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ABSTRACT

In this paper the relation of high-level Petri-nets (hlpn) and
linear algebra is outlined. On the basis of this relation the
theory of the dual spaces can be brought in to a new class
of hlpn. In this class not only transitions but also places
can be marked and each arc is labeled with two mappings,
in addition besides transitions also places are firable. By
means of an example it is shown that the modified firing rule
leads to a behaviour that can be brought in to do diagnoses
in hlpn.

1 INTRODUCTION

The well known relation of (low level) place/transition-nets
to linear algebra enables the structural analysis for these nets
(see e.g. Murata 1989). Here it is shown that arc-labels in
high-level nets (for sake of simplicity we restrict ourselves
to predicate/transition-nets (pr/t-nets)) can be interpreted as
linear mappings written as tuples. With this relation between
pr/t-nets and the theory of linear algebra it is possible even
for high-level nets to find applicable structural analysis
methods (Müller 2004).

The structure of a (low level) net consists of places,
transitions and arcs which represent the flow relation between
these two kinds of nodes. If one changes in a (primal) net the
direction of each arc and exchanges places with transitions
the result is again a net that is called the dual net. This
expression isn’t new, it has been introduced by Carl Adam
Petri (Fernandez 1975). We call the process of creating the
dual to a primal net dualizing.

The same duality is achieved, if one transposes the
incidence-matrix of a (primal) net and takes the transposed
matrix as an incidence-matrix to another net. The latter is
the dual to the first.

If one not only dualizes the structure of a net (like Petri)
but nets with their markings, a dual behaviour of nets can be
achieved, if the tokens are “left lying”. As places become
transitions, now transitions are marked with tokens. As in a
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primal net the firing of transitions leads to a changing of the
marking of places, in the dual net the firng of places leads
to a changing of markings of transitions. A new behaviour
in nets (and not only a new interpretation of the dynamic)
arises, if we accept tokens on both kinds of nodes. First
approaches to apply the duality in place/transition nets can
be found in Kruse (2001).

In high-level nets one can distinguish between different
tokens. Thus, the arc labels can be formulated in dependence
of the existing information. The question arises what there
is to do with these arc labels in hlpn. As it is outlined, the
arc labels in pr/t-nets can be interpreted as linear mappings
written in “tupel-notation”. If we presume that the arc labels
in pr/t-nets are of finite dimension they can be represented
by matrices of finite dimension. Nets with matrices as
arc labels are dualized, by transposing the arc labels (arc
matrices), too (Lautenbach 1983). That means: If in a
pr/t-net an arc label ϕ – a linear mapping – corresponds
to a matrix M, in the dual net the arc label again is a
linear mapping. Now, this mapping corresponds to the
transposed matrix Mt . Such mappings are referred to as
adjoint mappings, they are denoted by ϕad : An adjoint
mapping ϕad is represented by a matrix Mt if and only if
ϕ is represented by M. The basics of duality in hlpn were
introduced by Kurt Lautenbach in Lautenbach (1983) with
the concept of matrix-nets. In Müller (2004) the duality in
hlpn was introduced on the basis of the theory of the dual
spaces. In all these approaches the dynamic was defined
in a way, that (in low level nets) different kinds of tokens
block the firing of nodes and in high level nets tuples block
the firing of nodes for certain node-colours. Although there
are many arguments to follow that interpretation and apply
that firing rule, in this paper we will introduce a different
interpretation leading to a different firing rule:

If we presume that a system’s state (i.e. the model’s
marking) is not known exactly the interpretation of tupels
as the “states that have to be taken into accout” or the
“states that can’t be ruled out” seems to be appropriate.
Against this backdrop it is clear, that the more tuples there
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are on a node, the less we know about the system’s state.
In contrary to the approaches mentioned above, here a node
can only fire if it’s marking corresponds to markings of
nodes in its pre- and postset “in a positive way”. In order to
be able to improve the knowledge about the system’s state,
the markings on nodes have to be (successively) narrowed
down. With the help of adjoint mappings and markings
on places as well as on transitions the knowledge about
the system’s state can be improved by passing information
about (locally uncertain) system states through the net and
influencing the marking on other nodes.

The paper is organized as follows: The aim of the
second chapter is to outline the theory of the dual spaces
and to introduce adjoint mappings. In the third chapter the
above mentioned class of pr/t-nets is introduced. On the
basis of this, the fourth chapter presents how to improve
the knowledge about an uncertain system state. In the fifth
chapter this concept is demonstrated by means of an example
from the automotive area. In chapter six the tasks to be
performed in the future are outlined.

2 PRELIMINARIES

The theory of the dual spaces and in it’s context dual and
adjoint mappings play a central role in the diagnosis-method
to be presented in the next two chapters. The theoretical
basics outlined here are presented in many books dealing
with “higher” linear algebra (see e.g. Blyth and Robertson
2002, Curtis 1990, Fischer 2002, Gilbert and Gilbert 1994,
Kowalsky 1979, Lipschutz and Lipson 2001).

Definition 1 Let V,W be two vector spaces over the
same scalar field K. The set of all linear mappings from V
to W is denoted by L (V,W ).

Definition 2 Let V be a vector space over the field
K. The set of all linear mappings of V into K is called the
dual space of V and is (usually) denoted by V ∗. Thus

V ∗ := L (V,K).

Definition 3 Let V,W be eucledian spaces over the
same field K; let further be

ϕ ∈ L (V,W ) and

w∗ ∈ L (W,K) (=: W ∗),

then the dual mapping ϕ∗ of ϕ is defined as follows:

ϕ
∗ : L (W,K)−→L (V,K), with

ϕ
∗(w∗) = w∗ ◦ϕ

(with ◦ be the composition of linear mappings).
6

Definition 4 Let V be an eucledian vector space;
then the mapping

Φ : V −→V ∗, with

Φ(v) := 〈v, 〉

is called a canonical mapping from V to V ∗.
Definition 5 Let V,W be eucledian spaces with in-

ner product ’•’ over the same field K. For each ϕ ∈L (V,W )
the adjoint mapping ϕad is the mapping

ϕad ∈L (W,V )

that is defined by the equation

ϕ(v)•w = v•ϕad(w)

for all v ∈V, w ∈W.
Definition 6 Let V be a vector space of dimension

n over the field K; then the set

Bn := {ei ∈ Kn|∀ j 6= i ei(i) = 1∧ ei( j) = 0}

is called the standard basis of V .
Theorem 1 If the vector spaces V and W are of

finite dimension, then to every ϕ ∈L (V,W ) the adjoint ϕad

exists (and vice versa).

Let {e1,e2, . . . ,en} be the standard basis of V , then

ϕad(w) =
n

∑
i=1

(w•ϕ(ei)) · ei

holds.

Proof See e.g. Kowalsky (1979).
We will often write a set of values {a1, . . . ,an as ∑

n
i=1 ai.

That means in the definition above ϕad isaseto f values.
Corollary 2 Let ϕ ∈L (V,W ) be a linear mapping

and ϕad ∈L (W,V ) it’s adjoint mapping. Let further be Φ

and Ψ be canonical mappings, then the diagram in Figure 1
is commutativ in the sense of

ϕad = Φ
−1 ◦ϕ

∗ ◦Ψ.

WV

V ∗ W ∗

ϕad

ϕ∗

Φ Ψ

Figure 1: Relation between dual and adjoint mappings.
30



Müller and Schnieder
3 DUALITY IN PREDICATE TRANSITION NETS

The first high-level nets – “high-level” in the sense of nets
with individual tokens as markings – were established by
Genrich and Lautenbach in 1979 (see Genrich and Laut-
enbach 1979). Based on Lautenbach and Pagnoni (1984)
and Lautenbach and Pagnoni (1985) in Müller (2004) the
duality in high-level nets is examined. Each arc of the nets
introduced here are labeled with a linear mapping als well
as it’s adjoint mapping.

Before starting with the definition of (predicate-
/transition) nets, some technical definitions are to be made:

Definition 7 Let S be a set, a multiset MS(S) over
S is defined as a mapping

MS : S −→ R.

A multiset is often written as a sum:

MS(S) := ∑
s∈S

MS(s) · s

Definition 8 The set of all multisets over a set S is
denoted as MS(S).

Definition 9 Let S be a set, then 〈 〉S is defined as
follows:

〈 〉S : S −→ B|S| – and, as an abbreviation:

〈S〉S := {ei|i = 1, . . . , |S|}.

In the following we assume that 〈 〉S is bijective; if S is
clear, then we simply write 〈 〉 instead of 〈 〉S).

Let V,W be vetor spaces over the same field K and
SV ,SW be sets with |SV | = dim(V ) and |SW | = dim(W ).
Then every linear mapping ϕ ∈L (V,W ) can be written as

ϕ : MS(〈SV 〉)−→ MS(〈SW 〉), so
ϕ ∈ L (MS(〈SV 〉),MS(〈SW 〉)).

For example, let S1 and S2 be given as follows:

S1 = {(a,a),(a,b),(b,a),(b,b)} and
S2 = {a,b}.

Let 〈S1〉 and 〈S2〉 be given as

〈S1〉=




1
0
0
0

 ,


0
1
0
0

 ,


0
0
1
0

 ,


0
0
0
1


 with
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(a,a) −→


1
0
0
0

 ,

(a,b) −→


0
1
0
0

 ,

(b,a) −→


0
0
1
0

 ,

(b,b) −→


0
0
0
1


and 〈S2〉 respectively:

〈S2〉 =
{(

1
0

)
,

(
0
1

)}
with

a −→
(

1
0

)
,

b −→
(

0
1

)
.

Then ϕ: S1 −→ S2 with

ϕ(i1, i2) = i1 +2 · i2

can be written as ϕ: 〈S1〉 −→ 〈S2〉 with

ϕ(〈(a,a)〉) = 〈a〉+2 · 〈a〉 = 3 · 〈a〉 = 3 ·
(

1
0

)
=

(
3
0

)
ϕ(〈(a,b)〉) = 〈a〉+2 · 〈b〉 =

(
1
0

)
+2 ·

(
0
1

)
=

(
1
2

)
ϕ(〈(b,a)〉) = 〈b〉+2 · 〈a〉 =

(
0
1

)
+2 ·

(
1
0

)
=

(
2
1

)
ϕ(〈(b,b)〉) = 〈b〉+2 · 〈b〉 = 3 · 〈b〉 = 3 ·

(
0
1

)
=

(
0
3

)
.

Definition 10 The triple N = (P,T,F) is a petrinet,
if the following holds:

P : is a set of places, with P 6= /0
and ∀p ∈ P a domain D(p),

T : is a set of transitions, with T 6= /0
and ∀t ∈ T a domain D(t) and P∩T = /0,

F ⊆ (P×T )∪ (T ×P) is the flow relation.
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We call cp ∈ D(p) (ct ∈ D(t)) for p ∈ P (t ∈ T ) a place- or
state-colour (transition- or firing-colour) and assume that
∀n ∈ P∪T |D(n)|< ∞.

To avoid ambiguities we use in the context of nets
the symbol 〈 〉 to represent the mapping of place-colours
into vectors and the symbol [ ] to represent the mapping of
transition-colours into vectors. So, with two linear spaces
V,W over the same field K and an arbitrary transition-colour
set D(t) and a place colour set D(p) with dim(V ) = |D(t)|
and dim(W ) = |D(p)|, there exists bijective mappings 〈 〉
and [ ] such that L (V,W ) = L (MS([D(t)]),MS(〈D(p)〉))
(see Figure 2).

Wϕ : V

ϕ : MS([D(t)])

[ ] 〈 〉

MS(〈D(p)〉)
Figure 2: Vector-spaces and multisets of tuples.

Definition 11 Let N = (P,T,F) be a petrinet. For
all n ∈ P∪T we define

·n := {n′|(n′,n) ∈ F} – the preset of n and

n· := {n′|(n,n′) ∈ F} – the postset of n.

Definition 12 The quadrupel N = (P,T,F,L) is a
predicate/transition-net (pr/t-net), if the following holds:

(P,T,F) is a petrinet,

L : F −→
{
{ϕ,ϕad}|

ϕ ∈L (MS([D(t)]),MS(〈D(p)〉)),
ϕad ∈L (MS(〈D(p)〉),MS([D(t)])),
(p, t)∨ (t, p) ∈ F

}
.

That means: For all arcs (t, p) and (p, t) in a Pr/T-net there
is a linear mapping ϕ from 〈MS(t)〉 to 〈MS(p)〉 and in
addition for the same arc a mapping ϕad from 〈MS(p)〉 to
〈MS(t)〉.
We often write ϕ(a,b) as an abbreviation for ϕ ∈L ((a,b))
and ϕad

(a,b) for ϕad ∈L ((a,b)).

4 SUCCESSIVE INFORMATION IMPROVEMENT
IN PREDICATE/TRANSITION NETS

Definition 13 Let N = (P,T,F,L) be a pr/t-net;
the marking of N is defined as

m : P∪T −→
⋃

p∈P,t∈T

MS(〈D(p)〉)∪MS([D(t)]).
632
with

m(n) ∈

{
MS(〈D(n)〉), if n ∈ P and
MS([D(n)]), if n ∈ T.

The markings on transitions will be interpreted as sets
of potential firing colours; the markings on places as sets
of potential system states.

In the following the global marking of a net does
corresponds to the knowledge about the state of the modeled
system. Moreover, as we presume that the system’s state is
fixed, the dynamic in nets (defined below), and with it, the
changing of markings, enables to change – here: to increase
– the knowledge about the system’s state.

Definition 14 Let N = (P,T,F,L) be a pr/t-net.
The pre-place restriction of a transition t ∈ T (in symbols:
r(·t)) is defined as

r(·t) :=
⋂
p∈·t

 ⋃
c∈m(p)

ϕad
(p,t)(c)

 .

The post-place restriction of a transition t ∈ T (in symbols:
r(t·)) is defined as

r(t·) :=
⋂
p∈t·

 ⋃
c∈m(p)

ϕad
(t,p)(c)

 .

Definition 15 Let N = (P,T,F,L) be a pr/t-net.
The transition t ∈ T is enabled under marking m (in symbols
m[t〉), if

m(t)∩ r(·t)∩ r(t·) 6= /0.

Definition 16 Let N = (P,T,F,L) be a pr/t-net. If
t ∈ T and m[t〉, then t may fire; the firing of t leads to the
follower marking m′ (m[t〉m′) with

m′(t) = m(t)∩ r(·t)∩ r(t·), and

m′(n) = m(n) ∀n 6= t.

Definition 17 Let N = (P,T,F,L) be a pr/t-net.
The pre-transition restriction of a place p ∈ P (in symbols:
r(·p)) is defined as

r(·p) :=
⋃

t∈·p

 ⋃
c∈m(t)

ϕ(t,p)(c)

 .
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The post-transition restriction of a place p ∈ P (in symbols:
r(p·)) is defined as:

r(p·) :=
⋃
t∈t·

 ⋃
c∈m(t)

ϕ(p,t)(c)

 .

Definition 18 Let N = (P,T,F,L) be a pr/t-net.
The place p ∈ P is enabled under marking m (in symbols
m[p〉), if

m(p)∩ r(·p)∩ r(p·) 6= /0.

Definition 19 Let N = (P,T,F,L) be a pr/t-net. If
p ∈ P and m[p〉, then p may fire; the firing of p leads to
the follower marking m′ (m[p〉m′) with

m′(p) = m(p)∩ (r(·p)∩ r(p·)), and

m′(n) = m(n) ∀n 6= p.

For the pr/t-net in Figure 3 the following holds:

P = {P1,P2}, with D(P1) = D(P2) = {0; . . . ;1},
T = {T 1}, with D(T 1) = {0; . . . ;1}×{0; . . . ;1},
F = {(P1,T 1),(T 1,P2)},

with the arc-lables being specified as follows:

L((P1,T 1)) = {ϕ(P1,T 1),ϕ
ad

(P1,T 1)} :

ϕ(P1,T 1): MS([D(T 1)])−→ MS(〈D(P1)〉), with
ϕ(P1,T 1)([p1,x]) = 〈p1〉 and

ϕad
(P1,T 1): MS(〈D(P1)〉)−→ MS([D(T 1)]), with

ϕad
(P1,T 1)(〈p1〉) = ∑

x
[p1,x].

and

L((T 1,P2)) = {ϕ(T 1,P2),ϕ
ad

(T 1,P2)} :

ϕ(T 1,P2): MS([D(T 1)])−→ MS(〈D(P2)〉), with
ϕ(T 1,P2)([p1,x]) = 〈p1 − (p1) · x〉 and

ϕad
(T 1,P2): MS(〈D(P2)〉)−→ MS([D(T 1)]), with

ϕad
(T 1,P2)(〈p2〉) = ∑

p1

[
p1,

p1 − p2

p1 −1

]
+(〈p2〉 • 〈1〉) ·∑

x
[1,x].

Here the set {0; . . . ;1} specifies a set of values in the
interval [0, . . . ,1] and (multi-)sets are again written as sums.
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Figure 3: Abstract pr/t-net with initial marking.

The initial marking m0 of N is given as follows:

m0(P1) =
0.4

∑
p1=0.2

〈p1〉

m0(T 1) = ∑
(p1,x)∈D(T 1)

[p1,x]

m0(P2) =
1.0

∑
p2=0.7

〈p2〉.

The initial marking can be interpreted as follows: The local
state of P1 is a value in the interval 0.2 to 0.4; furthermore it
is known, that the local state of P2 lies somewhere between
0.7 and 1.0. The local marking on transition T 1 is the most
unspecified one: we only know the potential firing colours
c of T 1 are in D(T 1).

To narrow down the marking on T 1 and, the marking
on T 1 is restricted in the defined manner: Therefore it’s
restrictions r(·T 1) and r(T 1·) have to be calculated:

r(·T 1) =
⋃

p1∈{0.2,...,0.4}
ϕad

(P1,T 1)(〈p1〉)

=
⋃

p1∈{0.2,...,0.4}
∑
x

[p1,x]

(see Figure 4 (left) for grahical representation of r(·T 1)).

r(T 1·)=
⋃

p2∈{0.7,...,1.0}
ϕad

(T 1,P2)(〈p2〉)

=
⋃

p2∈{0.7,...,1.0}
∑
p1

[
p1,

p1 − p2

p1 −1

]
+

(〈p2〉 • 〈1〉) ·∑
x

[1,x]

(see Figure 4 (right) for grahical representation of r(T 1·)).
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Figure 4: Restrictions onto T 1:

So, with m(T 1) = ∑(p1,x)[p1,x] we get here (see Fig-
ure 4)

m′(T 1) = m(T 1)∩ r(·T 1)∩ r(T 1·)
= r(·T 1).
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Figure 5: Graphical representation of the modified marking
on T 1.

Figure 6: Pr/t-net with modified marking on T 1.

5 EXAMPLE

In this section the concept of duality in high-level nets is
applied in an example from the automotive area. On a sim-
plified airpath of a turbo engine system (see Figure 7) the
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r(·T 1) (left) and r(T 1·) (right).

above described process of successive information improve-
ment due to restrictions leads to a formal diagnosis method.
Please have in mind that it is just and example to demon-
strate a possible application of the intorduced approach –
in reality the system is more complex.

The airpath under consideration consists of a throttle
valve that, in dependence of the accelerator’s pedal po-
sition, influences the amount of incoming fresh air (full
acceleration: throttle valve is fully opened; idle - no accel-
eration: throttel valve is (nearly) closed). The pressure of
the air flow between the throttle valve and the compressor
is called “map up”-value (“Magnifold Absolute Pressure
Upstream”). Due to the compressor the air is (at least in
general) compressed and taken into the engine; the pres-
sure in the air hose between the compressor and the engine
intake is called the “map”-value (“Magnifold Absolute Pres-
sure”). Since during full acceleration the throttle valve is
fully opened and the bypass-valve is closed, a pressure-
difference (map-map up) arises; during idling the throttle
valve is nearly closed and the bypass-valve is fully opened –
so, map = map up (pressure balance due to opened bypass-
valve). In our scenario we presume that the position of the
throttle valve, the map up- als well as the map-value can be
established as faultless – so, we can rely on these values.
As potential sources of errors, we consider:

• a leak between throttle valve and compressor (mod-
elled by transition Leak1 in our model – see Fig-
ure 8; the leak’s size is modelled by the value of
variable l1,

• a leak between the compressor and the engine (in
the model: transition Leak2 with size of value l2)
and

• a potentially faulty bypass-valve (transition
bypass− valve, value: by).

Assume now, that at the working point “full acceleration”
(dk = 1) the measured pressure values are mapup = 0.7
and map = 1.18 – in contrary to the expected reference
values: mapup = 0.5 and map = 0.7 (with l1 = l2 = 0
and by = 1). A diagnosis applying the method described

4



Müller and Schnieder

Throttle-Valve

Sensor: MAP

Bypass-Valve

Sensor: MAP-UP Compressor

Fresh Air Engine

Figure 7: The schema of a simplified airpath.

Leak 1 Leak 2Throttle-
Valve

Bypass-
Valve

〈0, 5 + dk · 0, 4〉
〈p1 − (p1 − 1) · l1〉

〈p1〉 〈p2〉

〈p2 − by · 0, 4〉 〈p2 + by · 0, 7〉
〈p3 − (p3 − 1) · l2〉

〈p3〉

MAP_UP
MAP

P1 P2 P3

∑

l1
[p1, l1]

⎡
⎣p1 − 0, 5

0, 4

⎤
⎦

∑
p1

⎡
⎣p1,

p1 − p2

p1 − 1

⎤
⎦

+ (〈p2〉 • 〈1〉) · ∑

l1

[1, l1]

∑
p2

⎡
⎣p2,

p2 − mapup

0, 4

⎤
⎦

∑

by
[p2, by]

∑

l2

[p3, l2]

∑
p2

⎡
⎣p2,

p3 − p2

0, 7

⎤
⎦

∑
p3

⎡
⎣p3,

p3 − map

p3 − 1

⎤
⎦

+ (〈map〉 • 〈1〉) · ∑

l2

[1, l2]

Figure 8: The model of a simplified airpath.
in chapter 3 on the basis of the measured values (and
the markings on all nodes n ∈ P∪ T\{mapup,map, p1}
set to 〈D(n)〉 and [D(n)] respectively), leads to the fault-
space shown in Figure 9 (left) – each point of the surface
constitutes a potential (combination of) fault(s) consisting
of a leak1, leak2 and a faulty bypass-valve. With the
second fault-space – generated in dependence of the second
working point “idly – no acceleration” (reference values:
mapup = 0.5, map = 0.5; measured values: mapup = 0.3,
map = 0.94) and depicted together with the first fault-space
in Figure 9 (right) – one can by intersecting both spaces
derive the combination of faults leading to the observed
values: l1 = 0, by = 0.5 and l2 = 0.4. That means: there’s
no leak between the throttle valve and the compressor, the
bypass-valve sticks half-opened and there’s a leak of size
0.4 between the compressor and the engine.

6 CONCLUSION AND FUTURE WORK

In this paper we have defined a class of high level Petri-nets
on the basis of the theory of dual spaces. In that class places
as well as transitions can be marked and each arc carries
two labels – the primal mapping and the corresponding
adjoint mapping. If we assume that a system’s state is only
known with uncertainty and not exactly the interpretation of
63
tupels as “the states that can’t be excluded” suggests itself.
With the help of the two mappings on each arc and the
markings on places and transitions it was shown, that the
knowledge about the system’s state can (at least in general)
be improved by passing the (uncertain) information through
the model and checking it for consistence.

The next tasks that must be dealt with are to examine
how far dual/adjoint mappings do exist (and can be gen-
erated) to non-linear mappings (see arc labels (Leak1,P2)
and (Leak2,P3) of example in Figure 8). Up to now, it has
only been proved that adjoint mappings do exist for linear
mappings of finite dimension but we could find adjoints to
many non-linear mappings in different applications.

Secondly, the combination with “module-nets” (see
Simon 2005) is under consideration for model-refinement
tasks: In the approach presented here, we presume that the
arc labels are fixed and that the (observed) markings are
varyable. We could imagine that presuming fixed markings
but “bendy” arc labels is an approach that is worth to think
about.
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Figure 9: Fault spaces at working point 1 (upper part) and
working point 1+2 (lower part).
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