
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

AUTOMATIC GENERATION OF SIMULATION MODELS FOR SEMICONDUCTOR MANUFACTURING

Ralph Mueller
Christos Alexopoulos

Leon F. McGinnis

School of Industrial and Systems Engineering
765 Ferst Drive, N.W.

Georgia Institute of Technology
Atlanta, GA 30332, U.S.A.

ABSTRACT

This article gives an overview of a framework for auto-
matically generating large-scale simulation models from a
domain specific problem definition data schema, here
semiconductor manufacturing. This simulation model
uses an object-oriented Petri net data structure. The Petri
net based simulation uses the same enabling rules as clas-
sical Petri nets, but has extensions of time and priorities.
This approach minimizes the effort of model verification.
Each object identified in the problem data specification is
mapped to corresponding Petri net fragments. The Petri
net simulation model is synthesized from verifiable sub-
nets. This allows ensuring the liveness of the final Petri
net simulation model. The applicability of this approach is
demonstrated by generating a simulation model based on
the Sematech data set.

1 INTRODUCTION

The steady decline in computing cost makes the use of
simulation very cost efficient in terms of hardware re-
quirements. However, commercial simulation software
has not kept up with the hardware improvements. It can
take very long to build and verify large models with stan-
dard commercial-of-the-shelf (COTS) software.

Efficient simulation model generation will allow the
user to simplify and accelerate the process of producing
correct and credible simulation models. Model credibility
is attained when the end user accepts the simulation
model as a correct model. Improving the verification
process can improve the model credibility, especially
when the end user can retrace the verification process.

The proposed framework promotes a “bottom up”
approach to simulation modeling. Small verifiable subsets
are synthesized in a particular way to create a large
model, which will maintain certain properties, in particu-
lar, absence of deadlock, in the resulting simulation
641-4244-1306-0/07/$25.00 ©2007 IEEE
model. The existing literature on the use of Petri nets for
semiconductor manufacturing focuses almost exclusively
on the modeling of sub systems of the manufacturing sys-
tem under study (e.g., Zhou 1998). One exception is
Becker (2003), whose approach combines queuing and
Petri nets to simulate an entire semiconductor manufac-
turing system (only the first Sematech data set).

The suitability of the simulation framework is dem-
onstrated for semiconductor manufacturing simulation.
Semiconductor wafer fabrication is considered one of the
most complex and capital-intensive manufacturing proc-
esses (cf. Ramirez-Hernandez et al. 2005), and typically
involves several hundred processing steps. This makes it
an ideal candidate for the automatic generation of simula-
tion models.

The remainder of this paper consists of three parts.
Section 2 introduces an object-oriented Petri net simula-
tion framework. Section 3 describes a problem data speci-
fication schema for a particular application domain. Sec-
tion 3 presents mappings from this data structure to a Petri
net. These mappings are used to create a simulation model
that is based on the framework.

2 OBJECT-ORIENTED PETRI NET
SIMULATION FRAMEWORK

The proposed framework is based on a Petri net (PN) data
structure. PNs incorporate the concept of distributed sys-
tem state with rules that define how state changes occur.
PNs are successfully employed to support many stages of
the development of complex systems: rapid prototyping,
formal specification, verification of correctness, perform-
ance evaluation, and documentation (Zurawski and Zhou
1994).

A Petri net graph is a weighted bipartite graph (P, T,
A, w), where P is a finite set of places and T is a finite set
of transitions. Weights are associated with each arc in the
graph. If an arc is not labeled with a weight, its weight is
assumed to be one. The set of input places to a transition t
8

Mueller, Alexopoulos, and McGinnis

is { | (,) }t p p t A
•
= ! , the set of output places of is
{ | (,) }t p t p A

•
= ! , similar the set of input transitions to a

place p is { | (,) }p t t p A
•
= ! , and the set of output transi-

tion is { | (,) }p t p t A
•
= ! . A comprehensive introduction

to Petri nets is given by Murata (1989).
A unique feature of the simulation framework is that

all relevant state information is contained within the
model. The future event list (FEL) can be reconstructed
from the current state of the model. This means that struc-
tural changes to the model can be made during a simula-
tion run and the FEL can be updated accordingly.

2.1 Representation of Time

Classic Petri nets do not have any notion of time. A great
number of extensions of Petri nets to capture time have
evolved (see Wang 1998). A problem with theses exten-
sions is that the interpretation of firing delays is different
for each version. The firing of a transition often represents
time durations, but in classical Petri nets it represents the
instantaneous transition of a discrete-event system to a
new state.

Van der Aalst (1993) introduced a different approach
with interval-timed colored Petri nets, which are based on
colored Petri nets but use timestamps on tokens to capture
time. This simulation framework uses a similar but sim-
plified approach.

2.2 Relation to Colored Petri Nets

Our framework also uses tokens that have additional data
assigned. Primarily these are times and priorities. The
enabling rule for a transition, however, is exactly the
same as for classical Petri nets. Tokens can have different
attributes, but these do not influence the enabling condi-
tion for transitions. No colored tokens (in a traditional
sense) are used, as the attributes are not involved in ena-
bling rules of transitions.

2.3 Core Elements of the Framework

As with the classical definition of a Petri net, the core
elements of the simulation framework are transitions,
places, and tokens. All of these elements are implemented
as objects. Arcs between places and transitions are not
modeled explicitly, as places have references to transi-
tions and vice versa, (each of these references represents
an arc). With these simple elements, it is possible to
model complex systems. Transitions represent events,
whereas places and their marking represent states. The
class diagram in Figure 1 shows how these elements re-
late to each other. We proceed with a short description of
these elements.
6

A Place is an object that represents a place in the
Petri net. Each Place has an id, which uniquely identi-
fies it in the simulation model. The field inTransi-
tions is a list of Transition objects that represent
the input transitions to the place. The Place object can
receive tokens from these transitions. This is equivalent to
the set •p of a place p in a Petri net. The field outTran-
sitions is a list of Transition objects, which repre-
sent the output transitions of the place. This is equivalent
to the set p• of a place p in a Petri net. There are sub-
classes of Place, which can represent resources or op-
erators.

+addToken()

+removeToken()

+addInTransition()

+addOutTransition()
+...()

-id : String
-inTransitions : List

-outTransitions : List

-tokens : SortedSet

-...

Place

-id : int

-priority : long

-timeStamp : long

Token +fire()
+removeToken()

+sendToken()

+setPriority()

+updateTime()

+updateTimeAll()
+...()

-id : String
-inJob : Place

-outJob : Place

-batchIn : List

-batchOut : List

-inResources : List
-outResources : List

-inPlaces : List

-outPlaces : List

-toUpdate : SortedSet
-priority : long

-time : long

-enabled : bool

-dispatchRule : int

-delayTime
-rvType

-...

Transition

1 *

1*

*

*

Figure 1: Core elements.

A Token is an object that represents a token in a

classical Petri net. However, it has extensions for time
and priority, which are represented by the fields time-
Stamp and priority. There is a subclass JobToken,
which is used to represent lots that have to be processed.

The method addToken() is used during a simula-
tion to add a Token object to the tokens set of the
place. The method removeToken() is used to remove
a token from the place. There are more fields and methods
in the Place class, which are of auxiliary nature and are
not shown in Figure 1.

A Transition is an object that corresponds to a
transition in a classical PN. The fields inJob, batchIn,
inResources, and inPlaces are used to hold places
that represent the set of input places of the Transition
object, similar to the set •t of a transition t in a Petri net.
Different names are used to organize the simulation
model better. The field inJob represent a place that
holds Token objects representing jobs in the manufactur-
ing system. The field batchIn represents a set of
Place objects representing places with an arc weight w
49

Mueller, Alexopoulos, and McGinnis

greater than 1. The fields outJob, batchOut, outRe-
sources, outPlaces are used to hold places that rep-
resent the set of output places of the Transition ob-
ject, as the set t• of transition t. Their usage is analogous
to the input places. The field time is used to indicate the
firing time of the transition. The field priority is
needed to resolve conflicts of transitions with the same
firing time. The field enabled indicates if the transition
is enabled, i.e., it is eligible to fire. The field delay-
Time stores the time an activity will take. The field
rvType represent the name of the distribution that is
used to model the delay time. Any distribution can be im-
plemented, as long as the appropriate generator is avail-
able to the framework.

The method fire() will remove the appropriate
Token objects from the input places and will place the
appropriate tokens in the output places by invoking the
methods removeToken() and sendToken(). This
method can be called only when the transition is enabled.
The method setPriority() is used to calculate the
priority value of the Transition object based on the tokens
in the input places. The method updateTime() will
calculate the firing time of the transition. The method
updateTimeAll() will calculate the firing times and
check enabling conditions of all affected transitions after
a transition has fired. The core elements above have a di-
rect mapping to a classical Petri net (P, T, A ,w). For each
place p P! there is a corresponding Place object. Also
for each transition t T! , there is a Transition object.
A simulation model is created by instantiating Place and
Transition objects and adding appropriate references
to each another. There are a number of sub classes, which
are omitted here for conciseness.

2.4 Execution Mechanism

After the Petri net is generated, the simulation model can
be executed. Simulated events correspond to firings of
transitions. To simulate the Petri net, the simulator has to
scan transitions and their input places to determine if they
can fire. One can scan all transitions in the net after each
transition firing, but this would be wasteful, since only
some transitions are affected by the firing of a transition.
For example, if transition t fires, only the transitions that
have input places whose markings were changed by t are
affected. It is not sufficient to check if a transition is en-
abled; its firing time also needs to be determined. Tokens
carry timestamps, which determine when they will be eli-
gible to be used by a transition. The firing time of a tran-
sition is determined by the maximum timestamp of the
enabling token. If there is more than one token in a place
and the respective arc weight is one, the token with the
smallest timestamp is the enabling token for that place.
The example in Figure 2 illustrates this.
T1 and T2 are the transitions that represent the begin-
ning of processing involving resource R1. The input
places for T1 and T2 are {R1, P1} and {R1, P2}, respec-
tively. R1 has one token with timestamp <5>, P1 has two
tokens with timestamps <11> and <25>, and P2 has three
tokens with timestamps <15>, <35> and <40>. Both tran-
sitions T1 and T2 are currently enabled. The enabling time
for T1 is 11 because this is the value of the smallest time-
stamp in P1. The enabling time for T2 is 15 since that is
the value of the smallest timestamp in P2. Note that P1
and P2 together represent the queue waiting for resource
R1.

T
1

T
2

R
1

P
1

P
2

<11>

<25>

<15>

<35>

<40>

<5>

T
3

T
4

Figure 2: Timing example.

Job tokens also have priorities that are assigned to the en-
abled transitions and are needed to establish a firing order
for transitions that are enabled at the same time. They also
provide a mechanism to implement different dispatch
rules (see also Section 4). The enabled transitions are
added to the FEL, where they are ordered according to
time and priority. This allows ordering of transitions that
are enabled simultaneously with identical firing times.
This is not directly possible with classical and colored
Petri nets, as the firing of transitions is undetermined. The
detailed description of the mechanisms can be found in
Mueller (2007).

2.5 Transition Firing

When a transition t actually fires, the following steps are
undertaken:

• Remove tokens form all input places p t

•
! .

• Add tokens to all output places p t
•

! .
• Update time of all affected transitions.

When a transition t fires, it removes the enabling tokens
from each input place p. The removal of a token of type
JobToken is different. As this type of token is repre-
senting jobs or lots that move through the system, they
should not be discarded as they can carry attributes with
650

Mueller, Alexopoulos, and McGinnis

additional information. Instead, they are removed from
the inJob place and are added to the place outJob.

The last phase of the transition firing is to add the ap-
propriate number of tokens to the output places. First, the
timestamp of the JobToken object is set to t.time +
t.delayTime, which is the firing time of the transition plus
the delay time for the transition. The delay time can be
either deterministic or it can be a random variate gener-
ated from the distribution specified in the field rvType
of transition t. The delay time can also be zero, depending
on what the transition represents. The JobToken object
is then added to the place that is specified in the field
t.outJob. Furthermore, new Token objects are created
with a timestamp of value t.time + t.delayTime for each
output place of transition t. If the arc weight to the output
place is greater than one, the appropriate number of to-
kens will be generated and added to the place.

After a transition fires, all affected transitions must
be updated. As the state of the system is represented by
the marking of all places, the change of state is repre-
sented by the change of tokens in these places. This also
means that only transitions that have at least one of these
places as an input place are affected. Note that transitions
that only have one of these places as an output place can-
not be affected. Places that received tokens can enable
their output transitions, and places that have tokens re-
moved might disable their output transitions.

3 SIMULATION DATA SPECIFICATION

Here the term Simulation Data Specification refers to the
precise description of the data that will be used to gener-
ate the simulation model. There are very few data specifi-
cations for discrete-event simulation in the literature. An
instance can be found in Lee and Yan (2005) and Lu,
Qiao, and McLean (2003), where the NIST XML simula-
tion interface specification is used, introduced first by
McLean et al. (2002) and still under development.

The Sematech data set, available at
<http://www.eas.asu.edu/~masmlab> repre-
sents a limited form of specification; however, it is in ta-
ble format and cannot express explicitly the relationship
between all the entities in the simulation model. Therefore
an object-oriented model was developed.

This simulation data specification describes how the
modeled elements of semiconductor manufacturing sys-
tems are represented. From this specification, the simula-
tion model is generated automatically. This approach has
several advantages because the data is represented in the
application domain. Any changes in the simulation model
are made in this domain. This avoids programming errors,
as there is no simulation code to change. The following
classes or object types are the main elements used to rep-
resent the fabmodel:

6

• Fabmodel
• Process Route
• Process Step
• Tool Set
• Operator Set

The Fabmodel class represents the root for all the

other elements, i.e., it contains all the other objects for the
simulation model.

The ProcessRoute class holds all the information
of one specific process route. It contains all the constitu-
ent process steps of the route.

The ProcessStep class holds all data that refer to
a single process step. These data are processing times, re-
quired resources, operation description, loading and un-
loading times, scrap and rework probabilities, and travel
times. This basic class is used to model process steps that
process wafer lots one at a time. It is the most common
type of process step. It serves as a basis for two sub-
classes:

• Batch Process Step
• Process Step with Setup

The batch process step represents process sub-steps

that can batch lots together and process them at the same
time. Lots from different process routes can be batched
together when the batchID fields are identical. After
processing is finished, each lot will continue its own
process route. Each batch process step has a minimum
and a maximum capacity for the number of wafers that
can be processed at the same time. The process step with
setup is used to model steps that require a setup of the
tool. There is a specific setup time and a group setup time.
The specific setup time is needed for every lot that has to
be processed, whereas the group setup time is only needed
when the previous processed lot belonged to a different
setup group.

The ToolSet class describes the machines that are
used to process the wafers. It has fields for id, de-
scription, and quantity. It there is more than one
tool, all tools are treated as equivalent. Further, there are
fields that indicate if the tool has to be loaded and/or un-
loaded by an operator. If the tool is used in a setup proc-
ess step, the setup states are listed in the field setup-
States. Downtimes are also listed in the field
downtimes with description, duration, and time be-
tween downtimes.

The OperatorSet class describes the operators
that are needs to operate the tool sets in the waferfab. It is
very similar to the ToolSet class.
51

Mueller, Alexopoulos, and McGinnis

Figure 3: Class diagram of data specification.

Rework sequences have the same data format as

process routes. A rework sequence also consists of proc-
ess steps. If the rework probability is greater than zero at a
particular process step, there is a chance that a wafer lot
will have to follow the specified rework sequence after
that step is completed. After the lot goes through the re-
work sequence, it returns to the original process route.

4 SIMULATION MODEL GENERATION

The typical way to create a simulation model is to use a
COTS simulation package. These packages usually have
graphical user interfaces and reduce the programming ef-
fort to dragging and dropping of modules into a screen
and connecting these modules. A big advantage for the
user of these packages is that it is not necessary to be fa-
miliar with the underlying simulation language. However,
this process can become cumbersome for large models.
Debugging can be difficult, as data is entered in many dif-
ferent dialogs. The graphical representation is also limited
since not all details of the model can be presented. An-
other problem involves proprietary issues, as software
vendors are reluctant to make source code available.
Therefore, it is often not clear how specific modules be-
have on a detailed level.

A very different approach to building simulation
models is automatic generation. According to Mathewson
(1975), a simulation generator is a software tool that
translates the logic of a model into the code of a simula-
tion language, enabling a computer to mimic a modeler’s
behavior. One of the earliest examples for simulation
model generator is presented in Mathewson (1975), which
6

is based on entity cycle diagrams and in Mathewson
(1985), an early PC implementation of the former. In
Gong and McGinnis (1990), a simulation code generator
for an automated guided vehicle system is presented. In
Lee, Cho, and Jung (2000), a simulation model for shop
floor control systems is generated automatically from
graph-based process plans.

In this paper, a different approach is introduced: the
simulation model is generated from an input file that ad-
heres to the simulation data specification. The simulation
model is represented as a Petri net data structure, which is
built with the object-oriented framework that was intro-
duced in the previous section. An instance of a simulation
model is created by populating this data structure, but no
compilation takes place.

4.1 Mapping of Fabmodel Elements to the Petri Net
Simulation Model

This section discusses how each of the elements of the
fabmodel is represented within the Petri net. This is the
basis for the algorithms that generate the PN simulation
model.

4.1.1 Tool Sets

Each tool set is represented by a place in the PN. The cor-
responding object type is the Resource type of the frame-
work. Each place that represents a tool set will have to-
kens, representing the number of tools available. Some
tool sets have different setup states. These tool sets are
52

os, and McGinnis
Mueller, Alexopoul

represented by a set of places in the PN. For each setup
state of the tool, there is a corresponding place. The num-
ber of tokens in one place will correspond to the number
of tools available that are in the corresponding setup state.

4.1.2 Operator Sets

Operator sets are modeled in the same fashion as tool sets.
Each operator set is represented by the Operator type of
the framework. Each set represents a set of operators, who
are considered to be identical, i.e., they are all able to per-
form the same tasks with identical distributions for task
duration. The number of tokens in a place indicates the
number of operators available.

4.1.3 Process Routes

A process route consists of a series of process steps. Each
route describes how a wafer lot is routed through the wa-
fer fab. The PN simulation model generation for the proc-
ess routes works as follows: For each process route, each
of its process steps is generated sequentially, beginning
with the first.

4.1.4 Process Steps

There are three main types of process steps:

• Basic Process Step
• Batch Process Step
• Process Step with Setup

The basic process step corresponds to the object type
ProcessStep of the data specification. Each of these
three main types has a mapping to the PN.

P1 P2 P3

O1

R1

T
SP

T
EP

Figure 4: Basic process step.

Figure 4 shows the basic process step in its simplest

form. P1 is the input place. A jobToken will first arrive
here. Place P2 represents processing and place P3 repre-
sents the completion of the process step. P3 will also be
the input place of the next process step. Transition TSP
represents the beginning of processing. It consumes a to-
ken from the tool set place R1 and the operator set place
O1. TSP will also add the processing time to the token. Af-
ter processing is finished, TEP will fire and add a token to
each of the tool set and the operator set places, i.e., these
65
resources are released. Note that the operator and tool set
places can have arcs to other process steps, which are not
shown here.

P1 P2 P3

R1

P4

T
SP

T
EPO

T
SL

P5

T
EU

P8

T
ST

T
ET

P9P0

T
P

T
EP

O2

P6

T
TT

P7

Figure 5: Complex process step.

Figure 5 shows a more complex process step. For each
process sub-step there is a transition at the beginning,
which will set the priority for the job token to the appro-
priate value (here TP). Different dispatch rules can be im-
plemented by assigning the appropriate value to the job
token. This transition is present at the beginning of each
process sub-step, but is omitted in most illustrations. The
interpretation of the transitions in Figure 5 is as follows.
TSL marks the start of the loading process, TSP represents
the end of the loading and the beginning of the processing
with operator, and TEPO corresponds to the end of the
processing with operator because it releases the operator
seized by TSL. TEP is the end of processing and the begin-
ning of the unloading process. TEU represents the end of
the unloading process and releases all resources. TTT rep-
resents the travel time within the tool. TST seizes the op-
erator for the transport to the next tool, and TET releases
the operator again. Note that the tool is seized during the
entire time, starting with the loading process at TSL until
the unloading has finished at TEU. The transitions TSL, TSP,
TEP, TEPO, TTT, and TST all add the appropriate times to the
token time stamp, to represent the respective time delays.

4.1.5 Batch Process Step

The batch process step has the ability to batch several lots
together and process them at once, e.g., wafer lots that are
processed together in an oven. The wafer lots that are
batched together can also come from different process
steps, as long as the batchID fields are identical. The
batchID field is an identifier that marks lots that can be
processed together. However, the data sets specify mini-
mum and maximum batch sizes. This makes it very hard
to model it in a straightforward manner. Since the capac-
ity of the process step is greater than the minimum lot
size, the number of lots that have to be processed can vary
between the minimum and maximum batch size.

Figure 6 shows a simple batch process step that ad-
dresses this problem. Here the most basic version is intro-
duced. It has a minimum batch size of two wafer lots and
a maximum batch size of five lots. The process route that
wafer lots will follow is represented by the path P1, TS1,
P2, TS2, P3, TEP, and P4, where P1 represents the arrival
place and P4 the end of processing place. P3 represents the
3

Mueller, Alexopoulos, and McGinnis

processing stage and P2 is an intermediate place needed to
model the batch mechanism. The liveness of this structure
is ensured by assigning certain priorities to specific transi-
tions. A detailed analysis can be found in Mueller (2007),
who considers more complex operations (e.g., loading and
unloading).

These examples give just a brief overview of the
available types of process steps. For each element in the
data, specification there is a mapping to an appropriate
PN sub-net. The exact structure of the sub-net will depend
on the given data. There is also a sub-net that can model
setup times, which is not shown here.

P1 P2 P3 P4

T
S2

T
EP

T
S1

2

2

3

5

T
D1

T
D2

T
B1

T
P1

T
B2 T

B3

B1 B2 B3

R1

C B10

B20

L

2

Figure 6: Batch process step.

4.1.6 Rework Sequence and Scrap Modeling

A rework sequence has the same basic structure as a proc-
ess route. The difference is that it consists only of a few
process steps. The Sematech dataset specifies for some
process steps the probability that a lot has to go through a
rework sequence. This is accomplished with a special
type of a transition that can “switch” with a certain prob-
ability to a different place when firing. This place is the
beginning of the rework sequence. At the end of the re-
work sequence, the lot is send back to the original se-
quence.

The modeling of scrap is similar: a special transition
sends a token to a place with scrap probability, where all
the scrapped lots are accumulated.

4.1.7 Dispatch Rules and Representation of Queues

Dispatch rules are used to establish an order for jobs that
are waiting to be processed by a resource. Typical dis-
patch rules are FIFO or SPT (Shortest Processing Time),
but the range of possible dispatch rules is very large. A
dispatch rule in this framework assigns priorities to tokens
that represent wafer lots. The assignment can be made
654
with any function of the token attributes. The following
attributes are available:

• Release Time
• Number of Operations
• Total Processing Time
• Number of Operations Remaining
• Processing Time Remaining
• Processing Time

The first three attribute are fixed values that are assigned
to a job token when it is generated. The remaining attrib-
utes need to be updated at each process step. It is possible
to extend this list to any conceivable attribute.

There is no explicit representation of queues in the
framework. A queue is represented either by single place
or by a set of places. If there is only one type of job wait-
ing for a resource, the queue is simply the place that holds
the job token that is waiting to be processed. If there is
more than one job type, the queue is represented by the
set of places that hold the job tokens that are waiting to be
processed.

4.2 Generation of the PN Simulation Model

This section gives an overview of the simulation model
generation procedure. The basic generation procedure
consists of two steps. First, the specification is loaded
from an XML file. This will instantiate a FabModel ob-
ject (Section 3). This object is the root object for the wa-
fer fab, i.e., it contains all the other objects that have the
necessary information to generate the entire simulation
model. The overall procedure is as follows:

• Create Tool Sets
• Create Operator Sets
• Create Process Routes
• Create Rework Routes
• Create Input Transition

First, all the places that represent tool sets and operator
set are created. The number of tokens in each place repre-
sents the number of available resources. Then the process
routes and the rework sequences are created by synthesiz-
ing the individual process steps together. Finally, the in-
put transitions are created which are responsible for re-
leasing lots into the system.

ulos, and McGinnis
Mueller, Alexopo

Control

... ...

Tools Operators

...

P
IN

P
OUT

... ...

P’
OUT

... ...

...

P’
IN

Figure 7: Synthesizing of process steps.

Figure 7 shows an example of two process steps

joined at places POUT and PIN. Each process step has one
place for receiving and one place for sending job tokens
to the next process step. These places serve as coupling
points to generate a large simulation model. The boxes
contain all transitions that model the different process
stages of the process step. Arcs are connected to the tool
and operator places in a specific way. For some process
steps, such as batch process steps, there are also arcs to
and from control places. In this fashion individual process
steps are joined together to form process routes and re-
work sequences. The detailed algorithms can be found in
Mueller (2007).

4.2.1 Example

A GUI was developed that allows loading and generating
the model. The first step to generate the simulation model
is to load the model data from an XML file. A small por-
tion of the generated PN is shown in Figure 8 (data set 1).
Also some arcs are not displayed for better readability
6

(the arcs to the tool places and operator places have been
omitted). The PN simulation model in this example has
6363 places and 3751 transitions. An overview of the size
of the other simulation models generated from the Se-
matech data sets is given in Table 1.

Table 1: Size of PN simulation model.
Data Set # of Places # of Transitions
1 6,363 3,751
2 26,803 19,751
3 46,199 31,845
4 1,269 1,013
5 52,135 36,075
6 38,241 25,463

5 ANALYSIS OF GENERATED PETRI NET

It can be shown that some properties of PN simulation
model are not impacted by the timing mechanism and the
introduction of priorities (Mueller 2007). These properties
are liveness and boundedness. The introduction of time
and priorities will give an order to transitions that are en-
abled simultaneously. This means that the reachability
graph of the PN simulating model will be a sub-graph of
the underlying PN. This in turn makes it possible to ana-
lyze the PN simulation model in the same way as a classi-
cal PN. The generated PN simulation model can be shown
to be live and bounded for most places. Furthermore,
reachability of the end processing state for each process
route can be established.

Figure 8: Example PN simulation model.
55

Mueller, Alexopoulos, and McGinnis

6 CONCLUSIONS AND FUTURE RESEARCH

This article introduced a novel approach to simulation
modeling and simulation model generation by introducing
a simulation framework that is based on an object-
oriented PN data structure. This framework has several
unique features because it uses as a basis the same execu-
tion rules as classical PNs, yet it has extensions for time
as well as priorities for firing of transitions. This allows
the representation of time as well as the implementation
of dispatch rules. This is not possible with classical PNs.

For the simulation model generation an object model
was developed, which servers as a basis for the simulation
data specification. This object model contains all informa-
tion needed for the generation of the simulation model.
Instances of the simulation data specification can be
stored in an XML file, which is based on this object
model. Changes to the simulation model can be per-
formed by editing this file and regenerating the simulation
model.

The generation procedure that generates the PN
simulation model is based on a mapping from the object
model of the simulation data specification to the PN. Each
of the main objects in the simulation data specification,
such as resources and process steps, correspond to parts in
the PN. The mapping serves also as an unambiguous
description of the simulation model. The feasibility of this
approach was demonstrated by means of the Sematech
data set.

In summary, the simulation framework makes creat-
ing large-scale discrete-event (computer) simulation
(DES) models for manufacturing systems more manage-
able. It has several advantages: there is an explicit de-
scription of the simulation model in form of a PN. The
user can verify exactly how each component is working.
The end user does not have to do any coding of the simu-
lation model. The simulation model is described in a
problem specific domain, in this case semiconductor
manufacturing. The simulation model is specified as an
instance of an object model that serves as a simulation
data specification. The mapping from this object model to
the PN is fixed; this means that the simulation model gen-
eration is a rigid process, which can avoid programming
errors. Theoretically, there is no limitation for this frame-
work to model any discrete-event system. In principle, all
systems that can be modeled as finite-state ones can be
modeled. However, there are some disadvantages. Due to
the rigid control, it may not be possible to make changes
in the behavior of the simulation model with ease. The
behavior of the simulation model is determined by the
mapping from the object model to the PN simulation
model. Hence, this mapping has to be changed to imple-
ment different behaviors.
65
REFERENCES

Becker, M. 2003. Modeling and simulation of a complete
semiconductor manufacturing facility using Petri
nets. In Proceedings of the 2003 IEEE Conference on
Emerging Technologies and Factory Automation,
153-155. Piscataway, New Jersey: Institute of Elec-
trical and Electronics Engineers.

Gong, D.-C. and L. F. McGinnis. 1990. An AGVS simu-
lation code generation for manufacturing applications
In Proceedings of the 1990 Winter Simulation Con-
ference, eds. O. Balci, R. P. Sadowski, and R. E.
Nance, 676–682. Piscataway, New Jersey: Institute of
Electrical and Electronics Engineers.

Lee, S., H. Cho, and M. Jung. 2000. A conceptual frame-
work for the generation of simulation models from
process plans and resource configuration. Interna-
tional Journal of Production Research 38:811–828.

Lee, Y. T. and L. Yan. 2005. Data exchange for machine
shop simulation. In Proceedings of the 2005 Winter
Simulation Conference, eds. M. E. Kuhl, N. M. Stei-
ger, F. B. Armstrong, and J. A. Joines, 1446–1452.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Lu, R. F., G. Qiao, and C. McLean. 2003. NIST XML
simulation interface specification at Boeing: A case
study. In Proceedings of the 2003 Winter Simulation
Conference, eds. S. Chick, P. J. Sanchez, D. Ferrin,
and D. J. Morrice, 1230–1237. Piscataway, New Jer-
sey: Institute of Electrical and Electronics Engineers.

Mathewson, S. 1975. Program generators. In Interactive
systems, 423–39. Uxbridge: Online Conferences Ltd.

Mathewson, S. 1985. Simulation program generators:
code and animation on a PC. Journal of the Opera-
tional Research Society 7:583–589.

McLean, C., A. Jones, T. Lee, and F. Riddick. 2002. An
architecture for a generic data-driven machine shop
simulator. In Proceedings of the 2002 Winter Simula-
tion Conference, eds. E. Yüsescan, C.-H. Chen, J. L.
Snowdown, and J. M. Charnes, 1108–1116. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers.

Mueller, R. 2007. Specification and automatic generation
of simulation models with applications in semicon-
ductor manufacturing. Ph.D. thesis, H. Milton Stew-
art School of Industrial and Systems Engineering,
Georgia Institute of Technology, Atlanta, Georgia.

Murata, T. 1989. Petri nets: Properties, analysis and ap-
plications. Proceedings of the IEEE, 7:541–580.

Ramirez-Hernandez, J. A., L. Heshan, E. Fernandez, C.
McLean, and L. Swee. 2005. A framework for stan-
dard modular simulation in semiconductor wafer fab-
rication systems. In Proceedings of the 2005 Winter
Simulation Conference, eds. M. E. Kuhl, N. M. Stei-
ger, F. B. Armstrong, and J. A. Joines, 2162–2171.
6

cGinnis
Mueller, Alexopoulos, and M

Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Van der Aalst, W. 1993. Interval timed coloured petri nets
and their analysis. In Applications and Theory of
Petri Nets 1993. 14th International Conference Pro-
ceedings, eds. M. A. Marsan, 453–472. Berlin:
Springer-Verlag.

Wang, J. 1998. Timed Petri nets: Theory and application.
Boston: Kluwer Academic Publishers.

Zurawski, R. and M. Zhou. 1994. Petri nets and industrial
applications: A tutorial. IEEE Transactions on Indus-
trial Electronics. 6:567–583.

Zhou, M. and M. Jeng. 1998. Modeling, analysis, simula-
tion, scheduling, and control of semiconductor manu-
facturing systems: A Petri net approach. IEEE Trans-
actions on Semiconductor Manufacturing, 11:333-
357.

AUTHOR BIOGRAPHIES

RALPH MUELLER is a Ph.D. candidate in the School
of Industrial and Systems Engineering at the Georgia In-
stitute of Technology. His research interests include simu-
lation modeling and , as well as application of simulation
in the semiconductor manufacturing. His email address is
<ralphm@isyegatech.edu>.

CHRISTOS ALEXOPOULOS is an Associate Professor
in the School of Industrial and Systems Engineering at the
Georgia Institute of Technology. His research interests are
in the areas of applied probability, simulation, and opti-
mization of stochastic systems. He is a member of
INFORMS and an active participant in the Winter Simu-
lation Conference, having been Proceedings Co-Editor in
1995 and a member of the Board of Directors on behalf of
the INFORMS Simulation Society. He is also the Simula-
tion Department Editor of IIE Transactions and an Asso-
ciate Editor of Networks. His e-mail address is
<christos@isye.gatech.edu>.

LEON MCGINNIS is Gwaltney Professor of Manufac-
turing Systems at Georgia Tech, where he also serves as
Director of the Product and Systems Lifecycle Manage-
ment Center, Associate Director of the Manufacturing Re-
search Center, and Director of the Keck Virtual Factory
Lab. His research is focused on the representation of
complex industrial systems, such as warehouses and fac-
tories, to enable analytic and simulation modeling to sup-
port performance assessment, behavioral prediction, and
system design. His email address is
<leon.mcginnis@gatech.edu>.
657

