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ABSTRACT 

Nonoverlapping batch means (NOLBM) is a a we11-known 
approach For For estimating the variance of the sample 
mean. In this paper we consider an overlapping batch 
means (OLBM) estimator that, based on the same 
assumptions and batch size as as NOLBM, has has essentially 
the same mean and only 2/3 the asymptotic variance 
of NOLBM. Confidence interval procedures for the nlean 
based on NOLBM and OLBM are discussed, Both 
estimators are compared to the classical estimator of 
the variance of the mean based on sums of covariances. 

INTRODUCTION 

Consider a a covar iance s ta t i ona ry  s tochast ic  process 
{X} having mean mean ~ ~ and var iance R R O, O, def ined over a a 
d i sc re te  or cont inuous t ime parameter and and having a a 
d i sc re te  or cont inuous s ta te  space. Est imat ion of  
from a a r e a l i z a t i o n  {x} is a a common problem, espec ia l l y  
in computer s imu la t ion  o f  s tochast ic  systems. 

The fami l y  of  po in t  est imators usua l l y  considered is 

zn En ~i = = 1 1 In the nons ta t ionary  i= l  a i x i '  where i= 1 1 
case ea r l y  observat ions are o f ten  weighted less,  but 

in the s t a t i o n a r y  case x x = = n n - I  ~.n,i=l x x i i is  used 

almost e x c l u s i v e l y .  We study on ly  ~ ~ here, but note 
t ha t  X X is not the minimum var iance l i n e a r  es t ima to r ,  
which would place greater  weight on both ea r l y  and 
l a t e  observat ions when when autocovar iances are p o s i t i v e .  

Confidence i n t e r v a l  procedures fo r  ~ ~ based on 
dependent data have been wide ly  s tud ied.  Recent 
textbooks on s tochast ic  s imu la t ion  provide good 
d iscuss ions:  B ra t l ey ,  Fox and Schrage [ I ] ,  Fishman 
[2 ]  and Law Law and Kelton [3 ] .  The problem is to f i nd  
func t ions  of  the data u u ( { x } )  and v v ( { x } )  such t ha t  

P{U P{U ( {X} )  < < ~ ~ < < V V ( {X} ) }  = = l-m ( in  which case the 

procedure is ca l l ed  malice) wh i le  ob ta in ing  reas_onable 
i n t e r v a l  width and s t a b i l i t y .  Typ i ca l l y  U U s s = = X X - - H~. 

and V V = = X X + + H H a, where the ha l f  width H H = = qm/2~V(~,) 

and q q . . is  a a constant r e f l e c t i n g  the j o i n t  d i s t r i b u -  

t i o n  o f  X X and^the es t imator  o f  the var iance of  the 
sample mean, V(X). 

The method of  batch means means is o f  i n t e r e s t  in th is  
paper. The usual approac_h, approac_h, based on nonover lapping 
batch means means (NOLBM), (NOLBM), is X X _+ H H , , k, where 

*The second author  received t ime and resource support  
from AT&T Be]I Labora to r ies ,  where he spent the summer summer 
o f  1984 v i s i t i n g  the Operations Research Department. 

Ha, Ha, k k = = t t /2 ,k_  1 1 Sk/ /k and S~ = = ( k - l )  - I  ~.k.j=l ~.k.j=l (Xj  - - R)'2 R)'2 

T y p i c a l l y ,  one of  three types o f  batch means means po in t  
es t imators  are used: 

o r  

~j m-I sjm sjm ' i = ( j - l ) m + i  ×i and X X = = n n - I  n n Xi = = si= 1 1 

_ _ i t  0 0 t .  
Xj = = to l  f ( i _ l ) t o X ( t ) d t  and X X = = t~ 1 1 fO X ( t ) d t  

Xj = = to I I ( N ( i t o ) - N ( ( i - l ) t o )  and X X = = t~ 1 1 N ( t , )  

where N(t)  is  a a count ing process w i th  N(O)=O. N(O)=O. We t r e a t  
the f i r s t  case here, but analogous resu l t s  hold f o r  the 
second and t h i r d  cases by rep lac ing  summations w i th  
i n t e g r a t i o n s ,  m m wi th  to ,  and n n w i th  t , .  

The The second sect ion discusses NOLBM, NOLBM, the t h i r d  sec t ion  
discusses OLBM, OLBM, and the four th  sec t ion  re la tes  both 
NOLBM and OLBM to the c lass ica l  es t ima to r  based on the 
sum o f  covar iances.  

NONOVERLAPPING BATCH MEANS 

Performance of  the NOLBM procedure depends on the j o i n t  
d i s t r i b u t i o n  of  X X and S~. S~. A A v a l i d  procedure r e s u l t s  
when when 

(a) ~ ~ is normal ly  d i s t r i b u t e d ,  
(b) X X and S~ are independent,  

and and 
(c) (k - I  2 2 2 2 has has a a ch i -square  d i s t r i b u t i o n  

)Sk/ak wi th  k-I  degrees of  freedom, 
where a~ , , var iance o f  each of  k k batches, equals n/mV(X) 

In NOLBM the batch size m m (or  e q u i v a l e n t l y  the number 
of  batches k k when when the sample s ize n n is  f i xed )  is  chosen 
wi th  regard to the l as t  two c r i t e r i a ,  since the f i r s t  
is unaf fected by batch s ize.  Since these two c r i t e r i a  
are d i f f i c u l t  to measure in an a p p l i c a t i o n ,  two o ther  
c r i t e r i a  are t y p i c a l l y  subs t i t u ted :  

(d) the batch means means are independent 
and and 

(e) the batch means means are normal ly  d i s t r i b u t e d .  
(See, e . g . ,  Fishman [ 4 ] ,  Law Law and Carson [5 ] ,  Mechanic 
and and McKay McKay [ 6 ] ,  and and Schr iber and Andrews [ 7 ] . )  C r i t e r i a  
(d) and (e ) ,  which are s u f f i c i e n t  to  ensure (b) and 
(c ) ,  are s a t i s f i e d  in the l i m i t  as n n ~ -  and m m ÷ - .  
Therefore,  a t  leas t  a s y m p t o t i c a l l y ,  increas ing the 
batch s ize m m (or  e q u i v a l e n t l y  fo r  a a f i xed  sample s ize  n n 
decreasing the number number o f  batches k) moves moves the procedure 
toward v a l i d i t y .  

Balancing the quest fo r  v a l i d i t y  is  the need fo r  shor t  
and s tab le  confidence i n t e r v a l s ,  as usua l l y  measured by 
the mean mean and c o e f f i c i e n t  o f  v a r i a t i o n  of  the h a l f  
w id th ,  r espec t i ve l y .  Schmeiser [8 ]  quan t i f i es  and 
discusses the e f f ec t  of  m m and k k on these p rope r t i es .  
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OVERLAPPING BATCH MEANS 

Because Because of  the ro le  of batch independence in NOLBM as as 
discussed in the l as t  sec t ion ,  the idea of using over- 
lapping batch means (OLBM) (OLBM) can appear, at  best,  
unnatura l ,  since the common common observat ions in the over- 
lapping batches causes substant ia l  pos i t i ve  co r re la t i on .  
However, the idea in many many ways ways is  a a good one, as 
discussed in th is  sect ion,  because batch s ize ra ther  
than batch independence is  the c ruc ia l  element. 

We consider the OLBM est imator  of  V(X) 

zn-m+l Vm(X) Vm(X) = = (m/n) ' j= l  (Xj(m) - - ~)2 / / (n-2m+l) 

where Xj(m) = = m m - I  m-l zi= 0 0 Xj+ i i is the batch mean of  size 
m m beginning wi th observat ion Xj. As you progress 
through th is  sect ion,  the denominator (n-2m{l)  w i l l  
begin to seem l i k e  the obvious choice ( i f  i t  doesn' t  
now). As a a beginning, note that  fo r  the extreme case 
of  m=l m=l t h i s  es t imator  reduces to Sn2/n, which is the 
usual est imator  fo r  the independent case. Also note 
the c o e f f i c i e n t  (m/n) is  used ra ther  than I / k ,  which is 
cons is ten t  wi th  using X X ra ther  the average of the batch 
means, which ignores the l a s t  f r ac t i on  of a a batch. 

The The remainder of  th is  sect ion studies proper t ies of V V m. 
We show show that  th is  est imator  and and a a NOLBM est imator  have 
e s s e n t i a l l y  the sanle sanle b ias,  but tha t  the OLBM est imator  
has only 2/3 the asymptot ic variance. We also show show 
the covariances wi th X X are essen~ia l ly  _equal, _equal, which 
impl ies  the co r re la t i on  between V V m m and and X X is greater  
than tha t  between the NOLBM est imator  and and X. X. F ina l l y  
we we show show the computational e f f o r t  is  not p r o h i b i t i v e .  

The The resu l ts  of th is  sect ion fo l l ow  almost d i r e c t l y  _from 
Propos i t ion I ,  which re la tes  the OLBM est imator  Vm(X ) ) 
to the NOLBM est imators 

V~,m(X) = = (m/n) ~k ~k - - ~)2 / / ( k - l )  j= l  (Xm( j - l )+ i  - - 

which is the est imator  f o r  V(X) a r i s ing  from k k NOLBM 
beginning with observat ion i .  The The subscr ip t  k k 
i nd i ca t i ng  the number number o f  batches is superf luous, since 
k k = = [ ( n - i + l ) / m J ,  but we carry  k k e x p l i c i t l y  to make make the 
argument more c lear .  On the other hand, the sample 
s ize n n is not ca r r ied  e x p l i c i t l y .  The The proofs of  the 
propos i t ions  ind ica te  the main argument, of ten wi th  
a lgebra ic  d e t a i l ,  but are of ten not r igorous ly  stated 
here. 

r~ 

1 1 states that  the OLBM est imator  Vm(X ) ) is Proposi t ion 
a a weighted average of the NOLBM est imators .  

Proposition i. 
^., 

+ + (k- IC':k,+IVLl,m(X) 
} 'm(i) = = n-2m+l 

where k' TM n n - - km + + I .  
r~ 

Subst i tu te the d e f i n i t i o n s  of  Vm(X) and Proo j-': j-': 

i ,m(X) and ve r i f y  tha t  V V k k 
( k - l ) k '  + + (k -2 ) (m-k ' )  = = n n - - 2m + + I .  II 

Propos i t ion  2 2 says tha t  the bias of  Vm(X) Vm(X) is essen- 
t i a l l y  the same as tha t  f o r  Vk,m(X). 

Proposi t ion 2. 

,,,, _ _ z k - I  - - 
E(Vm(X)) ~ ~ V(X)-  (2m j= l  Rj) / / (n - - 2m + + I )  

where Rj=CoV(Xh(m),Xh+jm(m)) fo r  a l l  h. 

Z>poof: Z>poof: Recall that  fo r  the NOLBM est imators 

E(V~,m(X)) = = V(X) - - 2 (k - l )  - I  zk-l'j=l (I  - - ~-)' ~-)' Rj 

Subs t i tu t ing  th is  resu l t  in to the expression 
obtained by passing the expected value operator 
through the summations in the d e f i n i t i o n  of the 
OLBM est imator  and s imp l i f y i ng  y ie lds  

_ _ _ _ 2m%;Ik ( l - ¢ ~ j  
E(Vm(X)) = = V(X) - - 

n n - - 2m + + l l 

FZ k-2 Rj Rj + + k-IR k k l l ] ] 2(m-k')  L L j= l  
+ + 

k ( k - l ) ( n  - - 2m + + l )  

Since the l as t  term is neg l i g i b l e ,  the resu l t  is 
obtained. II 

The b ias,  of  course, is the weighted average of the 
biases for k k and k- l  NOLBM est imators .  In the l i m i t  as 
batch size grows, Rj decreases and and a l l  the est imators 
are unbiased. 

As might be be expected since Vm(X Vm(X ) ) is a a weighted average 
of  the NOLBM est imators ,  the OLBM est imator  has has a a 
smal ler  variance. 

Proposition 3. 

l im V(~m(~)) / / V(~,m( i ) )  : : ~/3 

HI + ~  
n/m n/m + + 

Proof: The The l i m i t  of the denominator is  

(m/n) (m/n) 2 2 2e~/(k-1), which which follows direct ly from from 
( k - l ) S ~ / ~  having variance equal to 2 (k - l )  

since i t  has has a a chi-square d i s t r i b u t i o n .  The The 
l i m i t  o f  the numerator is i d e n t i c a l ,  except 
the c o e f f i c i e n t  is 4/3 rather  than 2, as shown shown 
in Meketon [9 ] .  i[ 

Proposit ions 2 2 and and 3 3 suggest that  we should consider 
confidence in te rva l  procedures based on on OLBM. OLBM. The The 
three obvious (extreme) p o s s i b i l i t i e s  are 

± ± t /= , [n /ml_ l  /Vm(X) /Vm(X) 

± ± tm/2,1n/ml_l  /V(3/2)m(X) 
and 

± ± tm/2 , (3 /2 ) In /m l_  l l /Vm(X) 

The The f i r s t  is the d i r ec t  subs t i t u t i on  of Vm(X) fo r  Vk,m(X) Vk,m(X) 

wi th no change in batch s ize m m or the constant t .  The 
second increases the batch s ize by 50%. The The th i rd  
increases the degrees of  freedom of  the constant by 50%. 
The The t h i r d  in some ways seems the most na tu ra l ,  and 
Fishman [ lO, p.284] suggests th is  is the customary 
mod i f i ca t ion  in a a s i m i l a r  s i t ua t i on .  We have not 
studied these three p o s s i b i l i t i e s  emp i r i ca l l y ,  but the 
next p ropos i t ion  suggests the la rger  batch size of  the 
second procedure is appeal ing. 

Proposition 4. 

Corr (%(X) ,X)  > > Corr(V~,m(X),X) 
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Pmoof: Let c c = = Cov(V~ Cov(V~ (X) X), Then Then to very 
K K ~ ~ 111^ , , ' ' a a 

s l i g h t  e r ro r  c c ~ ~ Cov(V~,m(X),X) for  

i i = = 2,3 . . . . .  k ' .  To a a s l i g h t l y  la rger  e r ro r  we 

~i ,re(i),2) also have have c c ~ ~ CoV(Vk_ CoV(Vk_ 1 1 fo r  
i i = = k ' + l , . . . , m .  Since the OLBM est imator  VnI(X) VnI(X) 

is a a weighted average of the NOLBM est imators,_ 
a l l  of which have have essen t i a l l y  covariance with X X 

of c, then Cov(~m(X),X) ,~ Cov(V~ Cov(V~ m(X),X). 

However, fronl Proposi t ion 2 2 we know know the 
variance is  larger  fo r  NOLBM, which makes makes the 
co r re la t i on  fo r  NOLBM smal ler .  II 

The The good good news fo r  OLBM is that  the co r re la t i on  is zero 
when when NOLBM is zero. The bad news news is tha t  OLBM are 
less robust.  However, the second confidence in te rva l  
procedure from the las t  page uses batch sizes 50% 
la rger  than the NOLBM batch s ize,  making the variances 
in the comparison essen t ia l l y  equal. This procedure 
then has has less bias than NOLBM, s im i la r  variance and 
s im i l a r  co r re la t i on  wi th X. 

We leave the issue of confidence in terva l  procedures 
now now in favor of considering computational issues 
and re la t ionsh ip  to other est inlators.  

The The computational e f f o r t  required for  V V ( X ) a t  f i r s t  
appears qui te  large.  A A l i t t l e  thought,"however, 
qu ick ly  y ie lds  the fo l lowing a lgor i thm for  any given 
m m and and n: 

. n  
a a ÷ ÷ m m Zi= l l x x i i / / n n 

b b ÷ ÷ ~m xi  i=l  
s s + + (b-a) 2 2 

j + O  

While j j < < n-m do do 

j + j + l  

b b + + b b + + x x j+  m m - - xj 

s s ÷ ÷ s s + + (b-a) 2 2 

End 

-2 s + m  s s 

Vm(X ) ) ÷ ÷ (m/n)(n - - 2m + + I)  -I  s s 

While reasonably e f f i c i e n t ,  th is  a lgor i thm must be be 
repeated, except fo r  the f i r s t  step, fo r  each each value of 
m m considered. Relat ionships developed in the next 
sect ion y ie ld  a a more e f f i c i e n t  a lgor i thm when many many 
values of  m m are to be be considered. 

OLBM, NOLBM AND THE CLASSICAL ESTIMATOR 

Since V(X) = = n- l [Ro + + 2 2 
£n-I J J j = l  ( I -  F) Rj] ,  a a reasonable 

est imator  of  V(X) is to subs t i tu te  est imators of  the 
autocovariances into the equation to obtain what we 
w i l l  ca l l  the c lass ica l  est imator .  Proposi t ion 5, the 
main resu l t  of t h i s  sect ion,  states that  the OLBM 
est imator  can be viewed as a a c lass ica l  est imator .  
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Proposition 5. 

^ ^ Tm-I Tm-I j j ^ ^ Vm(X) Z Z (n - - 2m + + I ) - I [Ro  + + 2C j= l  (I - - ~) Rj] 

n-I n- j  ~) where Rj = = ~i=l (Xj - - X)(Xj+ i i - - 

for  j j = = O,l . . . . .  m-l .  

= = (m/n)~n[_~+l(x,j(m)-X) 2 ~  - - / / (n-2m+l) Proof: Proof: Vrn(X) 

Xj+i X X 
= = (m/n]~n-m+l[Tm-I ]2 / / (n-2n1+l) 

~Lj=I Li=O Li=O In 

, , ,- l~n-m+l~m-l~m-I -X)(Xj+~-X)/(n-2m+I ) ) 
= = unny Zj=I Li=OZ~=O (Xj+ i i 

,n + + 2?m-l lm_i~Tn- i [x -X~(Xj+ i -X) nl~i=l (Xi-X)2 ~i=l  ' ' 'C j= l  ' " j  ' ' 
~- ~- ~ ~ (~  - - #iF ~-TT----  

~ i = l ( X i _ ] ) 2  + n  2rm-ILi=l ( ( -~.)I i i ~n- i (X ._ i ) (X .+ i_~  ) g =  g g J J 

n n (n - - 2m + + i~ 

= = - - + + ^ ^ 27m- I  ( l  i i (n 2m l )  - l [ m  0 0 + + Li=l - - i~.) Ri Ri ] ] 

The The approximate equa l i t y  ar ises because of the end 
e f f ec t s ;  that  i s ,  some ear ly  and some late cross- 
products would appear more more of ten i f  they had had occurred 
in the center of  the data. The The reduct ion of  the t r i p l e  
sum to a a double sum in the four th step of the proof  nlay nlay 
be be substant iated a l geb ra i ca l l y  or by organiz ing the 
terms g raph ica l l y ,  as shown in Figure I I for  n=8 n=8 and m=3. m=3. 

j= l  

#i i + + 

i i ×2×1 + + 

,~3Xl + + 

Figure I .  Graphical i l l u s t r a t i o n  of  the terms summed 
in the OLBM est imator .  

Each cross-product occurs once for  each rectangle in 
which i t  is included. Tile doubl ing term ar ises from 
symmetry. The The main diagonal corresponds to est imat ing 
RO, the f i r s t  o f f -d iagona l  corresponds to R R I ,  and so so 

fo r th .  II 

Proposi t ion 5 5 says tha t  the OLBM est imator  VmIX) VmIX) is 
a l geb ra i ca l l y  equ iva lent ,  other than fo r  min~r end 
e f f ec t s ,  to the c lass ica l  est imator  tha t  uses uses the same same 
number of au tocor re la t ions  as the OLBM uses uses in each 
batch. 

Fishman [ I0 ]  discusses the c lass ica l  est imator  in the 
context  of  spectral  est imat ion.  The The spec i f i c  es t imator  
considered there is 

mdn: In-p)-I + + 2Z ;] I I  
which d i f f e r s  only in the coe f f i c i en t .  Thus the 
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asymptotic aspects of  Propositions 2 2 and 3 3 can can be 
shown shown via Proposit ion 5 5 and the known known asymptotic 
propert ies of m m 3. 

The re lat ionship of Proposit ion 5 5 is useful for calcu- 
la t ing  the OLBM est imator for  various values of the 
batch size m, since only the autocovariance estimates 
are needed and they can can be col lected cumulatively. 

~ ~ s s suggested by by Fishman Fishman [ I0 ]  and and Meketon Meketon [9] ,  p lo t t ing  
(X) (X) as as a a function of  m m can be useful for determining 

a~ a~ appropriate batch size m. In fact  such such p lo t t ing  
suggests another est imator for  V(X) V(X) at a a s t i l l  higher 
leve l :  

Vml,m2(# Vml,m2(# ) ) = = ~ m  I I B B m m ~m(#) ~m(#) where where ~m. ,  ~m = = 1 1 

We now b r i e f l y  comment on the re la t ionship of the 

NOLBM estimator Vk,m(X) Vk,m(X) and the OLBM estimator ~m(X). ~m(X). 

Recall Figure 1 1 wi th the overlapping rectangles cor- 
responding to the overlapping batch means. Not Not sur- 

~l - - p r i s i n g l y ,  Vk,m(X) Vk,m(X) corresponds to including only 

rectangles I ,  m+l, 2m+l . . . . .  which are adjacent but 
do do not overlap, resul t ing in fewer terms being used^in 
the est imator. In par t i cu la r ,  the estimators for R. 
corresponding to the terms in the j j th off-diagonal j j 
are missing terms that^are as as useful as as the terms 
included. S imi la r l y ,  V~ m(X) corresponds to 
rectangles i ,  m+i, 2m+i,' . . . .  
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SUMMARY 

We have have studied the re la t ionship between between nonover]apping 
batch means, means, overlapping batch means, and and classical 
estimators for  V(X). The overlapping batch means 

~m(X), has been shown shown to be be a lgebra ica l ly  est imator,  

equivalent,  other than for end ef fects ,  to the 
c lassical  estimators using m-I covariances. 

A A potent ia l  reason for the unpopularity of the 
c lassical  estimators arises in Proposition 4, where where 
the covariance of the overlapping estimator with the 
point estimator for  the mean mean was seen seen to be greater 
than the same same quant i ty  for nonoverlapping batch means, means, 
except in the l i m i t  when both are zero. However, However, 
given the popular i ty  of  nonoverlapping batch means means and 
the near domination of nonoverlapping batch means means by by 
overlapping batch means, means, we think the use use of overlap- 
ping batches deserves fur ther  study. 
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