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ABSTRACT

A new approach for overcoming broken ergodicity in Markov
Chain Monte Carlo (MCMC) simulations of complex sys-
tems is described. The problem of broken ergodicity is
often present in complex systems due to the presence of
deep “energy wells” in the energy landscape. These en-
ergy wells inhibit the efficient sampling of system states
by the Metropolis Algorithm thereby making estimation of
the Boltzmann Partition Function (BPF) more difficult. The
approach described here uses transformation functions to
create a family of modified or smoothed energy landscapes.
This permits the Metropolis Algorithm and the MCMC
approach to sample system states in a way that leads to
accurate estimates of a modified BPF (mBPF). Theoretical
results show how it is then possible to extrapolate from this
mBPF to the BPF value associated with the original land-
scape with a small absolute error. Computational examples
are provided.

1 INTRODUCTION

A recurring problem in statistical mechanics and simulations
of complex systems is the computation of the Boltzmann Par-
tition Function (BPF) (Technically, this is more accurately
denoted as the canonical partition function where the expo-
nential involves the Boltzmann constant.) Z(t) = ∑

N
i=1 e− fi/t

(N is the number of system states), a value related to many
quantities of interest in the study of large ensembles of
interacting entities. Among other things, this value serves
as the normalizing constant in expressions involving the
stationary probability of the system in question being in
state i with corresponding energy value fi. It is often useful
to estimate this stationary probability using Markov Chain
Monte Carlo (MCMC) simulation techniques in conjunction
with the Metropolis Algorithm (Metropolis et al. 1953).
The Metropolis Algorithm governs the transition probabil-
ities of the simulation and hence, how it moves from one
state to another. These transition probabilities are affected
by the “energy” levels of the states. This seminal work,
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developed over 50 years ago, has provided a mathematically
sound basis for estimating the stationary probability of any
particular state.

Such estimates, if they are accurate, provide valuable
insights regarding the frequency of certain interesting or
rare events. In many problems however, obtaining accurate
estimates of the stationary probabilities (or related values)
is impaired because of the nature of the energy landscape.
Sometimes there are deep pits or “energy wells” in the energy
landscape. Once the state of the system reaches these deep
energy wells, the probability of escaping them (transitioning
to other sets of states) becomes exceeding small resulting in
very biased estimates of the state probabilities. Under these
circumstances, repetitions of such a simulation with different
initial conditions often yield vastly different estimates of
the stationary probabilities. This situation is often referred
to as the broken ergodicity problem.

One straightforward approach for addressing this prob-
lem is to compensate for the small escape probabilities by
requiring very long simulations. Long runs provide a suffi-
cient number of opportunities for the simulation to escape
from the energy wells and thereby yield output statistics
more in line with the theoretical probabilities.

Many other methods exist however that overcome this
problem without such inordinately long simulation runs. The
basic approaches usually involve modifying the MCMC
technique or the Metropolis Algorithm in some way for
“problem” energy landscapes. In this article, the broken
ergodicity problem is addressed differently—the approach
described here utilizes transformations of the energy land-
scape itself while leaving the essential features of the MCMC
technique and the Metropolis Algorithm unchanged. These
transformation functions smooth out the energy landscape
and thereby enable the MCMC technique to avoid or reduce
the possibility of “getting stuck” in deep energy wells. Sec-
tion 2 provides the necessary background material on the
BPF, the MCMC approach, and the broken ergodicity prob-
lem. Section 3 then describes the motivation and mathemat-
ical foundations of the energy transformation functions. Of
course, smoothing out the landscape changes the stationary
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probabilities from what the original landscape would yield
in an MCMC simulation. These transformed energy land-
scapes yield a modified BPF (mBPF) value. Consequently,
some way must be developed that relates the mBPF values
to the BPF values associated with the original landscape.
Section 4.1 describes some theoretical results pertaining to
such relationships. Section 5 describes computational ex-
periments that provide examples of the techniques described
here. Finally, Section 6 provides some concluding remarks
and directions of future research.

2 BACKGROUND

The development of the Metropolis Algorithm spawned a
great deal of progress in many diverse fields—from con-
densed matter physics to optimization techniques such as
simulated annealing (Fleischer 1995)—by providing a sim-
ple mechanism for the computer simulation of many complex
phenomena (Conference: 2003). The basic machinery of
the Metropolis Algorithm is the Metropolis Acceptance Cri-
terion that governs movement from state i with value fi to
a ‘candidate’ state j with value f j:

Pr{Accept state j | Current state = i}

=
{

e−∆ f ji/t if ∆ f ji = f j− fi > 0
1 if f j− fi ≤ 0

(1)

which leads to stationary probabilities

πi(t) =
e− fi/t

Z(t)
(2)

where Z(t) = ∑i e− fi/t is the BPF and in (2) serves as the
normalizing constant (Metropolis et al. 1953, Conference:
2003).

The BPF has a great deal of significance in statistical
mechanics and “. . . contains all of the essential information
about the system under consideration” (Landau and Binder
2000, p.7). It is therefore not surprising that a great deal of
research has explored various ways for accurately estimating
this value. Naturally, the Metropolis Algorithm has played
a significant role in these efforts. If, for example, one can
estimate the value in (2) for some state i with known energy
fi, then one can obtain an estimate of Z(t). The accuracy of
these estimates obviously depends on the degree to which
the simulation state frequencies comports to the actual state
probabilities. As noted above, for certain landscapes, the
broken ergodicity problem makes the accurate estimation of
Z(t) more computationally expensive. Figure 1 illustrates
an energy landscape that might exhibit the broken ergodicity
problem.

The point highlighted in the graphic is in such a deep
energy well with neighboring solutions that have relatively
very high energy values. Thus, the probability of moving
659
Current solution

Figure 1: Illustration of the broken ergodicity. Problem.

to another state is very low and simulation based strictly
on the Metropolis Algorithm and this landscape requires a
very large number of iterations to accurately estimate Z(t).

This problem is exacerbated when the temperature is
lowered as the acceptance probability becomes exponentially
smaller. Unfortunately for researchers in many disciplines
that have use for such simulations, many of the more inter-
esting critical phenomena such as phase transitions occur
under just such low temperature conditions. As Straub
and Andricioaei (2001) point out “[o]vercoming broken er-
godicity is a non-trivial problem...” (p.193) and describe
two general approaches for addressing it: 1) using tailored
methods that utilize specific features of the particular system
involved; and 2) more generalized methods that are more
broadly effective. Several examples of the latter use the
so-called Wang-Landau Sampling technique (Landau 2003).
Topper et al. (2003) further describes other techniques to
overcome what they describe as an “insidious problem” in
referring to the “quasi-ergodicity” problem. They describe
methods that involve modifications of the basic MCMC ap-
proach such as “Mag-Walking”, “Subspace Sampling”, the
“Jump Between Wells Method”, the “J-Walking” method
and several others. Importance sampling methods have also
been widely used (Straub and Andricioaei 2001, Landau
and Binder 2000).

All these generalized approaches involve significant
changes to the MCMC approach or involve significant an-
cillary computation of other quantities. Rather than using
some specific modification of the MCMC technique, the
approach described here is general and involves modifi-
cations of the entire energy landscape. To be technically
correct, the approach described here is really a hybrid as it
involves the basic MCMC machinery but, in effect, mod-
ifies the acceptance probabilities by virtue of the energy
transformation functions. Other forms of energy landscape
modifications are given by Tsallis (1988) which demonstrate
power-law distributions. It is also worth noting that the ap-
proach described here is rooted in non-extensive statistical
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mechanics (Fleischer 2005a). The next section describes an
extrapolation concept that lies at the heart of the approach
used here.

2.1 An Old “Smoothing” Technique—Increasing the
Temperature

One approach for solving the broken ergodicity problem is
to run simulations at high temperatures, where the landscape
is effectively smoother, and using results thus obtained to
estimate the BPF at low temperatures. This possibility is
suggested in Figure 2 and illustrates the characteristic ‘S’
shaped curve for Z(t) plotted as a function of log(t) (Landau
and Binder 2000).
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Figure 2: The Boltzmann partition function.

These curves typically exhibit regions of convexity and
concavity, and hence the possibility of extrapolating to the
value of Z(t) at a low temperature from a corresponding
value at a high temperature where more accurate sampling is
possible. This requires estimation of the derivative of Z(t),
a well-known quantity in statistical mechanics (Landau and
Binder 2000).

This ‘extrapolation’ idea is illustrated in Figure 3 which
highlights the relatively high temperature values at which
the derivative must be estimated. Clearly, the only way for
this extrapolation idea to work is if the correct temperature
at which to estimate the derivative of Z(t) can be identified.
Unfortunately, not all landscapes are alike—each landscape
can have its own derivative point. Indeed, even when land-
scapes have the same size and a similar distribution of values,
the derivative points will likely be different. Figure 3 illus-
trates this problem for two randomly generated landscapes
(both have 10,000 energy values with the indicated ranges).
The landscape associated with Figure 3a indicates that the
log of this critical temperature is a bit less than 200 while
for the landscape associated with Figure 3b the log of the
critical temperature is something greater than 200. Obvi-
ously, this Derivative Point Identification Problem (DPIP)
must be overcome for this idea to work. An approach for
addressing the DPIP is presented in the following sections.
660
3 TRANSFORMATION FUNCTION PRINCIPLES

An important aspect in generating transformation functions
is the capacity for creating a family of smoothed landscapes
each of which is related to the original landscape. As will be
shown, two such curves are required to provide an effective
solution to the DPIP. The following three principles therefore
provide the basis for formulating a transformation function.

Principle 1—Parameterization: Three parameters are de-
fined: a smoothing parameter a ≥ 0, a ‘family’ parameter
m ≥ 1 and the temperature t > 0. Define a new function,
f̂i(a,m, t) based on fi and using the parameters of interest.
This will often be denoted more simply by f̂i ≡ f̂i(a,m, t)
or f̂i(a) where the functional dependencies are understood.

Principle 2—Boundary Conditions: A boundary condition
is required that recovers the original value of fi . Thus, for
all i, m≥ 1, and t > 0 with a = 0, f̂i(0,m, t) = fi.

Principle 3—Smoothing: The third consideration is to
establish the mechanisms for smoothing out the landscape.
This obviously requires that the difference between any
f̂ j(a) and f̂i(a) should be decreased depending on the
smoothing parameter a. It would also be useful if the high
energy values were decreased to a greater degree than
lower energy values. This would make escaping from very
deep energy wells more likely.

With these considerations in mind, a relationship must
be defined between the rate change of transformed energy
values f̂i(a,m, t) with respect to a and the magnitude of
f̂i(a,m, t). The rate of decrease in f̂i(a,m, t) as a gets
larger is negatively proportional to the size of f̂i(a,m, t). To
produce a family of relationships, the following differential
equation is proposed:

∂ f̂i/t
∂a

=−
(

f̂i

t

)m

. (3)

3.1 Defining the Transformation Function

Eq. (3) is solved by rearranging and integrating and keeping
in mind the boundary condition f̂i(0,m, t) = fi. Letting
gi(a) ≡ f̂i(a,m, t)/t to simplify notation and keeping just
the parameter a as it is involved in the integration to follow,
we solve the differential equation

∂gi(a)
∂a

=−(gi(a))m ⇒
∫ a

0

∂gi(s)
−gi(s)m =

∫ a

0
∂ s = a. (4)
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Figure 3: Illustration of the derivative point identification problem.
Thus, gi(s)−m+1

m−1

∣∣∣s=a

s=0
= a and hence

1
(m−1)gi(a)m−1 −

1
(m−1)gi(0)m−1 = a. (5)

Simplifying (5), and substituting back f̂i(a,m, t)/t for g(a)
and keeping in mind the boundary conditions (i.e., gi(0) =
fi), we get the general energy landscape transformation
function for all states i:

f̂i(a,m, t) =
fi[

1+a(m−1)( fi/t)m−1
]1/(m−1) . (6)

Case m = 1: The integrals in (4) yield the logarithmic form:
− lngi(s)

∣∣s=a
s=0 = a and hence − lngi(a)+ lngi(0) = a. This

leads to

gi(a) = e−agi(0) (7)

and therefore

f̂i(a,1, t) = e−a fi. (8)

Notice that (8) does not involve t as they cancel each other
out on both sides of (7) whereas for m > 1, (6) does involve
t. This same result in (8) can also be obtained from (6) and
taking limits; i.e., limm→1 f̂i(a,m, t) = e−a fi.

Insofar as computing the value of the BPF, observe that
for f̂i(a,1, t) denoted here as f̂i,

N

∑
i=1

e− f̂i/t =
N

∑
i=1

e−c fi/t =
N

∑
i=1

e− fi/t ′ (9)

where c = e−a and hence the effective temperature t ′ =
t/c = tea. Thus, for m = 1 the BPF value associated with
the transformed landscape is equivalent to one obtained by
raising the temperature a factor of ea using the original
landscape.
66
Case m = 2: In this case, (6) becomes

fi(a,2, t) =
fi

1+a fi/t
. (10)

See Fleischer (2005b) where (10) forms the basis of a scale
invariance structure in non-extensive systems.

Figures 4a and b illustrate the effects of these trans-
formations and certain important monotonicity properties.
Figure 4a highlights the smoothing effect using two energy
values f = 5 and f = 10. Notice that the two transformed
energy values f̂ become closer in magnitude as a increases
and intercept the y−axis at the untransformed values f = 5
and f = 10 per the boundary conditions.

Figure 4b depicts how the transformed energy values
relate to the original energy values. The topmost curve
represents the case where f̂i(a,m, t) = fi (a = 0). This
curve is basically the y = x line. The three curves below it
correspond to transformed values with a = 0.5 and m = 1,2
and 3, respectively.

Figure 4b also provides a great deal of insight into the
monotonicity properties of these transformations. Note that
for m = 1 the transformation function changes the energy
landscape by a linear relation as shown in the top two
curves in Figure 4b. For any state i, plotting f̂i(a,1, t)
versus fi results in a line with a lower slope than the
curve f̂i(0,m, t) = fi versus fi. These transformations thus
preserve the rank-order of energy values, smooth-out the
energy landscape, and have certain boundedness properties.
(Proofs of these assertions are available from the author.)

Figures 5a and b illustrate how these energy transfor-
mations modify the relief of the landscape. For a > 0,
the original landscape (the black curves in both graphics)
is transformed to a set of ‘smoothed-out’ landscapes for
m = 1,2 and 3. Higher values of a produce a smoother
landscape for a given value of m (compare the corresponding
curves in Figures 5a and b). Note that each curve in Fig-
ure 5a that is a transformation of the original landscape (the
top-most landscape in black) majorizes the corresponding
curve (one with the same value of m) in Figure 5b per the
monotonicity properties. The linear transformation of the
1
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Figure 4: The effects of the transformation function.
landscape when m = 1 is readily apparent—compare the
top two curves of each graphic. The non-linear effects for
m ≥ 2 curves are also apparent. Finally, observe that the
rank order of all points is also preserved.

These smoothed-out landscapes allow the MCMC ap-
proach to accurately estimate the BPF. (On the other hand,
if a is very large and the landscape almost flat (too smooth)
we have another type of ‘broken ergodicity’ problem in that
now all states can be visited with almost uniform prob-
ability. Under these circumstances, the very slight (yet
definite) undulations in the landscape require a very large
number of MCMC iterations to obtain statistically significant
differences in energy values. This problem could rightly
be referred to as the super-ergodicity problem.) The next
section explains how this is accomplished.

4 THE MODIFIED BOLTZMANN PARTITION
FUNCTION

As stated earlier, the approach taken here does not modify
the basic Metropolis Algorithm and instead modifies the
energy values. Thus, (1) is only changed by substituting the
transformed values f̂i for every fi resulting in the stationary
probabilities

π̂i(t) =
e− f̂i/t

∑ j e− f̂ j/t
=

e− f̂i/t

Ẑ(a,m, t)
(11)

where Ẑ(a,m, t) = ∑ j e− f̂ j/t is the mBPF associated with a
smoother landscape. It is easy to see that Z(0,m, t) = Z(t)
for any m and t from the boundary conditions. It is also
worth noting that for m > 1, (11) is asymptotically power-law
distributed (Fleischer 2005b). Assuming that this smoothed
landscape permits a more accurate estimate of the mBPF, the
question arises as to how to use mBPF values to estimate the
BPF at low temperature. The following section describes
how this can be done. And now, for some magic!
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4.1 Relating the mBPF to the BPF

Now that a set of transformations functions associated with
the same underlying landscape exists, the relationships be-
tween the curves generated by Ẑ(a,m, t) as functions of a
can be examined. An almost magical relationship becomes
readily apparent: The functions Ẑ(a,1, t) and Ẑ(a,2, t) inter-
sect at a point very near the point at which the derivative of
Ẑ(a,1, t) allows extrapolation to the value of Ẑ(0,1, t) = Z(t),
hence effectively solves the DPIP!

Figure 6 illustrates this relationship using the same
landscapes from Figure 3. Note how the tangent lines
intersect the y–axis at the points denoted here by Z̃(t) ≈
Ẑ(0,m, t), i.e., the extrapolated values based on the tangent
line to Ẑ(a,1, t) are very close to the mBPF evaluated at
a = 0, hence, very close to the BPF Z(t). As shown below,
this relationship holds for any finite landscape and any t > 0.

4.2 The Derivative of f̂i With Respect to a

Taking the derivative of Ẑ(a,m, t) with respect to a:

∂ Ẑ(a,m, t)
∂a

=
∂

∂a

N

∑
i=1

e− f̂i/t =
N

∑
i=1

∂e− f̂i/t

∂a

=
N

∑
i=1

e− f̂i/t ∂
(
− f̂i/t

)
∂a

=
N

∑
i=1

e− f̂i/t
(

f̂i

t

)m

(12)

where (12) is obtained by substituting in (3). For m = 1,
and ignoring arguments for notational clarity, (12) becomes
∂ Ẑ
∂a = 〈 f̂

t 〉, the expectation of f̂ (a,1, t)/t.

4.3 The Derivative Point and Term-Wise Analysis

As shown in Figure 6, solving the DPIP requires determining
the value a? such that Ẑ(a?,1, t) = Ẑ(a?,2, t), i.e., where the
curves intersect. An important observation however is that
one can produce very similar graphs as in Figure 6 for just the
single exponential term associated with the lowest value fi in
the mBPF. Moreover, it is much simpler and mathematically
tractable to examine the important relationships for single
2



Fleischer
0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

T
ra

ns
fo

rm
ed

 E
ne

rg
y 

V
al

ue
s

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

T
ra

ns
fo

rm
ed

 E
ne

rg
y 

V
al

ue
s

a. a = 0.25. b. a = 0.5.

Figure 5: Plots of a random energy landscape (curve in black) and its associated transformed with m = 1,2, and 3. The
transformations change the relief of the landscapes.
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Figure 6: Illustration of the solution to the derivative point identification problem.
terms of the mBPFs and further provides a number of
important insights for error analysis. For fi ≥ 0 define

Ẑi(a,1, t) ≡ exp(−e−a fi/t)

Ẑi(a,2, t) ≡ exp
(

− fi
1+a( fi/t)

/
t
) (13)

with Zi(t) = e− fi/t and ai ≥ 0 such that

Ẑi(ai,1, t) = Ẑi(ai,2, t). (14)

Simplifying (14) yields

ai = ln(1+ai ( fi/t)) ⇔ eai −1
ai

=
fi

t
. (15)

It is easy to show that for every fi ≥ 0, there exists a unique
ai > 0 such that (14) holds. Also, for any given fi ≥ 0, the
fixed point ai on the left in (14) can easily be calculated
based on the Fixedpoint Theorem. (Note that Havil (2003)
describes an intriguing connection between (15) and the
Riemann Zeta Function.) Using Figure 6 as a guide, define
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the following estimate of a BPF term:

Z̃i(t) = Ẑi(ai,1, t)−ai

(
∂ Ẑi(a,1, t)

∂a

∣∣∣∣
a=ai

)
(16)

where fi ≥ 0 and ai satisfies (15). The following theorem
shows that the absolute error of the extrapolated value for
the exponential term is less than 4.8%.

Theorem 1 Using the definitions in (14) and (16),
define the error (the difference between the extrapolated
estimate based on (16) and the actual value)

Ei(t) = Z̃i(t)−Zi(t). (17)

Then the following are true for all fi ≥ 0 and t > 0:

A: lim fi→∞ Ei(t) = 0,

B: Ei(t)≥ 0, and

C: max fi≥0 Ei(t) < 0.04792.

Proof:
Statement A: Re-writing the expression in (16) by substi-
3
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tuting in the expressions in (12) and (13) yields

Z̃i(t) = exp{−e−ai fi
/

t}−ai
[
e−ai( fi/t)exp{−e−ai fi

/
t}
]

= exp{−e−ai fi
/

t}
[

1− aie−ai fi

t

]
(18)

Using the fact that ai = ln(1+ai( fi/t))⇒ eai = 1+ai( fi/t)
and simplifying (18),

Z̃i(t) = exp
(

− fi

1+ai( fi/t)

/
t
)[

1− ai( fi/t)
1+ai( fi/t)

]

=
exp
(

− fi
1+ai( fi/t)

/
t
)

1+ai( fi/t)
=

exp
(
−e−a fi

/
t
)

1+ai( fi/t)
.

Consequently,

Ei(t) = Z̃i(t)−Zi(t)

=
exp
(

− fi
1+ai( fi/t)

/
t
)

1+ai( fi/t)
− e− fi/t . (19)

Note that lim f→∞
f

1+a f /t = t
a , hence the first term of (19)

converges to e−1/ai . From (15), ai increases as fi increases,
it follows that e−1/ai → 1 as fi →∞ while the denominator
1 + ai( fi/t) → ∞. Thus, the first term converges to 0 as
does the second term hence Ei(t)→ 0 as fi → ∞.
Statement B: To see that Ei(t)≥ 0 for all fi ≥ 0, consider
the following cases:
Case 1: For all fi ∈ [0,1], ai = 0 and it is obvious from
(19) that the error Ei(t) = 0.
Case 2: For all fi > 1, it follows from (15) that ai > 0. Note
that for all integers k≥ 3, k < 2k−1, hence for all k≥ 3 and

ai > 0, ak
i

k! >
ak

i
k!

(
k

2k−1

)
. Thus, for infinite sequences,

1+ai +
a2

i
2!

+
∞

∑
k=3

ak
i

k!
> 1+ai +

a2
i

2!
+

∞

∑
k=3

ak
i

k!

(
k

2k−1

)
= 1+ai +

a2
i

2!
+

∞

∑
k=3

aiak−1
i

(k−1)!

(
1

2k−1

)

= 1+ai

(
1+(ai/2)+

∞

∑
k=3

(ai/2)k−1

(k−1)!

)

= 1+ai

(
1+(ai/2)+

∞

∑
k=2

(ai/2)k

k!

)
. (20)

Noting the forms on both sides of (20) we obtain the
inequality eai > 1+aieai/2 and

eai −1
a

> eai/2. (21)
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Recall that the left-hand side of (21) is fi/t, hence fi/t > eai/2

and therefore 2 ln( fi/t) > ai = ln(1+ai( fi/t)). Exponenti-
ating both sides yields ( fi/t)2 > 1+ai( fi/t). Rearranging,
0 > 1+ai( fi/t)− ( fi/t)2 and multiplying by ai > 0 yields

0 = ai +a2
i ( fi/t)−ai( fi/t)2. (22)

Subtracting fi/t from both sides of (22) and factoring the
right-hand side yields − fi

t >
(

ai− fi
t

)(
1+ ai fi

t

)
and there-

fore

− fi/t
1+ai( fi/t)

> ai− ( fi/t) = ln(1+ai( fi/t))− ( fi/t).

After exponentiating both sides then

exp
{

− fi

1+ai( fi/t)

/
t
}

> (1+ai( fi/t))exp{− fi/t}

and upon rearranging, it immediately follows from (19) that
for all fi > 1, Ei(t) > 0.
Statement C: Numerical methods are necessary for cal-
culating the maximum error and the corresponding critical
values of f and a. This is facilitated by modifying the error
function (19) by substituting in eai−1

ai
per (15) for every fi/t

thereby eliminating every appearance of fi and t (in the
first term). The error function thus becomes an expression
involving only a, hence

E(a) = e
−a2+e−a−1

a − e
1−ea

a . (23)

Taking the derivative of Ei(a) with respect to a and without
showing all the calculations,

dE(a)
da

=
exp
(
−a2+e−a−1

a

)
a2

[
1−a2− (a+1)e−a]

+
exp
(

1−ea

a

)
a2 [1+(a−1)ea] . (24)

Figure 8 depicts the curve dE/da vs. a and a unique, non-
trivial zero. Setting (24) equal to zero and simplifying yields
the following function for which the zero value corresponds
to the zero in (24).

g(a) = a2− cosh(a)− a
2

ln(1+a)+1 = 0. (25)

Application of the bisection method on (25) yields the
following values associated with the maximum error Ei(t)
and the corresponding values for a and f (denoted here
4
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Figure 7: Plot of the error Ei as functions of f /t and a.
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Figure 8: Plot of the derivative of E with respect to a.

with the ∗).

a∗ = 2.19241298854854
f ∗ = 3.62924310192440

max f≥0 E( f ) = 0.04791525323212.
(26)

Figures 7a and b show the magnitude of error plotted against
f and a respectively at t = 1 and illustrate the asymptotic
convergence of the error function. �

Because of the existence of a closed form expression for
the error, the following identity is proved.
Corollary to Theorem 1: For all fi ≥ 0,

Zi(t) = Ẑi(ai,1, t)

−ai

(
f̂i(ai,1, t)

t

)
Ẑi(ai,1, t)−Ei(ai) (27)

Proof:
This expression is obtained by recalling that
∂ Ẑi(a,1, t)/∂a = ( f̂i/t)Ẑi(a,1, t), substituting into (16) and
applying the error term in the theorem. �

The next section shows one possible general approach
for using these results to produce estimates of the BPF.
665
5 COMPUTATIONAL EXAMPLES FOR
ESTIMATING THE BPF

Estimating the sum of exponentials without brute-force cal-
culation has long been a challenging task—there are no easy
formulas that convert a sum of exponentials into simpler
expressions. In the end, only the actual summation of these
terms provides the exact answer. There are however very
well known techniques that attempt to mitigate this problem
and can produce reasonable approximations. Perhaps the
most famous of these is the widely used Laplace Method
that takes advantage of the fact that the largest contribution
in a sum of exponentials (Laplace Integrals) comes from
the terms with the lowest values of fi since the influence
of the other terms on the sum decreases exponentially and
so can be discounted somewhat or ignored. The approach
described below also uses this idea along with the theoreti-
cal results presented here to suggest a general approach for
solving the broken ergodicity problem.

Estimate Z(t) = ∑
N
i=1 e− fi/t by

1. first estimating the critical value a? by running
MCMC simulations using two transformed land-
scapes with m = 1 and m = 2. Modify the simu-
lations by changing a until estimates are obtained
where Ẑ(a,1, t)≈ Ẑ(a,2, t).

2. Calculate Z̃(t) as an estimate of Z(t) using the
following equation similar in structure to (27):

Z̃(t) = Ẑ(a?,1, t)−a?

〈
f̂
t

〉
−E(a?) (28)

where the second term corresponds to a? times the
derivative of Ẑ(a,1, t) from (12), and the third term
is based on the term-wise error in (23).

The following analytical computations illustrate this ap-
proach.

In Table 1 experiment #1 was based on uniformly and
randomly generated values for fi in the range 0 to 50.
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Experiment #2 was similarly based on values for fi ranging
from 10 to 100.

Table 1: Numerical experiments.

Exp. # Terms Z(t) Z̃ % Error
1 10,000 193.40 402.53 2.09
2 100,000 0.0495 1779.73 1.77

6 CONCLUSION

This article highlights a transformation function that
smoothes an energy landscape. MCMC simulations on
such smoothed-out landscapes can provide a means to more
accurately estimate a modified BPF (mBPF). Mathemati-
cal relationships are described that allows one to estimate
the original BPF based on estimates of the corresponding
mBPFs. Error analysis and computational examples show a
small absolute error in the estimated BPFs. This mathemat-
ical relationship can thus be utilized to estimate the BPF in
MCMC simulations that exhibit broken ergodicity. Future
research will examine the best manner in which to estimate
certain critical parameters such as a? under actual MCMC
simulations and other issues relating to upper and lower
bounds on the resulting estimates of the BPF and values of
a that yield the most efficient statistics in a simulation.
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