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ABSTRACT 

This article gives an overview of a framework for auto-
matically generating large-scale simulation models from a 
domain specific problem definition data schema, here 
semiconductor manufacturing. This simulation model 
uses an object-oriented Petri net data structure. The Petri 
net based simulation uses the same enabling rules as clas-
sical Petri nets, but has extensions of time and priorities. 
This approach minimizes the effort of model verification. 
Each object identified in the problem data specification is 
mapped to corresponding Petri net fragments. The Petri 
net simulation model is synthesized from verifiable sub-
nets. This allows ensuring the liveness of the final Petri 
net simulation model. The applicability of this approach is 
demonstrated by generating a simulation model based on 
the Sematech data set. 

1 INTRODUCTION 

The steady decline in computing cost makes the use of 
simulation very cost efficient in terms of hardware re-
quirements. However, commercial simulation software 
has not kept up with the hardware improvements. It can 
take very long to build and verify large models with stan-
dard commercial-of-the-shelf (COTS) software.  

Efficient simulation model generation will allow the 
user to simplify and accelerate the process of producing 
correct and credible simulation models. Model credibility 
is attained when the end user accepts the simulation 
model as a correct model. Improving the verification 
process can improve the model credibility, especially 
when the end user can retrace the verification process. 

The proposed framework promotes a “bottom up” 
approach to simulation modeling. Small verifiable subsets 
are synthesized in a particular way to create a large 
model, which will maintain certain properties, in particu-
lar, absence of deadlock, in the resulting simulation 
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model. The existing literature on the use of Petri nets for 
semiconductor manufacturing focuses almost exclusively 
on the modeling of sub systems of the manufacturing sys-
tem under study (e.g., Zhou 1998). One exception is 
Becker (2003), whose approach combines queuing and 
Petri nets to simulate an entire semiconductor manufac-
turing system (only the first Sematech data set). 

The suitability of the simulation framework is dem-
onstrated for semiconductor manufacturing simulation. 
Semiconductor wafer fabrication is considered one of the 
most complex and capital-intensive manufacturing proc-
esses (cf. Ramirez-Hernandez et al. 2005), and typically 
involves several hundred processing steps. This makes it 
an ideal candidate for the automatic generation of simula-
tion models. 

The remainder of this paper consists of three parts. 
Section 2 introduces an object-oriented Petri net simula-
tion framework. Section 3 describes a problem data speci-
fication schema for a particular application domain. Sec-
tion 3 presents mappings from this data structure to a Petri 
net. These mappings are used to create a simulation model 
that is based on the framework. 

2 OBJECT-ORIENTED PETRI NET 
SIMULATION FRAMEWORK 

The proposed framework is based on a Petri net (PN) data 
structure. PNs incorporate the concept of distributed sys-
tem state with rules that define how state changes occur. 
PNs are successfully employed to support many stages of 
the development of complex systems: rapid prototyping, 
formal specification, verification of correctness, perform-
ance evaluation, and documentation (Zurawski and Zhou 
1994). 

A Petri net graph is a weighted bipartite graph (P, T, 
A, w), where P is a finite set of places and T is a finite set 
of transitions. Weights are associated with each arc in the 
graph. If an arc is not labeled with a weight, its weight is 
assumed to be one. The set of input places to a transition t 
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to Petri nets is given by Murata (1989). 
A unique feature of the simulation framework is that 

all relevant state information is contained within the 
model. The future event list (FEL) can be reconstructed 
from the current state of the model. This means that struc-
tural changes to the model can be made during a simula-
tion run and the FEL can be updated accordingly. 

2.1 Representation of Time 

Classic Petri nets do not have any notion of time. A great 
number of extensions of Petri nets to capture time have 
evolved (see Wang 1998). A problem with theses exten-
sions is that the interpretation of firing delays is different 
for each version. The firing of a transition often represents 
time durations, but in classical Petri nets it represents the 
instantaneous transition of a discrete-event system to a 
new state. 

Van der Aalst (1993) introduced a different approach 
with interval-timed colored Petri nets, which are based on 
colored Petri nets but use timestamps on tokens to capture 
time. This simulation framework uses a similar but sim-
plified approach. 

2.2 Relation to Colored Petri Nets 

Our framework also uses tokens that have additional data 
assigned. Primarily these are times and priorities. The 
enabling rule for a transition, however, is exactly the 
same as for classical Petri nets. Tokens can have different 
attributes, but these do not influence the enabling condi-
tion for transitions. No colored tokens (in a traditional 
sense) are used, as the attributes are not involved in ena-
bling rules of transitions. 

2.3 Core Elements of the Framework 

As with the classical definition of a Petri net, the core 
elements of the simulation framework are transitions, 
places, and tokens. All of these elements are implemented 
as objects. Arcs between places and transitions are not 
modeled explicitly, as places have references to transi-
tions and vice versa, (each of these references represents 
an arc). With these simple elements, it is possible to 
model complex systems. Transitions represent events, 
whereas places and their marking represent states. The 
class diagram in Figure 1 shows how these elements re-
late to each other. We proceed with a short description of 
these elements. 
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A Place is an object that represents a place in the 
Petri net. Each Place has an id, which uniquely identi-
fies it in the simulation model. The field inTransi-
tions is a list of Transition objects that represent 
the input transitions to the place. The Place object can 
receive tokens from these transitions. This is equivalent to 
the set •p of a place p in a Petri net. The field outTran-
sitions is a list of Transition objects, which repre-
sent the output transitions of the place. This is equivalent 
to the set p• of a place p in a Petri net. There are sub-
classes of Place, which can represent resources or op-
erators. 

 

+addToken()

+removeToken()

+addInTransition()

+addOutTransition()
+...()

-id : String
-inTransitions : List

-outTransitions : List

-tokens : SortedSet

-...

Place

-id : int

-priority : long

-timeStamp : long

Token +fire()
+removeToken()

+sendToken()

+setPriority()

+updateTime()

+updateTimeAll()
+...()

-id : String
-inJob : Place

-outJob : Place

-batchIn : List

-batchOut : List

-inResources : List
-outResources : List

-inPlaces : List

-outPlaces : List

-toUpdate : SortedSet
-priority : long

-time : long

-enabled : bool

-dispatchRule : int

-delayTime
-rvType

-...

Transition

1 *

1*

*

*

 
Figure 1: Core elements. 

 
A Token is an object that represents a token in a 

classical Petri net. However, it has extensions for time 
and priority, which are represented by the fields time-
Stamp and priority. There is a subclass JobToken, 
which is used to represent lots that have to be processed. 

The method addToken() is used during a simula-
tion to add a Token object to the tokens set of the 
place. The method removeToken() is used to remove 
a token from the place. There are more fields and methods 
in the Place class, which are of auxiliary nature and are 
not shown in Figure 1. 

A Transition is an object that corresponds to a 
transition in a classical PN. The fields inJob, batchIn, 
inResources, and inPlaces are used to hold places 
that represent the set of input places of the Transition 
object, similar to the set •t of a transition t in a Petri net. 
Different names are used to organize the simulation 
model better. The field inJob represent a place that 
holds Token objects representing jobs in the manufactur-
ing system. The field batchIn represents a set of 
Place objects representing places with an arc weight w 
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greater than 1. The fields outJob, batchOut, outRe-
sources, outPlaces are used to hold places that rep-
resent the set of output places of the Transition ob-
ject, as the set t•  of transition t. Their usage is analogous 
to the input places. The field time is used to indicate the 
firing time of the transition. The field priority is 
needed to resolve conflicts of transitions with the same 
firing time. The field enabled indicates if the transition 
is enabled, i.e., it is eligible to fire. The field delay-
Time stores the time an activity will take. The field 
rvType represent the name of the distribution that is 
used to model the delay time. Any distribution can be im-
plemented, as long as the appropriate generator is avail-
able to the framework. 

The method fire() will remove the appropriate 
Token objects from the input places and will place the 
appropriate tokens in the output places by invoking the 
methods removeToken() and sendToken(). This 
method can be called only when the transition is enabled. 
The method setPriority() is used to calculate the 
priority value of the Transition object based on the tokens 
in the input places. The method updateTime() will 
calculate the firing time of the transition. The method 
updateTimeAll() will calculate the firing times and 
check enabling conditions of all affected transitions after 
a transition has fired. The core elements above have a di-
rect mapping to a classical Petri net (P, T, A ,w). For each 
place p P!  there is a corresponding Place object. Also 
for each transition t T! , there is a Transition object. 
A simulation model is created by instantiating Place and 
Transition objects and adding appropriate references 
to each another. There are a number of sub classes, which 
are omitted here for conciseness. 

2.4 Execution Mechanism 

After the Petri net is generated, the simulation model can 
be executed. Simulated events correspond to firings of 
transitions. To simulate the Petri net, the simulator has to 
scan transitions and their input places to determine if they 
can fire. One can scan all transitions in the net after each 
transition firing, but this would be wasteful, since only 
some transitions are affected by the firing of a transition. 
For example, if transition t fires, only the transitions that 
have input places whose markings were changed by t are 
affected. It is not sufficient to check if a transition is en-
abled; its firing time also needs to be determined. Tokens 
carry timestamps, which determine when they will be eli-
gible to be used by a transition. The firing time of a tran-
sition is determined by the maximum timestamp of the 
enabling token. If there is more than one token in a place 
and the respective arc weight is one, the token with the 
smallest timestamp is the enabling token for that place. 
The example in Figure 2 illustrates this.  
T1 and T2 are the transitions that represent the begin-
ning of processing involving resource R1. The input 
places for T1 and T2 are {R1, P1} and {R1, P2}, respec-
tively. R1 has one token with timestamp <5>, P1 has two 
tokens with timestamps <11> and <25>, and P2 has three 
tokens with timestamps <15>, <35> and <40>. Both tran-
sitions T1 and T2 are currently enabled. The enabling time 
for T1 is 11 because this is the value of the smallest time-
stamp in P1. The enabling time for T2 is 15 since that is 
the value of the smallest timestamp in P2. Note that P1 
and P2 together represent the queue waiting for resource 
R1. 
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P
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<11>

<25>

<15>

<35>

<40>

<5>

T
3

T
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Figure 2: Timing example. 

 
Job tokens also have priorities that are assigned to the en-
abled transitions and are needed to establish a firing order 
for transitions that are enabled at the same time. They also 
provide a mechanism to implement different dispatch 
rules (see also Section 4). The enabled transitions are 
added to the FEL, where they are ordered according to 
time and priority. This allows ordering of transitions that 
are enabled simultaneously with identical firing times. 
This is not directly possible with classical and colored 
Petri nets, as the firing of transitions is undetermined. The 
detailed description of the mechanisms can be found in 
Mueller (2007). 

2.5 Transition Firing 

When a transition t actually fires, the following steps are 
undertaken: 

 
• Remove tokens form all input places p t

•
! . 

• Add tokens to all output places p t
•

! . 
• Update time of all affected transitions. 

 
When a transition t fires, it removes the enabling tokens 
from each input place p. The removal of a token of type 
JobToken is different. As this type of token is repre-
senting jobs or lots that move through the system, they 
should not be discarded as they can carry attributes with 
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additional information. Instead, they are removed from 
the inJob place and are added to the place outJob. 

The last phase of the transition firing is to add the ap-
propriate number of tokens to the output places. First, the 
timestamp of the JobToken object is set to t.time + 
t.delayTime, which is the firing time of the transition plus 
the delay time for the transition. The delay time can be 
either deterministic or it can be a random variate gener-
ated from the distribution specified in the field rvType 
of transition t. The delay time can also be zero, depending 
on what the transition represents. The JobToken object 
is then added to the place that is specified in the field 
t.outJob. Furthermore, new Token objects are created 
with a timestamp of value t.time + t.delayTime for each 
output place of transition t. If the arc weight to the output 
place is greater than one, the appropriate number of to-
kens will be generated and added to the place. 

After a transition fires, all affected transitions must 
be updated. As the state of the system is represented by 
the marking of all places, the change of state is repre-
sented by the change of tokens in these places. This also 
means that only transitions that have at least one of these 
places as an input place are affected. Note that transitions 
that only have one of these places as an output place can-
not be affected. Places that received tokens can enable 
their output transitions, and places that have tokens re-
moved might disable their output transitions. 

3 SIMULATION DATA SPECIFICATION 

Here the term Simulation Data Specification refers to the 
precise description of the data that will be used to gener-
ate the simulation model. There are very few data specifi-
cations for discrete-event simulation in the literature. An 
instance can be found in Lee and Yan (2005) and Lu, 
Qiao, and McLean (2003), where the NIST XML simula-
tion interface specification is used, introduced first by 
McLean et al. (2002) and still under development.  

The Sematech data set, available at 
<http://www.eas.asu.edu/~masmlab> repre-
sents a limited form of specification; however, it is in ta-
ble format and cannot express explicitly the relationship 
between all the entities in the simulation model. Therefore 
an object-oriented model was developed. 

This simulation data specification describes how the 
modeled elements of semiconductor manufacturing sys-
tems are represented. From this specification, the simula-
tion model is generated automatically. This approach has 
several advantages because the data is represented in the 
application domain. Any changes in the simulation model 
are made in this domain. This avoids programming errors, 
as there is no simulation code to change. The following 
classes or object types are the main elements used to rep-
resent the fabmodel: 
 

6

• Fabmodel 
• Process Route 
• Process Step 
• Tool Set 
• Operator Set 
 
The Fabmodel class represents the root for all the 

other elements, i.e., it contains all the other objects for the 
simulation model. 

The ProcessRoute class holds all the information 
of one specific process route. It contains all the constitu-
ent process steps of the route. 

The ProcessStep class holds all data that refer to 
a single process step. These data are processing times, re-
quired resources, operation description, loading and un-
loading times, scrap and rework probabilities, and travel 
times. This basic class is used to model process steps that 
process wafer lots one at a time. It is the most common 
type of process step. It serves as a basis for two sub-
classes: 

 
• Batch Process Step 
• Process Step with Setup 
 
The batch process step represents process sub-steps 

that can batch lots together and process them at the same 
time. Lots from different process routes can be batched 
together when the batchID fields are identical. After 
processing is finished, each lot will continue its own 
process route. Each batch process step has a minimum 
and a maximum capacity for the number of wafers that 
can be processed at the same time. The process step with 
setup is used to model steps that require a setup of the 
tool. There is a specific setup time and a group setup time. 
The specific setup time is needed for every lot that has to 
be processed, whereas the group setup time is only needed 
when the previous processed lot belonged to a different 
setup group. 

The ToolSet class describes the machines that are 
used to process the wafers. It has fields for id, de-
scription, and quantity. It there is more than one 
tool, all tools are treated as equivalent. Further, there are 
fields that indicate if the tool has to be loaded and/or un-
loaded by an operator. If the tool is used in a setup proc-
ess step, the setup states are listed in the field setup-
States. Downtimes are also listed in the field 
downtimes with description, duration, and time be-
tween downtimes. 

The OperatorSet class describes the operators 
that are needs to operate the tool sets in the waferfab. It is 
very similar to the ToolSet class.  
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Figure 3: Class diagram of data specification. 
 
Rework sequences have the same data format as 

process routes. A rework sequence also consists of proc-
ess steps. If the rework probability is greater than zero at a 
particular process step, there is a chance that a wafer lot 
will have to follow the specified rework sequence after 
that step is completed. After the lot goes through the re-
work sequence, it returns to the original process route. 

4 SIMULATION MODEL GENERATION 

The typical way to create a simulation model is to use a 
COTS simulation package. These packages usually have 
graphical user interfaces and reduce the programming ef-
fort to dragging and dropping of modules into a screen 
and connecting these modules. A big advantage for the 
user of these packages is that it is not necessary to be fa-
miliar with the underlying simulation language. However, 
this process can become cumbersome for large models. 
Debugging can be difficult, as data is entered in many dif-
ferent dialogs. The graphical representation is also limited 
since not all details of the model can be presented. An-
other problem involves proprietary issues, as software 
vendors are reluctant to make source code available. 
Therefore, it is often not clear how specific modules be-
have on a detailed level. 

A very different approach to building simulation 
models is automatic generation. According to Mathewson 
(1975), a simulation generator is a software tool that 
translates the logic of a model into the code of a simula-
tion language, enabling a computer to mimic a modeler’s 
behavior. One of the earliest examples for simulation 
model generator is presented in Mathewson (1975), which 
6

is based on entity cycle diagrams and in Mathewson 
(1985), an early PC implementation of the former. In 
Gong and McGinnis (1990), a simulation code generator 
for an automated guided vehicle system is presented. In 
Lee, Cho, and Jung (2000), a simulation model for shop 
floor control systems is generated automatically from 
graph-based process plans. 

In this paper, a different approach is introduced: the 
simulation model is generated from an input file that ad-
heres to the simulation data specification. The simulation 
model is represented as a Petri net data structure, which is 
built with the object-oriented framework that was intro-
duced in the previous section. An instance of a simulation 
model is created by populating this data structure, but no 
compilation takes place. 

4.1 Mapping of Fabmodel Elements to the Petri Net 
Simulation Model 

This section discusses how each of the elements of the 
fabmodel is represented within the Petri net. This is the 
basis for the algorithms that generate the PN simulation 
model. 

4.1.1 Tool Sets 

Each tool set is represented by a place in the PN. The cor-
responding object type is the Resource type of the frame-
work. Each place that represents a tool set will have to-
kens, representing the number of tools available. Some 
tool sets have different setup states. These tool sets are 
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represented by a set of places in the PN. For each setup 
state of the tool, there is a corresponding place. The num-
ber of tokens in one place will correspond to the number 
of tools available that are in the corresponding setup state. 

4.1.2 Operator Sets 

Operator sets are modeled in the same fashion as tool sets. 
Each operator set is represented by the Operator type of 
the framework. Each set represents a set of operators, who 
are considered to be identical, i.e., they are all able to per-
form the same tasks with identical distributions for task 
duration. The number of tokens in a place indicates the 
number of operators available. 

4.1.3 Process Routes 

A process route consists of a series of process steps. Each 
route describes how a wafer lot is routed through the wa-
fer fab. The PN simulation model generation for the proc-
ess routes works as follows: For each process route, each 
of its process steps is generated sequentially, beginning 
with the first. 

4.1.4 Process Steps 

There are three main types of process steps: 
 
• Basic Process Step 
• Batch Process Step 
• Process Step with Setup 
 

The basic process step corresponds to the object type 
ProcessStep of the data specification. Each of these 
three main types has a mapping to the PN. 

 

P1 P2 P3

O1

R1

T
SP

T
EP  

Figure 4: Basic process step. 
 
Figure 4 shows the basic process step in its simplest 

form. P1 is the input place. A jobToken will first arrive 
here. Place P2 represents processing and place P3 repre-
sents the completion of the process step. P3 will also be 
the input place of the next process step. Transition TSP 
represents the beginning of processing. It consumes a to-
ken from the tool set place R1 and the operator set place 
O1. TSP will also add the processing time to the token. Af-
ter processing is finished, TEP will fire and add a token to 
each of the tool set and the operator set places, i.e., these 
65
resources are released. Note that the operator and tool set 
places can have arcs to other process steps, which are not 
shown here. 
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Figure 5: Complex process step. 

 
Figure 5 shows a more complex process step. For each 
process sub-step there is a transition at the beginning, 
which will set the priority for the job token to the appro-
priate value (here TP). Different dispatch rules can be im-
plemented by assigning the appropriate value to the job 
token. This transition is present at the beginning of each 
process sub-step, but is omitted in most illustrations. The 
interpretation of the transitions in Figure 5 is as follows. 
TSL marks the start of the loading process, TSP represents 
the end of the loading and the beginning of the processing 
with operator, and TEPO corresponds to the end of the 
processing with operator because it releases the operator 
seized by TSL. TEP is the end of processing and the begin-
ning of the unloading process. TEU represents the end of 
the unloading process and releases all resources. TTT rep-
resents the travel time within the tool. TST seizes the op-
erator for the transport to the next tool, and TET releases 
the operator again. Note that the tool is seized during the 
entire time, starting with the loading process at TSL until 
the unloading has finished at TEU. The transitions TSL, TSP, 
TEP, TEPO, TTT, and TST all add the appropriate times to the 
token time stamp, to represent the respective time delays. 

4.1.5 Batch Process Step 

The batch process step has the ability to batch several lots 
together and process them at once, e.g., wafer lots that are 
processed together in an oven. The wafer lots that are 
batched together can also come from different process 
steps, as long as the batchID fields are identical. The 
batchID field is an identifier that marks lots that can be 
processed together. However, the data sets specify mini-
mum and maximum batch sizes. This makes it very hard 
to model it in a straightforward manner. Since the capac-
ity of the process step is greater than the minimum lot 
size, the number of lots that have to be processed can vary 
between the minimum and maximum batch size. 

Figure 6 shows a simple batch process step that ad-
dresses this problem. Here the most basic version is intro-
duced. It has a minimum batch size of two wafer lots and 
a maximum batch size of five lots. The process route that 
wafer lots will follow is represented by the path P1, TS1, 
P2, TS2, P3, TEP, and P4, where P1 represents the arrival 
place and P4 the end of processing place. P3 represents the 
3
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processing stage and P2 is an intermediate place needed to 
model the batch mechanism. The liveness of this structure 
is ensured by assigning certain priorities to specific transi-
tions. A detailed analysis can be found in Mueller (2007), 
who considers more complex operations (e.g., loading and 
unloading). 

These examples give just a brief overview of the 
available types of process steps. For each element in the 
data, specification there is a mapping to an appropriate 
PN sub-net. The exact structure of the sub-net will depend 
on the given data. There is also a sub-net that can model 
setup times, which is not shown here.  

P1 P2 P3 P4

T
S2

T
EP

T
S1

2

2

3

5

T
D1

T
D2

T
B1

T
P1

T
B2 T

B3

B1 B2 B3

R1

C B10

B20

L

2

 
Figure 6: Batch process step. 

4.1.6 Rework Sequence and Scrap Modeling 

A rework sequence has the same basic structure as a proc-
ess route. The difference is that it consists only of a few 
process steps. The Sematech dataset specifies for some 
process steps the probability that a lot has to go through a 
rework sequence. This is accomplished with a special 
type of a transition that can “switch” with a certain prob-
ability to a different place when firing. This place is the 
beginning of the rework sequence. At the end of the re-
work sequence, the lot is send back to the original se-
quence. 

The modeling of scrap is similar: a special transition 
sends a token to a place with scrap probability, where all 
the scrapped lots are accumulated.  

4.1.7 Dispatch Rules and Representation of Queues 

Dispatch rules are used to establish an order for jobs that 
are waiting to be processed by a resource. Typical dis-
patch rules are FIFO or SPT (Shortest Processing Time), 
but the range of possible dispatch rules is very large. A 
dispatch rule in this framework assigns priorities to tokens 
that represent wafer lots. The assignment can be made 
654
with any function of the token attributes. The following 
attributes are available: 

 
• Release Time 
• Number of Operations 
• Total Processing Time 
• Number of Operations Remaining 
• Processing Time Remaining 
• Processing Time 
 

The first three attribute are fixed values that are assigned 
to a job token when it is generated. The remaining attrib-
utes need to be updated at each process step. It is possible 
to extend this list to any conceivable attribute. 

There is no explicit representation of queues in the 
framework. A queue is represented either by single place 
or by a set of places. If there is only one type of job wait-
ing for a resource, the queue is simply the place that holds 
the job token that is waiting to be processed. If there is 
more than one job type, the queue is represented by the 
set of places that hold the job tokens that are waiting to be 
processed.  

4.2 Generation of the PN Simulation Model 

This section gives an overview of the simulation model 
generation procedure. The basic generation procedure 
consists of two steps. First, the specification is loaded 
from an XML file. This will instantiate a FabModel ob-
ject (Section 3). This object is the root object for the wa-
fer fab, i.e., it contains all the other objects that have the 
necessary information to generate the entire simulation 
model. The overall procedure is as follows: 

 
• Create Tool Sets 
• Create Operator Sets 
• Create Process Routes 
• Create Rework Routes 
• Create Input Transition 
 

First, all the places that represent tool sets and operator 
set are created. The number of tokens in each place repre-
sents the number of available resources. Then the process 
routes and the rework sequences are created by synthesiz-
ing the individual process steps together. Finally, the in-
put transitions are created which are responsible for re-
leasing lots into the system. 
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Figure 7: Synthesizing of process steps. 

 
Figure 7 shows an example of two process steps 

joined at places POUT and PIN. Each process step has one 
place for receiving and one place for sending job tokens 
to the next process step. These places serve as coupling 
points to generate a large simulation model. The boxes 
contain all transitions that model the different process 
stages of the process step. Arcs are connected to the tool 
and operator places in a specific way. For some process 
steps, such as batch process steps, there are also arcs to 
and from control places. In this fashion individual process 
steps are joined together to form process routes and re-
work sequences. The detailed algorithms can be found in 
Mueller (2007). 

4.2.1 Example 

A GUI was developed that allows loading and generating 
the model. The first step to generate the simulation model 
is to load the model data from an XML file. A small por-
tion of the generated PN is shown in Figure 8 (data set 1). 
Also some arcs are not displayed for better readability 
6

(the arcs to the tool places and operator places have been 
omitted). The PN simulation model in this example has 
6363 places and 3751 transitions. An overview of the size 
of the other simulation models generated from the Se-
matech data sets is given in Table 1. 
 

Table 1: Size of PN simulation model. 
Data Set # of Places # of Transitions 
1  6,363 3,751 
2  26,803 19,751 
3  46,199 31,845 
4  1,269 1,013 
5  52,135 36,075 
6  38,241 25,463 

 

5 ANALYSIS OF GENERATED PETRI NET 

It can be shown that some properties of PN simulation 
model are not impacted by the timing mechanism and the 
introduction of priorities (Mueller 2007). These properties 
are liveness and boundedness. The introduction of time 
and priorities will give an order to transitions that are en-
abled simultaneously. This means that the reachability 
graph of the PN simulating model will be a sub-graph of 
the underlying PN. This in turn makes it possible to ana-
lyze the PN simulation model in the same way as a classi-
cal PN. The generated PN simulation model can be shown 
to be live and bounded for most places. Furthermore, 
reachability of the end processing state for each process 
route can be established. 

 

 

 
Figure 8: Example PN simulation model. 
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6 CONCLUSIONS AND FUTURE RESEARCH 

This article introduced a novel approach to simulation 
modeling and simulation model generation by introducing 
a simulation framework that is based on an object-
oriented PN data structure. This framework has several 
unique features because it uses as a basis the same execu-
tion rules as classical PNs, yet it has extensions for time 
as well as priorities for firing of transitions. This allows 
the representation of time as well as the implementation 
of dispatch rules. This is not possible with classical PNs. 

For the simulation model generation an object model 
was developed, which servers as a basis for the simulation 
data specification. This object model contains all informa-
tion needed for the generation of the simulation model. 
Instances of the simulation data specification can be 
stored in an XML file, which is based on this object 
model. Changes to the simulation model can be per-
formed by editing this file and regenerating the simulation 
model. 

The generation procedure that generates the PN 
simulation model is based on a mapping from the object 
model of the simulation data specification to the PN. Each 
of the main objects in the simulation data specification, 
such as resources and process steps, correspond to parts in 
the PN. The mapping serves also as an unambiguous 
description of the simulation model. The feasibility of this 
approach was demonstrated by means of the Sematech 
data set. 

In summary, the simulation framework makes creat-
ing large-scale discrete-event (computer) simulation 
(DES) models for manufacturing systems more manage-
able. It has several advantages: there is an explicit de-
scription of the simulation model in form of a PN. The 
user can verify exactly how each component is working. 
The end user does not have to do any coding of the simu-
lation model. The simulation model is described in a 
problem specific domain, in this case semiconductor 
manufacturing. The simulation model is specified as an 
instance of an object model that serves as a simulation 
data specification. The mapping from this object model to 
the PN is fixed; this means that the simulation model gen-
eration is a rigid process, which can avoid programming 
errors. Theoretically, there is no limitation for this frame-
work to model any discrete-event system. In principle, all 
systems that can be modeled as finite-state ones can be 
modeled. However, there are some disadvantages. Due to 
the rigid control, it may not be possible to make changes 
in the behavior of the simulation model with ease. The 
behavior of the simulation model is determined by the 
mapping from the object model to the PN simulation 
model. Hence, this mapping has to be changed to imple-
ment different behaviors.  
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