilize the
ensemble of models to estimate credibility of the (a) output
prediction and (b) classification, depending on the task.

2.1 Visualization of Predictors

The first method is aimed at predictors built to estimate a
single continuous target variable. Sometimes these models
can additionally be referred to as regression models. The
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visualization plots in Figure 2 consist of sensitivity responses
from nine models (member models of the ensemble) drawn
as curves. In the right plot, there are also input data vectors
displayed as crosses. The size of individual crosses is
computed from their Euclidian distance from the plot (from
constant inputs). Curves should pass through the centers of
the biggest crosses (in case of data without noise). The plot
is, in fact, a one-dimensional slice of the multidimensional
input space.

The ensemble of models tries to predict the out-
put variable y in the artificially defined problem y =
1
2

(
sinh(x1− x2)+ x2

1(x2−0.5)2
)
, where training data vec-

tors are distributed uniformly only in the area x1,x2 ∈ 〈0,1〉.
The plots in Figure 2 show the sensitivity of the ensemble
models to x1 (left plot) and x2 (right plot) input variables.

Note that the behaviour of the ensemble models is simi-
lar in the area covered by the training data, and increasingly
random outside of this area. This information is utilized
later to estimate the credibility of the prediction.

The application of the proposed technique to a real world
data set (Boston housing data UCI) is in Figure 3. The left
plot identifies the negative influence of criminality (CRIM
input variable) to the value of houses (MEDV). The visual
information can be interpreted with the following question:
What will happen to the value of houses if the criminality in
the region increases or decreases? The relationship is valid
just for a specific house defined by constant values of all
other input variables, except the CRIM variable. However,
our experiments with several real world data sets showed
that the relationship is often very similar in the whole input
space (i.e. for all possible houses).

Again we can see that the curves of particular models
disperse in regions not covered by the training data, which
indicates low credibility of the models in those regions.

The right plot in Figure 3 shows the variable RM
(average number of rooms per dwelling) that was considered
irrelevant by all ensemble models of the house value. An
increase or decrease in its value would not change the value
of house (according to models).

It is apparent from the given examples, that with this
visualization we can easily find credible regions of the
input space together with information about the relationships
between the output and selected input variables (in some
particular point of input space). This technique can be also
easily extended to three dimensions (two input variables
are selected and changed from minimum to maximum to
generate the 3D plot). You can see an example of 3D plots
in Figures 6 and 8.

2.2 Visualization of Classifiers

The second method can be used for ensembles of models
(classifiers) built to distinguish a class of data vectors.
2
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Figure 2: Individual models behave randomly for input configuration where the models were not trained properly. The
compromised response of the ensemble signals well-trained models and credible output for the input configuration
Figure 3: The value of houses (MEDV) predicted from
several input variables (Boston housing data set). The
CRIM input variable (criminality in the region) has clearly
negative influence on the value of houses. The RM input
variable feature is considered irrelevant by the ensemble of
models.

Again an ensemble of models (classifiers) is built for
a single output variable (membership to a particular class).
Each model should give “1” on the output, when it classifies
patterns of his member class, and “0” when the input vector
belongs to another class. For regions far from training
vectors, the output of the model is random. For classifiers
with logistic transfer functions, the random output is usually
close to either “1” or “0”.

Let us explain the idea with a simple example. Consider
the data about apples and pears. If we evolve the ensemble
of classifiers for the apple class, their outputs are “1” for
objects similar to apples, ”0” for those similar to pears. For
an object that is different from both apples and pears, each
model from the group can give a different output. Some
can classify it as an apple (“1”); some can respond that it is
not an apple (“0”). When the outputs of all the models are
multiplied, the result is “1” just for objects classified as an
apple by the whole ensemble. This simple idea is extended
below to filter out artefacts and unimportant information
and indicate just credible regions of class membership.
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Figure 4: When we multiply responses of several ensemble
models of the same class, we get the membership area just
for those configurations of inputs, where the output of all
models is “1”.

This multiplication of classifiers is demonstrated in
Figure 4. In this case, two selected input variables vary
from minimum to maximum (others stay constant) and the
output of the classifier (class) is encoded as color. Dataset
is also added into the plot, each data vector is represented as
a square of variable size and color. The size of the square is
again derived from the euclidean distance of the data vector
from the position in the plot. The color corresponds to the
class assigned to the data vector.

The Iris data set (UCI) is often used to test the per-
formance of classifiers. Iris plants are to be classified into
three classes (Setoza, Virginica and Versicolor) given mea-
surements of their sepal width, length and petal width and
length. We developed three ensembles of classifiers - one
ensemble for each class. Figure 4 shows three models from
each ensemble. A dark background signifies “1” on the
output of the model, a light background means an output
of “0”. When these three models are multiplied for each
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Figure 5: Three groups of twelve GAME models for classes
Iris Setoza, Virginica and Versicolor. When all models are
displayed in one scatterplot (left), the regions of class mem-
bership overlap. The right scatterplot shows the proposed
improvement where the outputs of the models within one
group are first multiplied and then the result for each class
is displayed.

class, the results can be observed in the scatterplots of the
fourth column. Each resulting scatterplot has much bet-
ter defined classification boundaries and does not contain
random information.

On Figure 5, you can see how the proposed method
improved the classification. The outputs of twelve ensemble
classifiers for each class are displayed in one scatterplot
(left). Especially plants more distant from those present in
the training data are classified as members of several classes.
When the twelve models for each class were multiplied first
and then the results for the three classes were displayed
into one scatterplot (right), the boundaries of membership
areas became clearly visible.

This visualization technique can be also extended to
three dimensions. The decision boundaries of classes can
be for example approximated by NURBS curves (Roger
2001).

3 AUTOMATED RETRIEVAL OF INTERESTING
PLOTS

Extending the proposed visualization techniques to 3D space
is particulary useful when the modelled data has more than
one very significant input.

In the case of predictive models we select two inputs
instead of one. Figure 6 shows the sensitivity of a single
model trained on the Housing data set used in the section
above.

3.1 Genetic Algorithm to Locate “Interesting” Plots

It is often the case that an output variable is sensitive to just
a few of the input variables and in a limited range. A manual
search for these “interesting” regions in multidimensional
input space is very time consuming. Therefore we use a
73
Figure 6: 3D visualization of predictive model - sensitivity
of house value (MEDV) to criminality in the region (CRIM)
and proportion of owner-occupied units built prior to 1940
(AGE).

genetic algorithm (Goldberg 1989) to locate these regions
automatically.

When you look at Figure 7, you can see how we define
the “interesting” plot. Each curve represents the response of
one ensemble model yi to the change of xi variable. We derive
the interesingness of a plot from three criteria: maximal
difference in response among models (ysize), how diverse
they are in response (p) and how big their credible area
(xsize) is. To make these criteria meaningful, we compute
them only in areas of the plot, which can be claimed as
credible, which means range 〈xstart ,xstart + xsize〉.

Figure 7: This figure demonstrates “interesting” behavior
of models. The relationship is very steep, meaning that the
output reacts significantly to the change of input variable.
Models in the ensemble have at the same time very similar
behavior and the region is big enough to be able to get an
insight into the variables relationship.
4
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The first criterion ysize can be interpreted as: the big-
ger change in response we observe in the plot, the more
interesting the plot is for us. It is computed as follows:

ysize = argmax(ȳ(t))− argmin(ȳ(t)) , t ∈ (xstart ,xsize), (1)

where the term ȳ(t) is a Simple Ensemble of models. Zhou,
Wu, and Tang (2002) defined as ȳ(t) = 1

m ∑
m
i=1 yi(t) for

t ∈ 〈0,1〉.
The second criterion reflects how diverse models are

in the plot. The value of this criterion will be small for
plots where models are not very diverse, and their response
is tightly corelated. The criterion can be computed as:

p =
xstart+xsize

∑
j=xstart

(
arg max

0<i≤m
(yi( j))− arg min

0<i≤m
(yi( j))

)
, (2)

where yi is the response of i-th model.
The last criterion xsize helps us to privilege bigger areas

of interesting behavior.
To find the best form of the fitness function, we had

been experimenting with several equations (Kordı́k, Saidl,
and Šnorek 2006). The best properties showed the fitness
function with three components multiplied:

f itness = ysize ∗
1
p
∗ xsize, (3)

The genetic algorithm works as follows. It generates
several plots with a random configuration of constant inputs.
Each plot is one individual in the initial population. In the
next step, the fitness of each plot is computed according
to Equation 3. The roulette wheel selects plots that are
crossed and mutated to make up the next generation of
plots. Generation after generation the proportional fitness
of plots increases and after several epochs, the best individual
is selected as the most interesting plot.

We validated the functionality of the genetic algorithm
on synthetic and also real world data (Kordı́k, Saidl, and
Šnorek 2006). The idea can also be easily extended for 3D
plots.

Figure 8 shows a random 3D plot from the initial popula-
tion of the genetic algorithm and also the most “interesting”
3D plot with highest fitness - the result of the genetic algo-
rithm that located better values of constant input variables
that are not used for sensitivity analysis (just two selected
input variables are changed in their values to generate the
3D plot). The output of each model is represented by a
different color. It helps to visually distinguish areas where
models differ and where their output is similar.

By using this method we can automate the process of
data analysis. As an practical example we can mention
Kordı́k (2006), where an ensemble of models, together
73
Genetic search
for interesting

3D plots

Initial random 3D plot

Figure 8: The initial plot is not interesting because it does not
show any interesting behavior. Then the genetic algorithm is
used to locate a more interesting plot in the multidimensional
input space. The resulting 3d plot has much higher fitness
- it defines the relationship among two input variables and
the output variable very clearly. Also the credibility of the
models is very high, as soon as their outputs correspond.

with the best visualizations, are evolved automatically and
presented to the domain expert.

4 CONCLUSIONS

Visualization techniques presented in this paper were pri-
mary designed for visual data mining. However, they showed
their usefulness also in model validation.

These visualizations help us to (a) estimate the cred-
ibility of models, (b) consider the quality of models, (c)
discover the relationships of variables and identify true
decision boundaries of classes.

We have also proposed the evolutionary search with
a special fitness function designed to locate the most in-
teresting plots in multidimensional input space. This is
5



Kondapaneni, Kordı́k, and Slavı́k
particulary important because real world data sets tradition-
ally have a high number of inputs and most of them are
not very relevant.
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PAVEL KORDÍK works as an assistant professor and
researcher at the Department of Computer Science and
Engineering, FEE, Czech Technical University in Prague,
where he obtained his master’s and Ph.D. degree in
2003 and 2007, respectively. He is the co-author of
more than 20 publications. He is coordinator of the
Automated Knowledge Extraction research project and
a member of the research team of Transdisciplinary
Research in the Area of Biomedical Engineering II
research programme. His research interests are data
mining, knowledge extraction, inductive models, neural
networks, evolutionary computing, optimization methods,
nature inspired continuous optimization, visualization of
black-box behaviour and ensemble techniques. His email
address is <kordikp@fel.cvut.cz>.

http://neuron.felk.cvut.cz/game
http://neuron.felk.cvut.cz/game
http://infovis.uni-konstanz.de/members/keim/PS/KDD97.pdf
http://infovis.uni-konstanz.de/members/keim/PS/KDD97.pdf
http://www.ics.uci.edu/~mlearn/MLSummary.html
http://www.ics.uci.edu/~mlearn/MLSummary.html
mailto:kondai1@fel.cvut.cz
mailto:kordikp@fel.cvut.cz


Kondapaneni, Kordı́k, and Slavı́k
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