
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

ALTERNATIVE THREAD SCORING METHODS IN QUALITATIVE EVENT GRAPHS

Ricki G. Ingalls Douglas J. Morrice

School of Industrial Engineering and Management Department of Information, Risk, and Operations Mgmt.
322 Engineering North, Oklahoma State University The University of Texas at Austin

Stillwater, OK 74078, U.S.A. Austin, TX 78712, U.S.A.

ABSTRACT

Event Graphs (EGs) and Simulation Graph Models provide
a powerful and general modeling framework for discrete
event simulation. Qualitative Event Graphs (QEGs) extend
the EG framework to a qualitative approach to discrete-
event simulation. In QEG, the uncertainty in event
execution times is represented by a closed interval in the
set of real numbers. When two or more event execution
intervals overlap, multiple event execution sequences or
threads result. This leads to simulation output in the form
of multiple threads. In general, the number of threads can
explode exponentially making output difficult to analyze.
In this paper, we introduce three scoring methods to rank
the threads on the relative likelihood of their event
execution sequences. We discuss the assumptions of these
methods along with their advantages and disadvantages.
Depending on the needs of the user, scoring and ranking
could help eliminate the need to execute some threads and
cut the execution time of the simulation.

1 INTRODUCTION

Computer simulation is a flexible modeling technique used
to solve problems in business, engineering, the physical
sciences, and the social sciences. A computer simulation
model is a computer program designed to characterize the
behavior of an actual system. A number of different
approaches to computer simulation modeling exist. In the
physical sciences and engineering, a system is often
modeled and simulated by a set of differential or difference
equations. This approach provides very precise information
about the behavior of the system as it evolves through time.
It is often referred to as continuous time simulation. The
continuous time paradigm has been abstracted or modified
in a number of different ways to produce other approaches
to simulation modeling.

One popular abstraction used extensively in
engineering and business applications is called discrete-
event simulation. Discrete-event simulation provides an
efficient approach to modeling systems in which the state
6671-4244-1306-0/07/$25.00 ©2007 IEEE
of the system changes at discrete points in time called
events. To model such systems, the clock of the simulation
model is incremented asynchronously through time by
proceeding from one event to another. The behavior of the
system is not monitored continuously through time because
it is assumed that nothing of interest happens between
events.

Another abstraction of the continuous time approach is
called qualitative simulation or qualitative physics.
Qualitative simulation was originally developed in the
physical sciences (Forbus 1988), but more recently has
found application in economics and business (Hinkkanen
et al. 1993). The qualitative approach is useful when the
level of knowledge about the system being modeled is
imprecise. In fact, qualitative simulation is designed to
represent whatever level of knowledge is available. For
example, variables describing the state of a system might
be represented in a qualitative simulation model as simply
increasing, decreasing or constant with respect to time if no
other information is available. Inferences derived from the
results of a qualitative simulation model, although less
precise, are often considered more general and robust since
these inferences do not rely on precise and perhaps faulty
assumptions.

Discrete-event simulation suffers from many of the
same problems that motivated the pioneers of qualitative
simulation. The amount of detail needed in a simulation
often is overwhelming. Statistical distributions used in the
simulations often are based on incomplete information or
the intuition of the model builder. Because of the very
nature of discrete-event simulation, appropriate levels of
abstraction often are difficult to determine and justify.
These problems make discrete-event simulation models
difficult to build and to verify. The simulation expert can
usually discredit a simulation by criticizing the input
distributions, the appropriate level of detail, etc. Decision
makers often consider simulation impractical because of
lengthy analysis times and the difficulty of evaluating
alternatives.

In Ingalls et al. (2000), QEGs were proposed and
developed for qualitative discrete-event simulation. In this

Ingalls and Morrice

implementation, closed intervals in ℜ were used to
represent event execution time uncertainty. The EG
modeling framework was used because they provide a
simple yet general representation of a discrete-event
simulation (Schruben 1983, Som and Sargent 1989,
Yücesan 1989). One problem for the QEG method is that
the number of threads or event execution sequences can
explode exponentially. This thread explosion makes it
difficult to get meaningful information from the output. In
this paper, we propose three scoring methods to rank the
threads based on the relative likelihood of their event
execution sequences. We discuss the assumptions of these
methods along with their advantages and disadvantages.
Such scoring methods are intended to provide the user with
some means of focusing on the more likely scenarios and
ignoring or perhaps even eliminating less likely scenarios
saving on simulation execution time.

The remainder of the paper is organized in the
following manner. Section 2 provides a brief description of
the EG implementation. Section 3 describes the basic
problem of multiple thread generation by a QEG.
Additionally, we propose three scoring methods in this
section. Section 4 illustrates the scoring methods on a
PERT network example. Section 5 provides concluding
remarks.

2 EVENT GRAPH IMPLEMENTATION

Ingalls et al. (2003) extended the Event Graph
Implementation of Schruben, Yücesan, and others by
eliminating the canceling edge and replacing it with the
edge execution condition. This framework is the
framework used in this paper. The basic construct of the
event graph with the edge execution condition is shown in
Figure 1. The nodes labeled A and B represent events and
the edge specifies that there is a relationship between the
two events. The construct is interpreted as follows: “if
condition (i) is true at the instant event A occurs, then
event B will be scheduled to occur t time units later. Event
B will be executed t time units later with the state variables
in array n set equal to the values in array k if condition (j)
is true t time units later.”

A B(n)
(i)

t
(j)

k

Figure 1: Event graph with canceling edges
66
3 CHARACTERIZING A THREAD

3.1 The Basic Problem

As an example of this problem, lets assume that we have a
simulation that has only three events, A, B, and C. We are
uncertain what order A, B, and C might occur because their
execution times overlap. This set of events is called a non-
deterministically ordered set (NOS). Each event in the set
is a non-deterministically ordered event (NOE) because the
order of the set cannot be determined (Ingalls et al. 2000).
Let us assume that the events overlap as seen in Figure 2,
where event A can occur any time in the interval [2,5],
event B can occur any time in the interval [1,6] and event
C can occur any time in the interval [3,4]. Obviously, there
are 6 sequences in which these 3 events can occur: ABC,

ACB, BAC, BCA, CAB, and CBA. The question that we
are addressing in this paper is what sequence of events is
more “likely”. In Figure 3, we see A and B make up the
intervals in the NOS. C is not in the NOS because it cannot
possibly be the next event executed because A must occur
before C. In qualitative simulation, there is a basic
assumption that we do not know what type of distribution
underlies the intervals. Although to use the term “likely” in

0 1 2 3 4 5 6 7

C

B

A

Figure 2: Example of a NOS

0 1 2 3 4 5 6 7

C

B

A

Figure 3: A and B make up the NOS
8

Ingalls and Morrice

a qualitative simulation is not technically correct, in order
to rank the threads, we must make minimal assumptions
about the intervals in order to score them. One of our
methods is more qualitative, in that we rank the intervals
by the midpoint of the interval. Another uses the earliest
midpoint as a basis and determines a relative score. The
third method introduces a minimal statistical assumption,
namely that the interval is uniformly distributed. With this
assumption, we can calculate a score based on probabilities.
In all three cases, the score is carried forward in the thread.

3.2 The Midpoint Ranking and Midpoint Multiple
Methods

Let En, n = 1, 2, …, N (N ≥ 2), denote events with
respective execution intervals [Ln ,Un] that overlap. Let Mn
represent the midpoint of the interval [Ln ,Un] for n = 1,
2, …, N. We rank the intervals based on their midpoints.
Let Rank(Mn) denote the rank of Mn. We use the following
two approaches for assigning Rank(Mn):
(i) A simple numerical ordering of 1, 2, …, N. We will

call this approach the Midpoint Ranking Method.
(ii) A ranking defined by

We will call this approach the Midpoint Multiple
Method. The first ranking approach is simple to compute
requiring the computation of a midpoint for each interval, a
sort, and then the assignment of a numerical ranking.
Approach (ii) requires the additional computing of
expression (1). However, in addition to the order of the
ranking, this approach provides a measure of the relative
magnitude of the midpoints and therefore more
discrimination on which event is likely to execute first.

The ranks are used to score each thread in the
simulation. When N overlapping event intervals occur,
each event spawns a new thread in which the event
executes first. To the thread where En executes first, assign
Rank(Mn). Let S represent the NOS of N events with
overlapping intervals, i.e., S = {E1, E2, …, EN}.
Additionally, let Ae (Be) be the set of events scheduled by
the execution of En whose intervals overlap with the
remaining N-1 events. The set Ae (Be) may be empty if no
such events are scheduled. The variable T is the current
score on the thread. The algorithm for calculating all
rankings on threads spawned by N (≥ 2) overlapping events
can be stated recursively:

Procedure ComputeRank(N, S, T)
 For n = 1, 2, …, N
 Compute Mn
 Calculate Rank(Mn)
 Calculate Ae and Be

()
() ()

1

1 1

min
() . (1)

min min
n nn N

n
n nn N n N

M L
Rank M

M L
≤ ≤

≤ ≤ ≤ ≤

−
=

−

66
 If (N - 1 + |Ae| - |Be| ≥ 2) then
 S = S + Ae - En - Be

 T’ = T + Rank(Mn)
 ComputeRank(N - 1 + |Ae| - |Be|, S, T’)
 End If
 End For
End Procedure ComputeRank

At the end of the simulation, the score for each thread is
computed by summing the ranks of all comparisons along
the thread and dividing through by the total number of
comparisons on the thread.

To illustrate the above algorithm, consider the
example in Figure 2 with N = 3. To simplify the
illustration, assume that Ae and Be are empty sets at each
stage. On the first pass through the algorithm, both ranking
schemes would assign a rank of one to the threads spawned
by each event because all three events have the same
midpoint. If event A executes first, then the interval for B
is reduced to [2,6]. Comparing this with C on the interval
[3,4], the thread spawned by C gets assigned a rank of 1 by
both approaches and B gets assigned a ranks of 2 and 1.33
by approaches (i) and (ii), respectively. Since N - 1 = 1, no
further rankings are required along these threads. Thus, the
sequence A before B before C gets assigned a score of 1.5
((1+2)/2) and A before C before B gets assigned a score of
1 ((1+1)/2) by approach (i). Approach (ii) assigns the same
sequences 1.165 ((1+1.33)/2) and 1 ((1+1)/2), respectively.
Similarly, sequences B before A before C, B before C
before A, C before A before B, and C before B before A
are assigned scores 1(1), 1(1), 1(1), and 1.5 (1.25),
respectively, by approach (i) (approach (ii)).

3.3 The Uniform Distribution Method

The idea behind this scoring methodology is that for every
NOS, assign a score to an event which is the probability of
that event being the next event to be executed. We assume,
for the purpose of the scoring, that the event execution is
uniformly distributed over the possible interval. This
uniform distribution assumption is used because it requires
the least amount of information to construct. Said another
way, it is the probability measure that deviates the least
from the qualitative simulation approach which assumes
that the event could occur anywhere within the given
interval.

The concept of the possible interval is important. In
our example in Figure 2, let us assume that event A has
been executed first. That leaves events B and C still to be
executed and the current simulation time is [2,4]. For event
C, it can still be executed in time interval [3,4]. However,
event B can no longer be executed in interval [1,6]. The
possible interval for B is now [2,6] since the clock must
have already advanced to at least time 2 because A has
already executed. For each of the methods presented in this
9

Ingalls and Morrice

paper, B and C would be compared using the intervals [2,6]
and [3,4], respectively.

3.3.1 Thread Scoring Using the Uniform Distribution

For any n events in a NOS, each event has a possible
execution time which is a qualitative interval. If we assume
that the possible execution time is uniformly distributed
with a minimum of an and a maximum of bn, then the
density function for possible execution time of the nth event
in the set is:

⎪⎩

⎪
⎨
⎧ ∈

−=
otherwise

bax
abxf nn

nnn

,0

],[,1
)(

.
Since the intervals are independent, the joint density
function (JDF) for the n possible execution time intervals
is:

f (x1,x2,...,xn) =

fn (x) =
n

∏
1

bn − an

,xn ∈ [an ,bn]∀xn
n

∏
0, otherwise

⎧
⎨
⎪

⎩ ⎪

Accordingly, f (xn) evaluates to be a constant, c.
The cumulative joint density function (CJDF) for n
uniform distributions is:

F(x1, x2,..., xn) = L c dx1dx2Ldxn
yn

∫
y2

∫
y1

∫

From a practical standpoint, we evaluate F(xn) in
separate intervals, which we shall call evaluation intervals.
These intervals are the different intersections of the event
intervals in the NOS. Figure 4 gives an example of the
evaluation intervals for the events A, B and C. The
evaluation intervals would be [1,2], [2,3] and [3,4] for this
example.

Given this information, we can determine the score of
each event using the probability that a given event would
be executed first. As in the previous algorithm, let S
represent the NOS of N events with overlapping intervals,
i.e., S = {E1, E2, …, EN}. Additionally, let Ae (Be) be the set

0 1 2 3 4 5 6 7

C

B

A

Evaluation Interval 1

Evaluation Interval 2

Evaluation Interval 3

Figure 4: Example of evaluation intervals
670
of events scheduled by the execution of En whose intervals
overlap with the remaining N-1 events. The set Ae (Be) may
be empty if no such events are scheduled. In addition, let T
be the current thread score.

The actual algorithm is as follows:

Procedure ComputeRank(N, S, T)

For i = 1,2, …, N
Set si = 0.

End For
Set x = first evaluation interval
While x ≠ ∅

Set l = lower boundary of evaluation interval
Set u = upper boundary of evaluation interval
‘ Now loop through 2n probability combinations
for the n intervals. For two intervals, X1 and X2,
the four probability combinations would be
X1∩X2, X1∩~X2, ~X1∩X2, ~X1∩~X2.
For i = 1, 2, …, 2N

‘ Evaluate the cumulative joint density
function for the probability combination. For
X1∩X2, the CJDF evaluated would be

∫ ∫
u

l

u

l

dxdxc 21 . For the probability

combination X1∩~X2, the CJDF would be

∫ ∫
u

l

b

au

dxdxc
2

2

21
),max(

.

Set p = CJDF of probability combination
Set q = number of intervals in S that intersect
[l,u]
For j = 1, 2, …, N

If (Ej ∩ [l,u]) then
Set sj = sj + p/q.

End If
End For

End For
Set x = next evaluation interval

End While
For n = 1, 2, …, N

Set T’ = T * sn
Calculate Ae and Be
If (N – 1 + |Ae| - |Be| ≥ 2) then

S = S + Ae – En - Be
ComputeRank(N – 1 + |Ae| - |Be| , S, T’)

End If
End For

End Procedure ComputeRank

Now let us use Figure 2 as an example of how this
algorithm would work. The JDF for these three intervals is
1/((5-2)*(6-1)*(4-3)) = 1/15. The first evaluation interval
is [1,2]. The only non-zero CJDF in this interval is

Ingalls and Morrice

~A∩B∩~C, and it would be evaluated as

5
1

15
15

2

2

1

4

3

=∫ ∫ ∫ dcdbda . So B would be given the score

1/5.
The next evaluation interval is [2,3]. The non-zero

CJDFs in this interval are A∩B∩~C, A∩~B∩~C, and
~A∩B∩~C. They would be evaluated as

15
1

15
13

2

3

2

4

3

=∫ ∫ ∫ dcdbda ,
5
1

15
13

2

6

3

4

3

=∫ ∫ ∫ dcdbda , and

15
2

15
15

3

3

2

4

3

=∫ ∫ ∫ dcdbda , respectively. The score for A

would be (1/15)/2 + 1/5 = 7/30. The additional score for B
would be (1/15)/2 + 2/15 = 1/6. The total score for B
would be 1/6 + 1/5 = 11/30.

The last evaluation interval is [3,4]. It is the last
evaluation interval because at least one of the three events
must execute before time 4. The non-zero CJDFs in this
interval are A∩B∩C, A∩~B∩C, ~A∩B∩C, and
~A∩~B∩C. They would be evaluated as

15
1

15
14

3

4

3

4

3

=∫ ∫ ∫ dcdbda
,

15
2

15
14

3

6

4

4

3

=∫ ∫ ∫ dcdbda
,

15
1

15
15

4

4

3

4

3

=∫ ∫ ∫ dcdbda ,and
15
2

15
15

4

6

4

4

3

=∫ ∫ ∫ dcdbda ,

respectively. For A, the additional score would be (1/15)/3
+ (2/15)/2 = 4/45. The total score for A would be 4/45 +
7/30 = 29/90 ≈ .3222. The additional score for B would be
(1/15)/3 + (1/15)/2 = 1/18. The total score for B would be
1/18 + 11/30 = 19/45 ≈ .4222. The total score for C would
be (1/15)/3 + (2/15)/2 + (1/15)/2 + 2/15 = 23/90 ≈ .2556.

Let us assume that A actually is the first event to be
executed. The thread where A is first event to be executed
would have a time of [2,4]. The current thread score would
be .3222. The remaining events would be B and C. The
JDF for comparing B and C for this thread would be 1/((6-
2)*(4-3)) = 1/4.

In the first possible interval, [2,3], only B can be
executed. The only non-zero CJDF in the interval [2,3] is
67
B∩~C. The score for B would be evaluated as

4
1

4
13

2

4

3

=∫ ∫ dcdb . So B would be given the score 1/4.

The next evaluation interval would be [3,4]. The non-
zero CJDF’s in this interval are B∩C and ~B∩C. They

would be evaluated as
4
1

4
14

3

4

3

=∫ ∫ dcdb , and

2
1

4
16

4

4

3

=∫ ∫ dcdb . The additional score for B would be

(1/4)/2 = 1/8, making the total score for B = 3/8 = .375.
The score for C would be (1/4)/2 + 1/2 = 5/8 = .625.
Therefore, the total score for the sequence ABC would
be .3222 * .375 * 1 = 0.1208. The total score for the
sequence ACB would be .3222 * .625 = 0.2014.

The scoring of the other sequences shows the
following results:
Sequence Score
ABC 0.1208
ACB 0.2014
BAC 0.2111
BCA 0.2111
CAB 0.1704
CBA 0.0852

4 COMPARISONS USING PERT EXAMPLES

In Figures 5-8, we see four different PERT examples, each
taken from Johnson and Montgomery (1974). These PERT
networks are used to determine which of the qualitative
scoring methodologies more closely aligns with randomly
generated sequences of these networks. For each PERT
network, we have run qualitative simulations using each of
the scoring methods and run each of the PERT networks
for 1000 iterations using uniformly distributed event times
and triangular distributed event times. For the triangular
distribution, the mode was set to the midpoint of the
interval. For the comparisons, we have not included the
Rank method because the Midpoint Multiple method is a
more refined version of the Rank method.
1

Ingalls and Morrice

The translation of a PERT diagram to an event graph
is straightforward. Each vertex in the graph is an event.
The vertex knows the number of incoming edges to that
event. When the event is triggered, it counts the number of
times that it has been “hit”. When the number of hits is
equal to the number of incoming edges, then event
schedules the outgoing edges. This continues until there
are no more events scheduled.

In Figures 9-11, we show output examples of a given
thread in a simulation and how the methods would score
that particular thread. The Thread header is the number of
the thread in the simulation. The Event header is the event
number in the simulation. The Score header shows the
accumulated score for that thread scoring method. The
Clock header is the current simulation time. The Head and
Tail headers show the head and tail of the arc that was just
executed. The Future Events Calendar shows the events
that are scheduled to be executed. Each record in the future
events calendar is configured as follows: The time the
event is to be executed, the arc that is to be executed, the
priority of the event in the calendar (lowest value has high
priority) and the time that the event was scheduled.

4.1 The Midpoint Ranking Method

An example of the Midpoint Ranking Method is seen in
Figure 9. This figure shows the first thread of PERT

1 2 3

5

4

6 7

[3
,9]

[2,6] [6,14]
[4,10]

[2
,1

2]

[6,12]

[3,
9]

[6,7]

Figure 5: PERT example 1

1 [8,14] 2

3

[0.5,2]

4

[16,25]

5[3,8]

[2,4]

[7,12]

6

[1,3]

8[0.5,4]

7 9[0.75,2.75]
[1.5,4]

10
[0.75,1.5]

11[1,3]

Figure 7: PERT example 3
672
Example 1 (See Figure 5). In this example, the thread gets
the top ranked event, except when event 6 is executed. At
that point, the first event on the calendar has an execution
time of [10,32] and a midpoint of 21. The second has an
execution time of [11,29] and a midpoint of 20.5. As a
result, because thread 1 executes the Arc(3,5) event, it is
assigned a score of 2, which is added to the previous score
of 6 for a total of 8.

4.2 The Midpoint Multiple Method

To score the same thread using the Midpoint Multiple
Method, we would assign a 1 for every event except for
event 7. For event 7, we have the same problem, in that
Arc(4,6) has an earlier midpoint than Arc(3,5). Arc(4,6) is
given a score of 1 and Arc(3,5) is given a score of (21 –
10)/(20 – 10) = 1.1. Again, when it is added to the previous
score of 6, the total is 7.1. This sequence can be seen in
Figure 10.

4.3 The Uniform Distribution Method

In order to give an example of the scoring method, It is
obvious from the graph that at time [2,6] there will be three
events on the calendar and that any one of those events
could be executed first. Arc(2,5) is scheduled at time [5,15],

1

[2,4]

2

3

[2,6]

4

[5,7]

[7,10]

6[4,6]

5[6,9]

[3,6]

7

[1,3]

[3,5]

8[1,3]

Figure 6: PERT example 2

1

3

2

[1.5,4.5]

[2,6]

5[1,3]

4

[2.5,7.5]

[3.5,10.5]

6[2,6]

7[4,12]

[3,9]

8

[2.5,7.5]

[1,3]

9[1.5,4.5]

Figure 8: PERT example 4

Ingalls and Morrice

Future Events Calendar
Thread Event Score Clock Head Tail Event 1 Event 2 Event 3

1 1 1 [0,0] 0 1 [2.0,6.0],Arc(1,2),3,[0,0]
1 2 2 [2.0,6.0] 1 2 [5.0,15.0],Arc(2,5),3,[2.0,6.0] [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 3 3 [5.0,15.0] 2 5 [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 4 4 [6.0,16.0] 2 4 [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 5 5 [8.0,20.0] 2 3 [8.0,20.0],Arc(3,4),2,[8.0,20.0] [10.0,32.0],Arc(3,5),3,[8.0,20.0]
1 6 6 [8.0,20.0] 3 4 [10.0,32.0],Arc(3,5),3,[8.0,20.0] [11.0,29.0],Arc(4,6),3,[8.0,20.0]
1 7 8 [10.0,29.0] 3 5 [11.0,29.0],Arc(4,6),3,[8.0,20.0] [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 8 9 [11.0,29.0] 4 6 [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 9 10 [16.0,41.0] 5 6 [22.0,48.0],Arc(6,7),3,[16.0,41.0]
1 10 11 [22.0,48.0] 6 7

Figure 10: Midpoint multiple method scoring

Future Events Calendar
Thread Event Score Clock Head Tail Event 1 Event 2 Event 3

1 1 1 [0,0] 0 1 [2.0,6.0],Arc(1,2),3,[0,0]
1 2 2 [2.0,6.0] 1 2 [5.0,15.0],Arc(2,5),3,[2.0,6.0] [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 3 3 [5.0,15.0] 2 5 [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 4 4 [6.0,16.0] 2 4 [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 5 5 [8.0,20.0] 2 3 [8.0,20.0],Arc(3,4),2,[8.0,20.0] [10.0,32.0],Arc(3,5),3,[8.0,20.0]
1 6 6 [8.0,20.0] 3 4 [10.0,32.0],Arc(3,5),3,[8.0,20.0] [11.0,29.0],Arc(4,6),3,[8.0,20.0]
1 7 7.1 [10.0,29.0] 3 5 [11.0,29.0],Arc(4,6),3,[8.0,20.0] [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 8 8.1 [11.0,29.0] 4 6 [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 9 9.1 [16.0,41.0] 5 6 [22.0,48.0],Arc(6,7),3,[16.0,41.0]
1 10 10.1 [22.0,48.0] 6 7

Figure 11: Uniform distribution method scoring

Future Events Calendar
Thread Event Score Clock Head Tail Event 1 Event 2 Event 3

1 1 1 [0,0] 0 1 [2.0,6.0],Arc(1,2),3,[0,0]
1 2 1 [2.0,6.0] 1 2 [5.0,15.0],Arc(2,5),3,[2.0,6.0] [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 3 0.5269 [5.0,15.0] 2 5 [6.0,16.0],Arc(2,4),3,[2.0,6.0] [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 4 0.3864 [6.0,16.0] 2 4 [8.0,20.0],Arc(2,3),3,[2.0,6.0]
1 5 0.3864 [8.0,20.0] 2 3 [8.0,20.0],Arc(3,4),2,[8.0,20.0] [10.0,32.0],Arc(3,5),3,[8.0,20.0]
1 6 0.3864 [8.0,20.0] 3 4 [10.0,32.0],Arc(3,5),3,[8.0,20.0] [11.0,29.0],Arc(4,6),3,[8.0,20.0]
1 7 0.1756 [10.0,29.0] 3 5 [11.0,29.0],Arc(4,6),3,[8.0,20.0] [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 8 0.1427 [11.0,29.0] 4 6 [16.0,41.0],Arc(5,6),3,[10.0,29.0]
1 9 0.1427 [16.0,41.0] 5 6 [22.0,48.0],Arc(6,7),3,[16.0,41.0]
1 10 0.1427 [22.0,48.0] 6 7

Figure 9: Midpoint ranking method scoring
Arc(2,4) is schedule at time [6,16] and Arc(2,3) is
scheduled at time [8,20]. Using the uniform distribution
method, the scores are as follows:

Arc(2,5) = 0.5269444
Arc(2,4) = 0.3573611
Arc(2,3) = 0.1156945

Overall, for thread 1, the score is 0.1427, as can be

seen in Figure 11. Figure 11 shows each of the events, the
scores assigned to the events, and the running score for the
thread.
673
4.4 Comparisons against Random PERT Networks

In an effort to determine if these ranking algorithms
correlate to random experiments on the same networks, we
took the four PERT networks in Figures 5-8 and conducted
the following experiments:

1. We ran 1000 replications using randomly
generated uniformly distributed activity times and
ranked threads (event sequences) by the number
of occurrences.

2. We ran another 1000 replications using randomly
generated triangular distributions with the mode
being the midpoint of the interval. Again, we
ranked the threads by the number of occurrences.

Ingalls and Morrice

% Agreement Threads
Midpoint
Multiple Uniform Lowest Rank in Threads

Midpoint
Multiple Uniform

Example 1 37 100% 100% Example 1 37 1 1
Example 2 669 100% 100% Example 2 669 1 1
Example 3 351 100% 0% Example 3 351 1 2
Example 4 168 100% 100% Example 4 168 1 1

Midpoint
Multiple Uniform

Midpoint
Multiple Uniform

Example 1 100% 100% Example 1 3 3
Example 2 67% 67% Example 2 7 5
Example 3 100% 67% Example 3 3 8
Example 4 67% 67% Example 4 11 5

Midpoint
Multiple Uniform

Midpoint
Multiple Uniform

Example 1 100% 100% Example 1 5 5
Example 2 40% 60% Example 2 13 10
Example 3 N/A N/A Example 3 N/A N/A
Example 4 80% 80% Example 4 11 6

Midpoint
Multiple Uniform

Midpoint
Multiple Uniform

Example 1 N/A N/A Example 1 N/A N/A
Example 2 70% 80% Example 2 15 13
Example 3 N/A N/A Example 3 N/A N/A
Example 4 60% 70% Example 4 23 17

TOP 1

TOP 3

TOP 5

TOP 10

TOP 1

TOP 3

TOP 5

TOP 10

Figure 12: Random uniform distribution rankings vs.
qualitative thread rankings

% Agreement Threads
Midpoint
Multiple Uniform Lowest Rank in Threads

Midpoint
Multiple Uniform

Example 1 37 100% 100% Example 1 37 1 1
Example 2 669 100% 100% Example 2 669 1 1
Example 3 351 100% 0% Example 3 351 1 2
Example 4 168 100% 100% Example 4 168 1 1

Midpoint
Multiple Uniform

Midpoint
Multiple Uniform

Example 1 100% 100% Example 1 3 3
Example 2 67% 67% Example 2 7 5
Example 3 100% 67% Example 3 3 8
Example 4 67% 67% Example 4 11 5

Midpoint
Multiple Uniform

Midpoint
Multiple Uniform

Example 1 80% 80% Example 1 6 6
Example 2 80% 100% Example 2 7 5
Example 3 N/A N/A Example 3 N/A N/A
Example 4 80% 80% Example 4 11 6

Midpoint
Multiple Uniform

Midpoint
Multiple Uniform

Example 1 N/A N/A Example 1 N/A N/A
Example 2 70% 80% Example 2 13 12
Example 3 N/A N/A Example 3 N/A N/A
Example 4 60% 70% Example 4 23 17

TOP 1

TOP 3

TOP 5

TOP 10

TOP 1

TOP 3

TOP 5

TOP 10

Figure 13: Random triangular distribution rankings vs.
qualitative thread rankings
After these experiments were run, we determined how the
Midpoint Multiple and the Uniform ranking methods for
the qualitative networks compared to these two randomly
generated ranking. When we refer to “Top 5”, we are
referring to the top 5 threads ranked by these random
experiments.

Figures 12 and 13 show how the Midpoint Multiple
and the Uniform Distribution scoring methods compare
against threads generated by the Random Uniform
experiment and the Random Triangular Experiment,
respectively. On the left-hand side of each figure, we show
how often the qualitative ranking agrees with the random
ranking on a percentage basis. A 100% agreement means
that the qualitative ranking ranked the same Top 5 threads,
for example, as the random experiment. However, it does
not mean that the thread rankings were identical. The right-
hand side shows the lowest ranked thread of the qualitative
ranking method that was ranked in the Top 5, for example,
of the random experiment.

In the Top 5 of Figure 12, the two qualitative ranking
methods agreed with the random experiment of Example 4
on 80% of the threads. The only thread that did not agree
for the Midpoint Multiple method was the thread that was
ranked 11th by the Midpoint Multiple Method. The only
thread that did not agree for the Uniform Distribution
method was ranked 6th by the Uniform Distribution method.

In Figure 12, we see general agreement between the
qualitative ranking methods and the randomly generated
experiment. The Uniform Distribution method did agree
more often than the Midpoint Multiple method. When the
Uniform Distribution method did not agree, then the miss
was not as severe as the Midpoint Multiple method. The
same can be said for Figure 13.
67
Overall, the rankings for both qualitative methods
show some issues, but considered the number of threads
that were ranked; the “missed” rankings are a very small
percentile of the overall number of threads. Also, it looks
as if the qualitative ranking methods better agree with the
Triangular Distribution experiment. This may mean that
the qualitative ranking methods are more favorable with
modal distribution, as compared to random experiments
using the uniform distribution.

5 CONCLUSIONS

The three qualitative thread ranking methods, Midpoint
Rank, Midpoint Multiple Rank, and Uniform Distributed
Rank all show relatively good thread ranking vs. some
randomly generated PERT networks. The Midpoint Rank
method has an issue because it does not have
differentiation capability among many different threads, so
we consider that method not to be good in practical use.
However, both the Midpoint Multiple and the Uniform
have ways of better differentiating between threads and
both seem to track well with randomly generated PERT
networks. When compared with the other qualitative
ranking methods presented here, the Uniform Distribution
method yields slightly better results when compared to
randomly generated rankings.

One aspect of thread ranking is that we could use the
qualitative thread ranking to rank the least likely threads.
These threads could be unlikely, but have negative
consequences it they were to occur. We did not address
how these qualitative ranking methods actually predict
these least likely threads.
4

Ingalls and Morrice

ACKNOWLEDGMENTS

We gratefully acknowledge the financial support of the
CBA/GSB Faculty Research Committee of the College of
Business Administration of the University of Texas at
Austin.

REFERENCES

Forbus, K. D. 1988. Qualitative Physics: Past, Present, and
Future. Exploring Artificial Intelligence. Howard
Shrobe, ed. San Mateo: Morgan Kaufmann Publishers,
Inc.

Hinkkanen, A., K. R. Lang, and A. B. Whinston. 1993. A
Theoretical Foundation of Qualitative Reasoning
Based on Set Theory. Working Paper.

Ingalls, R. G., D. J. Morrice, A. B. Whinston. 2000. The
Implementation of Temporal Intervals in Qualitative
Simulation Graphs. ACM Transactions on Modeling
and Computer Simulation 10(3):215-240.

Ingalls, R. G., D. J. Morrice, E. Yücesan, A. B. Whinston.
2003. Execution Conditions: a Formalization of Event
Cancellation in Simulation Graphs. INFORMS Journal
on Computing 15(4):397-411.

Johnson, L. A. and D. C. Montgomery. 1974. Operations
Research in Production Planning, Scheduling, and
Inventory Control. New York, New York: John Wiley
and Sons, Inc.

Schruben, L. W. 1983. Simulation Modeling with Event
Graphs. Communications of the ACM 26(11):957-963.

Som, T. K. and R. G. Sargent. 1989. Formal Development
of Event Graphs as an Aid to Structured and Efficient
Simulation Programs. ORSA Journal on Computing
1(2):107-125.

Yücesan, E. 1990. Simulation Graphs: A Mathematical
Framework for the Design and Analysis of Discrete
Event Simulations. Ph.D. Dissertation, School of
Operations Research and Industrial Engineering,
Ithaca, New York.

AUTHOR BIOGRAPHIES

RICKI G. INGALLS is Associate Professor and Site
Director of the Center for Engineering Logistics and
Distribution (CELDi) in the School of Industrial
Engineering and Management at Oklahoma State
University. He has developed a graduate program in
Supply Chain Engineering where he teaches Supply Chain
Strategy and Supply Chain Modeling. Through CELDi and
an active consulting practice, Dr. Ingalls has consulted
with companies and government agencies in areas such as
business strategy, business modeling, resource planning,
labor planning, and freight modeling. Dr. Ingalls joined
Oklahoma State in 2000 after 16 years in industry with
Compaq, SEMATECH, General Electric and Motorola.
675
His last position at Compaq was an executive position
reporting to the Vice-President of Global Integrated
Logistics where he was responsible for Supply Chain
Design projects and Supply Chain Strategic Planning for
the corporation. He has a B.S. in Mathematics from East
Texas Baptist College (1982), a M.S. in Industrial
Engineering from Texas A&M University (1984) and a
Ph.D. in Management Science from the University of
Texas at Austin (1999). His email address is
<ricki.ingalls@okstate.edu>.

DOUGLAS J. MORRICE is a Professor in Operations
Management at The University of Texas at Austin. He has
ORIE Ph.D. from Cornell University. His research interests
include simulation design, modeling, and analysis. Dr.
Morrice was Co-Editor of the Proceedings of the 1996
Winter Simulation Conference, and 2003 Winter
Simulation Conference Program Chair. He is currently
serving as a representative for the INFORMS Simulation
Society on the Winter Simulation Conference Board of
Directors. His email address is
<morrice@mail.utexas.edu >.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

