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ABSTRACT 

Event Graphs (EGs) and Simulation Graph Models provide 
a powerful and general modeling framework for discrete 
event simulation. Qualitative Event Graphs (QEGs) extend 
the EG framework to a qualitative approach to discrete-
event simulation. In QEG, the uncertainty in event 
execution times is represented by a closed interval in the 
set of real numbers. When two or more event execution 
intervals overlap, multiple event execution sequences or 
threads result. This leads to simulation output in the form 
of multiple threads. In general, the number of threads can 
explode exponentially making output difficult to analyze. 
In this paper, we introduce three scoring methods to rank 
the threads on the relative likelihood of their event 
execution sequences. We discuss the assumptions of these 
methods along with their advantages and disadvantages. 
Depending on the needs of the user, scoring and ranking 
could help eliminate the need to execute some threads and 
cut the execution time of the simulation. 

1 INTRODUCTION 

Computer simulation is a flexible modeling technique used 
to solve problems in business, engineering, the physical 
sciences, and the social sciences. A computer simulation 
model is a computer program designed to characterize the 
behavior of an actual system. A number of different 
approaches to computer simulation modeling exist. In the 
physical sciences and engineering, a system is often 
modeled and simulated by a set of differential or difference 
equations. This approach provides very precise information 
about the behavior of the system as it evolves through time. 
It is often referred to as continuous time simulation. The 
continuous time paradigm has been abstracted or modified 
in a number of different ways to produce other approaches 
to simulation modeling.  

One popular abstraction used extensively in 
engineering and business applications is called discrete-
event simulation. Discrete-event simulation provides an 
efficient approach to modeling systems in which the state 
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of the system changes at discrete points in time called 
events. To model such systems, the clock of the simulation 
model is incremented asynchronously through time by 
proceeding from one event to another. The behavior of the 
system is not monitored continuously through time because 
it is assumed that nothing of interest happens between 
events. 

Another abstraction of the continuous time approach is 
called qualitative simulation or qualitative physics. 
Qualitative simulation was originally developed in the 
physical sciences (Forbus 1988), but more recently has 
found application in economics and business (Hinkkanen 
et al. 1993). The qualitative approach is useful when the 
level of knowledge about the system being modeled is 
imprecise. In fact, qualitative simulation is designed to 
represent whatever level of knowledge is available. For 
example, variables describing the state of a system might 
be represented in a qualitative simulation model as simply 
increasing, decreasing or constant with respect to time if no 
other information is available. Inferences derived from the 
results of a qualitative simulation model, although less 
precise, are often considered more general and robust since 
these inferences do not rely on precise and perhaps faulty 
assumptions.  

Discrete-event simulation suffers from many of the 
same problems that motivated the pioneers of qualitative 
simulation. The amount of detail needed in a simulation 
often is overwhelming. Statistical distributions used in the 
simulations often are based on incomplete information or 
the intuition of the model builder. Because of the very 
nature of discrete-event simulation, appropriate levels of 
abstraction often are difficult to determine and justify. 
These problems make discrete-event simulation models 
difficult to build and to verify. The simulation expert can 
usually discredit a simulation by criticizing the input 
distributions, the appropriate level of detail, etc. Decision 
makers often consider simulation impractical because of 
lengthy analysis times and the difficulty of evaluating 
alternatives. 

In Ingalls et al. (2000), QEGs were proposed and 
developed for qualitative discrete-event simulation. In this 
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implementation, closed intervals in ℜ were used to 
represent event execution time uncertainty. The EG 
modeling framework was used because they provide a 
simple yet general representation of a discrete-event 
simulation (Schruben 1983, Som and Sargent 1989, 
Yücesan 1989). One problem for the QEG method is that 
the number of threads or event execution sequences can 
explode exponentially. This thread explosion makes it 
difficult to get meaningful information from the output. In 
this paper, we propose three scoring methods to rank the 
threads based on the relative likelihood of their event 
execution sequences. We discuss the assumptions of these 
methods along with their advantages and disadvantages. 
Such scoring methods are intended to provide the user with 
some means of focusing on the more likely scenarios and 
ignoring or perhaps even eliminating less likely scenarios 
saving on simulation execution time.  

The remainder of the paper is organized in the 
following manner. Section 2 provides a brief description of 
the EG implementation. Section 3 describes the basic 
problem of multiple thread generation by a QEG. 
Additionally, we propose three scoring methods in this 
section. Section 4 illustrates the scoring methods on a 
PERT network example. Section 5 provides concluding 
remarks. 

2 EVENT GRAPH IMPLEMENTATION 

Ingalls et al. (2003) extended the Event Graph 
Implementation of Schruben, Yücesan, and others by 
eliminating the canceling edge and replacing it with the 
edge execution condition. This framework is the 
framework used in this paper. The basic construct of the 
event graph with the edge execution condition is shown in 
Figure 1. The nodes labeled A and B represent events and 
the edge specifies that there is a relationship between the 
two events. The construct is interpreted as follows: “if 
condition (i) is true at the instant event A occurs, then 
event B will be scheduled to occur t time units later. Event 
B will be executed t time units later with the state variables 
in array n set equal to the values in array k if condition (j) 
is true t time units later.”  

A B(n)
(i)

t
(j)

k

Figure 1: Event graph with canceling edges 
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3 CHARACTERIZING A THREAD 

3.1 The Basic Problem 

As an example of this problem, lets assume that we have a 
simulation that has only three events, A, B, and C. We are 
uncertain what order A, B, and C might occur because their 
execution times overlap. This set of events is called a non-
deterministically ordered set (NOS). Each event in the set 
is a non-deterministically ordered event (NOE) because the 
order of the set cannot be determined (Ingalls et al. 2000). 
Let us assume that the events overlap as seen in Figure 2, 
where event A can occur any time in the interval [2,5], 
event B can occur any time in the interval [1,6] and event 
C can occur any time in the interval [3,4]. Obviously, there 
are 6 sequences in which these 3 events can occur: ABC, 

ACB, BAC, BCA, CAB, and CBA. The question that we 
are addressing in this paper is what sequence of events is 
more “likely”. In Figure 3, we see A and B make up the 
intervals in the NOS. C is not in the NOS because it cannot 
possibly be the next event executed because A must occur 
before C. In qualitative simulation, there is a basic 
assumption that we do not know what type of distribution 
underlies the intervals. Although to use the term “likely” in 

0 1 2 3 4 5 6 7

C

B

A

Figure 2: Example of a NOS 

0 1 2 3 4 5 6 7

C

B

A

Figure 3: A and B make up the NOS 
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a qualitative simulation is not technically correct, in order 
to rank the threads, we must make minimal assumptions 
about the intervals in order to score them. One of our 
methods is more qualitative, in that we rank the intervals 
by the midpoint of the interval. Another uses the earliest 
midpoint as a basis and determines a relative score. The 
third method introduces a minimal statistical assumption, 
namely that the interval is uniformly distributed. With this 
assumption, we can calculate a score based on probabilities. 
In all three cases, the score is carried forward in the thread. 

3.2 The Midpoint Ranking and Midpoint Multiple 
Methods 

Let En, n = 1, 2, …, N (N ≥ 2), denote events with 
respective execution intervals [Ln ,Un] that overlap. Let Mn 
represent the midpoint of the interval [Ln ,Un] for n = 1, 
2, …, N. We rank the intervals based on their midpoints. 
Let Rank(Mn) denote the rank of Mn. We use the following 
two approaches for assigning Rank(Mn): 
(i) A simple numerical ordering of 1, 2, …, N. We will 

call this approach the Midpoint Ranking Method. 
(ii) A ranking defined by 

We will call this approach the Midpoint Multiple 
Method. The first ranking approach is simple to compute 
requiring the computation of a midpoint for each interval, a 
sort, and then the assignment of a numerical ranking. 
Approach (ii) requires the additional computing of 
expression (1). However, in addition to the order of the 
ranking, this approach provides a measure of the relative 
magnitude of the midpoints and therefore more 
discrimination on which event is likely to execute first.  

The ranks are used to score each thread in the 
simulation. When N overlapping event intervals occur, 
each event spawns a new thread in which the event 
executes first. To the thread where En executes first, assign 
Rank(Mn). Let S represent the NOS of N events with 
overlapping intervals, i.e., S = {E1, E2, …, EN}. 
Additionally, let Ae (Be) be the set of events scheduled by 
the execution of En whose intervals overlap with the 
remaining N-1 events. The set Ae (Be) may be empty if no 
such events are scheduled. The variable T is the current 
score on the thread. The algorithm for calculating all 
rankings on threads spawned by N (≥ 2) overlapping events 
can be stated recursively: 
 
Procedure ComputeRank(N, S, T) 
 For n = 1, 2, …, N 
  Compute Mn 
  Calculate Rank(Mn) 
  Calculate Ae and Be 

( )
( ) ( )

1

1 1

min
( ) .          (1)

min min
n nn N

n
n nn N n N
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Rank M
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−
=

−

66
  If (N - 1 + |Ae| - |Be| ≥ 2) then 
   S = S + Ae - En - Be 

   T’ = T + Rank(Mn) 
   ComputeRank(N - 1 + |Ae| - |Be|, S, T’) 
  End If 
 End For 
End Procedure ComputeRank 
 
At the end of the simulation, the score for each thread is 
computed by summing the ranks of all comparisons along 
the thread and dividing through by the total number of 
comparisons on the thread. 

To illustrate the above algorithm, consider the 
example in Figure 2 with N = 3. To simplify the 
illustration, assume that Ae and Be are empty sets at each 
stage. On the first pass through the algorithm, both ranking 
schemes would assign a rank of one to the threads spawned 
by each event because all three events have the same 
midpoint. If event A executes first, then the interval for B 
is reduced to [2,6]. Comparing this with C on the interval 
[3,4], the thread spawned by C gets assigned a rank of 1 by 
both approaches and B gets assigned a ranks of 2 and 1.33 
by approaches (i) and (ii), respectively. Since N - 1 = 1, no 
further rankings are required along these threads. Thus, the 
sequence A before B before C gets assigned a score of 1.5 
((1+2)/2) and A before C before B gets assigned a score of 
1 ((1+1)/2) by approach (i). Approach (ii) assigns the same 
sequences 1.165 ((1+1.33)/2) and 1 ((1+1)/2), respectively. 
Similarly, sequences B before A before C, B before C 
before A, C before A before B, and C before B before A 
are assigned scores 1(1), 1(1), 1(1), and 1.5 (1.25), 
respectively, by approach (i) (approach (ii)).  

3.3 The Uniform Distribution Method 

The idea behind this scoring methodology is that for every 
NOS, assign a score to an event which is the probability of 
that event being the next event to be executed. We assume, 
for the purpose of the scoring, that the event execution is 
uniformly distributed over the possible interval. This 
uniform distribution assumption is used because it requires 
the least amount of information to construct. Said another 
way, it is the probability measure that deviates the least 
from the qualitative simulation approach which assumes 
that the event could occur anywhere within the given 
interval.  

The concept of the possible interval is important. In 
our example in Figure 2, let us assume that event A has 
been executed first. That leaves events B and C still to be 
executed and the current simulation time is [2,4]. For event 
C, it can still be executed in time interval [3,4]. However, 
event B can no longer be executed in interval [1,6]. The 
possible interval for B is now [2,6] since the clock must 
have already advanced to at least time 2 because A has 
already executed. For each of the methods presented in this 
9
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paper, B and C would be compared using the intervals [2,6] 
and [3,4], respectively. 

3.3.1 Thread Scoring Using the Uniform Distribution 

For any n events in a NOS, each event has a possible 
execution time which is a qualitative interval. If we assume 
that the possible execution time is uniformly distributed 
with a minimum of an and a maximum of bn, then the 
density function for possible execution time of the nth event 
in the set is: 

⎪⎩

⎪
⎨
⎧ ∈

−=
otherwise

bax
abxf nn

nnn

,0

],[,1
)(

. 
Since the intervals are independent, the joint density 
function (JDF) for the n possible execution time intervals 
is: 

 

f (x1,x2,...,xn ) =

fn (x) =
n

∏
1

bn − an

,xn ∈ [an ,bn ]∀xn
n

∏
0, otherwise
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Accordingly, f (xn )  evaluates to be a constant, c. 
The cumulative joint density function (CJDF) for n 
uniform distributions is: 
 

  

F(x1, x2,..., xn ) = L c dx1dx2Ldxn
yn

∫
y2

∫
y1

∫  

From a practical standpoint, we evaluate F(xn )  in 
separate intervals, which we shall call evaluation intervals. 
These intervals are the different intersections of the event 
intervals in the NOS. Figure 4 gives an example of the 
evaluation intervals for the events A, B and C. The 
evaluation intervals would be [1,2], [2,3] and [3,4] for this 
example. 

Given this information, we can determine the score of 
each event using the probability that a given event would 
be executed first. As in the previous algorithm, let S 
represent the NOS of N events with overlapping intervals, 
i.e., S = {E1, E2, …, EN}. Additionally, let Ae (Be) be the set 

0 1 2 3 4 5 6 7

C

B

A

Evaluation Interval 1

Evaluation Interval 2

Evaluation Interval 3

Figure 4: Example of evaluation intervals 
670
of events scheduled by the execution of En whose intervals 
overlap with the remaining N-1 events. The set Ae (Be) may 
be empty if no such events are scheduled. In addition, let T 
be the current thread score. 

The actual algorithm is as follows: 
 
Procedure ComputeRank(N, S, T) 

For i = 1,2, …, N 
Set si = 0. 

End For 
Set x = first evaluation interval 
While x ≠ ∅ 

Set l = lower boundary of evaluation interval 
Set u = upper boundary of evaluation interval 
‘ Now loop through 2n probability combinations 
for the n intervals. For two intervals, X1 and X2, 
the four probability combinations would be 
X1∩X2, X1∩~X2, ~X1∩X2, ~X1∩~X2.  
For i = 1, 2, …, 2N  

‘ Evaluate the cumulative joint density 
function for the probability combination. For 
X1∩X2, the CJDF evaluated would be 

∫ ∫
u

l

u

l

dxdxc 21 . For the probability 

combination X1∩~X2, the CJDF would be 

∫ ∫
u

l

b

au

dxdxc
2

2

21
),max(

.  

Set p = CJDF of probability combination 
Set q = number of intervals in S that intersect 
[l,u] 
For j = 1, 2, …, N 

If (Ej ∩ [l,u]) then 
Set sj = sj + p/q. 

End If 
End For 

End For 
Set x = next evaluation interval 

End While 
For n = 1, 2, …, N 

Set T’ = T * sn 
Calculate Ae and Be 
If (N – 1 + |Ae| - |Be| ≥ 2) then 

S = S + Ae – En - Be 
ComputeRank(N – 1 + |Ae| - |Be| , S, T’) 

End If 
End For 

End Procedure ComputeRank 
 

Now let us use Figure 2 as an example of how this 
algorithm would work. The JDF for these three intervals is 
1/((5-2)*(6-1)*(4-3)) = 1/15. The first evaluation interval 
is [1,2]. The only non-zero CJDF in this interval is 
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~A∩B∩~C, and it would be evaluated as 

5
1

15
15

2

2

1

4

3

=∫ ∫ ∫ dcdbda . So B would be given the score 

1/5. 
The next evaluation interval is [2,3]. The non-zero 

CJDFs in this interval are A∩B∩~C, A∩~B∩~C, and 
~A∩B∩~C. They would be evaluated as 

15
1

15
13

2

3

2

4

3

=∫ ∫ ∫ dcdbda ,
5
1

15
13

2

6

3

4

3

=∫ ∫ ∫ dcdbda , and 

15
2

15
15

3

3

2

4

3

=∫ ∫ ∫ dcdbda , respectively. The score for A 

would be (1/15)/2 + 1/5 = 7/30. The additional score for B 
would be (1/15)/2 + 2/15 = 1/6. The total score for B 
would be 1/6 + 1/5 = 11/30. 

The last evaluation interval is [3,4]. It is the last 
evaluation interval because at least one of the three events 
must execute before time 4. The non-zero CJDFs in this 
interval are A∩B∩C, A∩~B∩C, ~A∩B∩C, and 
~A∩~B∩C. They would be evaluated as 

15
1

15
14

3

4

3

4

3

=∫ ∫ ∫ dcdbda
,

15
2

15
14

3

6

4

4

3

=∫ ∫ ∫ dcdbda
,

15
1

15
15

4

4

3

4

3

=∫ ∫ ∫ dcdbda ,and
15
2

15
15

4

6

4

4

3

=∫ ∫ ∫ dcdbda , 

respectively. For A, the additional score would be (1/15)/3 
+ (2/15)/2 = 4/45. The total score for A would be 4/45 + 
7/30 = 29/90 ≈ .3222. The additional score for B would be 
(1/15)/3 + (1/15)/2 = 1/18. The total score for B would be 
1/18 + 11/30 = 19/45 ≈ .4222. The total score for C would 
be (1/15)/3 + (2/15)/2 + (1/15)/2 + 2/15 = 23/90 ≈ .2556.  

Let us assume that A actually is the first event to be 
executed. The thread where A is first event to be executed 
would have a time of [2,4]. The current thread score would 
be .3222. The remaining events would be B and C. The 
JDF for comparing B and C for this thread would be 1/((6-
2)*(4-3)) = 1/4. 

In the first possible interval, [2,3], only B can be 
executed. The only non-zero CJDF in the interval [2,3] is 
67
B∩~C. The score for B would be evaluated as 

4
1

4
13

2

4

3

=∫ ∫ dcdb . So B would be given the score 1/4. 

The next evaluation interval would be [3,4]. The non-
zero CJDF’s in this interval are B∩C and ~B∩C. They 

would be evaluated as 
4
1

4
14

3

4

3

=∫ ∫ dcdb  , and 

2
1

4
16

4

4

3

=∫ ∫ dcdb . The additional score for B would be 

(1/4)/2 = 1/8, making the total score for B = 3/8 = .375. 
The score for C would be (1/4)/2 + 1/2 = 5/8 = .625. 
Therefore, the total score for the sequence ABC would 
be .3222 * .375 * 1 = 0.1208. The total score for the 
sequence ACB would be .3222 * .625 = 0.2014. 

The scoring of the other sequences shows the 
following results: 
Sequence Score 
ABC 0.1208 
ACB 0.2014 
BAC 0.2111 
BCA 0.2111 
CAB 0.1704 
CBA 0.0852 

4 COMPARISONS USING PERT EXAMPLES 

In Figures 5-8, we see four different PERT examples, each 
taken from Johnson and Montgomery (1974). These PERT 
networks are used to determine which of the qualitative 
scoring methodologies more closely aligns with randomly 
generated sequences of these networks. For each PERT 
network, we have run qualitative simulations using each of 
the scoring methods and run each of the PERT networks 
for 1000 iterations using uniformly distributed event times 
and triangular distributed event times. For the triangular 
distribution, the mode was set to the midpoint of the 
interval. For the comparisons, we have not included the 
Rank method because the Midpoint Multiple method is a 
more refined version of the Rank method. 
1
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The translation of a PERT diagram to an event graph 
is straightforward. Each vertex in the graph is an event. 
The vertex knows the number of incoming edges to that 
event. When the event is triggered, it counts the number of 
times that it has been “hit”. When the number of hits is 
equal to the number of incoming edges, then event 
schedules the outgoing edges. This continues until there 
are no more events scheduled.  

In Figures 9-11, we show output examples of a given 
thread in a simulation and how the methods would score 
that particular thread. The Thread header is the number of 
the thread in the simulation. The Event header is the event 
number in the simulation. The Score header shows the 
accumulated score for that thread scoring method. The 
Clock header is the current simulation time. The Head and 
Tail headers show the head and tail of the arc that was just 
executed. The Future Events Calendar shows the events 
that are scheduled to be executed. Each record in the future 
events calendar is configured as follows: The time the 
event is to be executed, the arc that is to be executed, the 
priority of the event in the calendar (lowest value has high 
priority) and the time that the event was scheduled. 

4.1 The Midpoint Ranking Method 

An example of the Midpoint Ranking Method is seen in 
Figure 9. This figure shows the first thread of PERT 

1 2 3

5

4

6 7

[3
,9]

[2,6] [6,14]
[4,10]

[2
,1

2]

[6,12]

[3,
9]

[6,7]

Figure 5: PERT example 1 

1 [8,14] 2

3

[0.5,2]

4

[16,25]

5[3,8]

[2,4]

[7,12]

6

[1,3]

8[0.5,4]

7 9[0.75,2.75]
[1.5,4]

10
[0.75,1.5]

11[1,3]

Figure 7: PERT example 3 
672
Example 1 (See Figure 5). In this example, the thread gets 
the top ranked event, except when event 6 is executed. At 
that point, the first event on the calendar has an execution 
time of [10,32] and a midpoint of 21. The second has an 
execution time of [11,29] and a midpoint of 20.5. As a 
result, because thread 1 executes the Arc(3,5) event, it is 
assigned a score of 2, which is added to the previous score 
of 6 for a total of 8. 

4.2 The Midpoint Multiple Method 

To score the same thread using the Midpoint Multiple 
Method, we would assign a 1 for every event except for 
event 7. For event 7, we have the same problem, in that 
Arc(4,6) has an earlier midpoint than Arc(3,5). Arc(4,6) is 
given a score of 1 and Arc(3,5) is given a score of (21 – 
10)/(20 – 10) = 1.1. Again, when it is added to the previous 
score of 6, the total is 7.1. This sequence can be seen in 
Figure 10. 

4.3 The Uniform Distribution Method 

In order to give an example of the scoring method, It is 
obvious from the graph that at time [2,6] there will be three 
events on the calendar and that any one of those events 
could be executed first. Arc(2,5) is scheduled at time [5,15], 

1

[2,4]

2

3

[2,6]

4

[5,7]

[7,10]

6[4,6]

5[6,9]

[3,6]

7

[1,3]

[3,5]

8[1,3]

Figure 6: PERT example 2 

1

3

2

[1.5,4.5]

[2,6]

5[1,3]

4

[2.5,7.5]

[3.5,10.5]

6[2,6]

7[4,12]

[3,9]

8

[2.5,7.5]

[1,3]

9[1.5,4.5]

Figure 8: PERT example 4 
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Future Events Calendar
Thread Event Score Clock Head Tail Event 1 Event 2 Event 3

1 1 1 [0,0] 0 1 [2.0,6.0],Arc(1,2),3,[0,0]
1 2 2 [2.0,6.0] 1 2 [5.0,15.0],Arc(2,5),3,[2.0,6.0] [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 3 3 [5.0,15.0] 2 5 [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 4 4 [6.0,16.0] 2 4 [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 5 5 [8.0,20.0] 2 3 [8.0,20.0],Arc(3,4),2,[8.0,20.0] [10.0,32.0],Arc(3,5),3,[8.0,20.0]
1 6 6 [8.0,20.0] 3 4 [10.0,32.0],Arc(3,5),3,[8.0,20.0] [11.0,29.0],Arc(4,6),3,[8.0,20.0]
1 7 8 [10.0,29.0] 3 5 [11.0,29.0],Arc(4,6),3,[8.0,20.0] [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 8 9 [11.0,29.0] 4 6 [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 9 10 [16.0,41.0] 5 6 [22.0,48.0],Arc(6,7),3,[16.0,41.0]
1 10 11 [22.0,48.0] 6 7

Figure 10: Midpoint multiple method scoring 

Future Events Calendar
Thread Event Score Clock Head Tail Event 1 Event 2 Event 3

1 1 1 [0,0] 0 1 [2.0,6.0],Arc(1,2),3,[0,0]
1 2 2 [2.0,6.0] 1 2 [5.0,15.0],Arc(2,5),3,[2.0,6.0] [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 3 3 [5.0,15.0] 2 5 [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 4 4 [6.0,16.0] 2 4 [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 5 5 [8.0,20.0] 2 3 [8.0,20.0],Arc(3,4),2,[8.0,20.0] [10.0,32.0],Arc(3,5),3,[8.0,20.0]
1 6 6 [8.0,20.0] 3 4 [10.0,32.0],Arc(3,5),3,[8.0,20.0] [11.0,29.0],Arc(4,6),3,[8.0,20.0]
1 7 7.1 [10.0,29.0] 3 5 [11.0,29.0],Arc(4,6),3,[8.0,20.0] [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 8 8.1 [11.0,29.0] 4 6 [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 9 9.1 [16.0,41.0] 5 6 [22.0,48.0],Arc(6,7),3,[16.0,41.0]
1 10 10.1 [22.0,48.0] 6 7

Figure 11: Uniform distribution method scoring 

Future Events Calendar
Thread Event Score Clock Head Tail Event 1 Event 2 Event 3

1 1 1 [0,0] 0 1 [2.0,6.0],Arc(1,2),3,[0,0]
1 2 1 [2.0,6.0] 1 2 [5.0,15.0],Arc(2,5),3,[2.0,6.0] [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 3 0.5269 [5.0,15.0] 2 5 [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 4 0.3864 [6.0,16.0] 2 4 [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 5 0.3864 [8.0,20.0] 2 3 [8.0,20.0],Arc(3,4),2,[8.0,20.0] [10.0,32.0],Arc(3,5),3,[8.0,20.0]
1 6 0.3864 [8.0,20.0] 3 4 [10.0,32.0],Arc(3,5),3,[8.0,20.0] [11.0,29.0],Arc(4,6),3,[8.0,20.0]
1 7 0.1756 [10.0,29.0] 3 5 [11.0,29.0],Arc(4,6),3,[8.0,20.0] [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 8 0.1427 [11.0,29.0] 4 6 [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 9 0.1427 [16.0,41.0] 5 6 [22.0,48.0],Arc(6,7),3,[16.0,41.0]
1 10 0.1427 [22.0,48.0] 6 7

Figure 9: Midpoint ranking method scoring 
Arc(2,4) is schedule at time [6,16] and Arc(2,3) is 
scheduled at time [8,20]. Using the uniform distribution 
method, the scores are as follows: 

 
Arc(2,5) = 0.5269444 
Arc(2,4) = 0.3573611 
Arc(2,3) = 0.1156945 
 
Overall, for thread 1, the score is 0.1427, as can be 

seen in Figure 11. Figure 11 shows each of the events, the 
scores assigned to the events, and the running score for the 
thread. 
673
4.4 Comparisons against Random PERT Networks 

In an effort to determine if these ranking algorithms 
correlate to random experiments on the same networks, we 
took the four PERT networks in Figures 5-8 and conducted 
the following experiments: 

1. We ran 1000 replications using randomly 
generated uniformly distributed activity times and 
ranked threads (event sequences) by the number 
of occurrences. 

2. We ran another 1000 replications using randomly 
generated triangular distributions with the mode 
being the midpoint of the interval. Again, we 
ranked the threads by the number of occurrences. 
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% Agreement Threads
Midpoint 
Multiple Uniform Lowest Rank in Threads

Midpoint 
Multiple Uniform

Example 1 37 100% 100% Example 1 37 1           1         
Example 2 669 100% 100% Example 2 669 1           1         
Example 3 351 100% 0% Example 3 351 1           2         
Example 4 168 100% 100% Example 4 168 1           1         

Midpoint 
Multiple Uniform

Midpoint 
Multiple Uniform

Example 1 100% 100% Example 1 3           3         
Example 2 67% 67% Example 2 7           5         
Example 3 100% 67% Example 3 3           8         
Example 4 67% 67% Example 4 11         5         

Midpoint 
Multiple Uniform

Midpoint 
Multiple Uniform

Example 1 100% 100% Example 1 5           5         
Example 2 40% 60% Example 2 13         10       
Example 3 N/A N/A Example 3 N/A N/A
Example 4 80% 80% Example 4 11         6         

Midpoint 
Multiple Uniform

Midpoint 
Multiple Uniform

Example 1 N/A N/A Example 1 N/A N/A
Example 2 70% 80% Example 2 15         13       
Example 3 N/A N/A Example 3 N/A N/A
Example 4 60% 70% Example 4 23         17       

TOP 1

TOP 3

TOP 5

TOP 10

TOP 1

TOP 3

TOP 5

TOP 10

Figure 12: Random uniform distribution rankings vs. 
qualitative thread rankings 

% Agreement Threads
Midpoint 
Multiple Uniform Lowest Rank in Threads

Midpoint 
Multiple Uniform

Example 1 37 100% 100% Example 1 37 1           1         
Example 2 669 100% 100% Example 2 669 1           1         
Example 3 351 100% 0% Example 3 351 1           2         
Example 4 168 100% 100% Example 4 168 1           1         

Midpoint 
Multiple Uniform

Midpoint 
Multiple Uniform

Example 1 100% 100% Example 1 3           3         
Example 2 67% 67% Example 2 7           5         
Example 3 100% 67% Example 3 3           8         
Example 4 67% 67% Example 4 11         5         

Midpoint 
Multiple Uniform

Midpoint 
Multiple Uniform

Example 1 80% 80% Example 1 6           6         
Example 2 80% 100% Example 2 7           5         
Example 3 N/A N/A Example 3 N/A N/A
Example 4 80% 80% Example 4 11         6         

Midpoint 
Multiple Uniform

Midpoint 
Multiple Uniform

Example 1 N/A N/A Example 1 N/A N/A
Example 2 70% 80% Example 2 13         12       
Example 3 N/A N/A Example 3 N/A N/A
Example 4 60% 70% Example 4 23         17       

TOP 1

TOP 3

TOP 5

TOP 10

TOP 1

TOP 3

TOP 5

TOP 10

Figure 13: Random triangular distribution rankings vs. 
qualitative thread rankings 
After these experiments were run, we determined how the 
Midpoint Multiple and the Uniform ranking methods for 
the qualitative networks compared to these two randomly 
generated ranking. When we refer to “Top 5”, we are 
referring to the top 5 threads ranked by these random 
experiments. 

Figures 12 and 13 show how the Midpoint Multiple 
and the Uniform Distribution scoring methods compare 
against threads generated by the Random Uniform 
experiment and the Random Triangular Experiment, 
respectively. On the left-hand side of each figure, we show 
how often the qualitative ranking agrees with the random 
ranking on a percentage basis. A 100% agreement means 
that the qualitative ranking ranked the same Top 5 threads, 
for example, as the random experiment. However, it does 
not mean that the thread rankings were identical. The right-
hand side shows the lowest ranked thread of the qualitative 
ranking method that was ranked in the Top 5, for example, 
of the random experiment. 

In the Top 5 of Figure 12, the two qualitative ranking 
methods agreed with the random experiment of Example 4 
on 80% of the threads. The only thread that did not agree 
for the Midpoint Multiple method was the thread that was 
ranked 11th by the Midpoint Multiple Method. The only 
thread that did not agree for the Uniform Distribution 
method was ranked 6th by the Uniform Distribution method. 

In Figure 12, we see general agreement between the 
qualitative ranking methods and the randomly generated 
experiment. The Uniform Distribution method did agree 
more often than the Midpoint Multiple method. When the 
Uniform Distribution method did not agree, then the miss 
was not as severe as the Midpoint Multiple method. The 
same can be said for Figure 13. 
67
Overall, the rankings for both qualitative methods 
show some issues, but considered the number of threads 
that were ranked; the “missed” rankings are a very small 
percentile of the overall number of threads. Also, it looks 
as if the qualitative ranking methods better agree with the 
Triangular Distribution experiment. This may mean that 
the qualitative ranking methods are more favorable with 
modal distribution, as compared to random experiments 
using the uniform distribution. 

5 CONCLUSIONS 

The three qualitative thread ranking methods, Midpoint 
Rank, Midpoint Multiple Rank, and Uniform Distributed 
Rank all show relatively good thread ranking vs. some 
randomly generated PERT networks. The Midpoint Rank 
method has an issue because it does not have 
differentiation capability among many different threads, so 
we consider that method not to be good in practical use. 
However, both the Midpoint Multiple and the Uniform 
have ways of better differentiating between threads and 
both seem to track well with randomly generated PERT 
networks. When compared with the other qualitative 
ranking methods presented here, the Uniform Distribution 
method yields slightly better results when compared to 
randomly generated rankings. 

One aspect of thread ranking is that we could use the 
qualitative thread ranking to rank the least likely threads. 
These threads could be unlikely, but have negative 
consequences it they were to occur. We did not address 
how these qualitative ranking methods actually predict 
these least likely threads. 
4
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