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ABSTRACT

Nonoverlapping batch means {NOLBM) is a well-known
approach for estimating the variance of the sample
mear. In this paper we consider an overlapping batch
means (OLEM)} estimator that, based on the same
assumptions and batch size as NOLBM, has essentially
the same mean and only 2/3 the asymptotic variance

oFf NOLBM. Confidence interval procedures for the mean
based on NOLBM and OLBM are discussed. Both
estimators are campared to the c¢lassical estimator of
the variance of the mean based on sums of covariances.

INTRODUC!

Consider a covariance stationary stochastic process
{X} having mean u and variance PO, defined over a
discrete or continuous time parameter and having a
discrete or continucus state space. Estimation of
from a realization [x} is a common problem, especially
in computer simulation of stochastic systems.

The fawily of point estimators usually considered is
n

IR where 2?7} oy = 1.
case carly obscrvations are often weighted Tess, but
in the stationary case X =n E?=] X3 is used

almost exc]us\ve]y We study only X here, but note
thal ¥ is not the minimum variance linear estimator,
which would place greater weight on both carly and

late observations when autocovariances are positive.

% In the nonstationary

Confidence interval procedures for u based on
dependent data have been widely studied. Recent
textbooks on stochastic simulation provide good
discussions: Bratley, Fax and Schrage [1], Fishman
[2] and Law and Kelton [3]. The problem is to find
functions of the data u ({x}) and v ((x)) such that

P(Ua({X]) << Vu({X))} = l-a (in wh1ch case the

) while obtaining reasgnable
interval width and stability. Typically U =X - H,

and V=% + H_, where the half width H_ = q , /(%)
« o a  tafa’
and q'x/2 is a constant reflecting the joint distribu-

tion of X and_the estimator of the variance of the
sample mean, V(X).

procedure is called vald

The method of batch means is of interest in this
paper. The usual approach, based on nonoverlappiny
batch means (MNOLBM), is X + Ho ks vhere

*The second author received time and resource support
from ATAT Bell Laboratories, where he spent the summer
of 1984 visiting the Operations Rescarch Department.
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B o=t s/vk and 5P = (et b (R - DR
o,k /o, k-1 Tk J =1 j
Typically, one of three types of batch means point
estimators are used:
Lo =1 gm 5 . -1 _n
K mm s B Gorymes Kpoand Xos ot mgy Xy
< -1 Mg RS R y
K=ty Sy X(t)dt and X = £ fo K(t)dt
or 1 - -1
Xj =ty (N(ito)—N((iAl)to) and X = tg N(ty)
where N{t) is a counting process with N{(0)=0. We treat

the firsL case here, bul anmalogous results hold for the
second and third cases by replacing summations with
integrations, m with to, and n with t,.

The second section discusses NOLBM, the third section
discusses QLBM, and the fourth section relates both
NOLBM and OLBM Lo the classical estimator based on the
sum of CDVaI‘iﬂ"CES .

NONOVERLAPPING BATCH MEANS

Performance of the NOLBM procedure depends on the joint
distribution of X and Sk A valid procedure results
when .

a} X is normally distributed,

b} X and S{ are independent,
an
(c) (k—])sz/ck has a chi-square distribution
with k-1 degrees of freedom,
where cﬁ , variance of each of k batches, equals n/mv(X)

In NOLBM the batch size m (or equivalently the number
of batches k when the sample size n is fixed} is chosen
with regard to the last two criteria, since the first
is unaffected by batch size. Since these two criteria
are difficult to measure in an application, two aother
criteria are typically substituted:

(d} the batch means are independent
and

{e} the batch means are normally distributed.
(See, e.g., Fishman [4], Law and Carson [5], Mechanic
and McKay [6], and Schriber and Andrews [7].) Criteria
(d} and {e}, which are sufficient to ensure (b) and
(c}, are satisfied in the limit as n » « and m + «,
Therefore, at least asymptotically, increasing the
batch size m (or equivalently for a fixed sample size n
decreasing the number of balches k) moves the procedure
toward validity.

Balancing the quest for validity is the need for short
and stable confidence intervals, as usually measured by
the mean and coefficient of variation of the ha'lf
width, respectively. Schmeiser [8] quantifies and
discusses the effect of m and k on these properties.
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OVERLAPPING BATCH MEANS

Because of the role of hatch independence in NOLBM as
discussed in the last section, the idea of using over-
lapping batch means (OLBM) can appear, at best,

unnatural, since the common observations in the over-

lapping batches causes substantial positive correlation.

However, the idea in many ways is a good one, as
discussed in this section, because batch size rather
than batch independence is the crucial element.

We consider the OLBM estimator of V(X)

VR = (/) zg;‘}‘” (Fm) = B2/ (nezmi1)

v -1 _m-1
where Xj(m) =W Rig Xj+i
n beginning with observation Xj. As you progress
through this section, the denominator {n-2m+1} will
begin to seem like the obvious choice (if it doesn't
now). As a beginning, note that for the cxtreme case
of m=1 this estimator reduces to $Z/n, which is the
usual estimator for the independent case. Also note
the coefficient (m/n) is used rather than 1/k, which is
consistent with using X rather the average of the batch
means, which ignores the Tast fraction of a batch.

is the hatch mean of size

N
The remainder of this section studies properties of V.
We show that this estimator and a NOLBM estimator have
essentially the same bias, but that the OLBM estimator
has only 2/3 the asymptotic variance. We also show
the covariances with X are essentially equal, which
implies the correlation between Vy, and X is greater
than that between the NOLBM estimator and X. Finmally
we show the computational effort is not prohibitive.

The results of this section follow almast direct]y from
Proposition 1, which relates the OLBM estimatar Vm(X)
to the NOLBM estimators

v;’m(x) = {m/n) “?zl (Xm(j—])+i 0% 7 (k1)
which is the estimator for V(X) arising from k NOLBM
beginning with observation i. The subscript k
indicating the number of batches is superfluous, since
k = {(n-i+1)/ml, but we carry k explicitly to make the
argument more clear. On the other hand, the sample
size n is not carried explicitly. The proofs of the
propositions indicate the main argument, often with
algebraic detail, but are often not rigorously stated
nere,

PV
Proposition 1 states that the OLBM eslimalor Vm()() is
a weighted average of the NOLBM estimators.
Proposition 1.
/ kK' oy oM oi I
N L R 0 N N ot o S e ST
V() -
n-2m+1
where k' = n - km + 1.

~ -
Proof: Substitute the definitions of Vm(X) and
V; m(i) and verify that
(k-10k" + (k-2Y(m-k') =n - 2m + 1. |

Proposition 2 says that the bias

of Vm(i) is essen-
tially the same as that for V. m()().

Proposition 2.

E(V (1)) 2 v(X) - (zm ;;Jk.;} Ry 7 (0 - 2n o+ 1)
where §j=Cov(Xh(m),Rh*jm(m)) for all h.

Recall that for the NCOLBM estimators

k-1
i=1

Drocf:
iy R
KRy

Substituting this result into the expression
obtained by passing the expected value operator
through the summations in the definition of the
OL8M estimator and simplifying yields

By 00 = v - 2ten™! 2K

"o _ 2mpXoy (1 - )R
R T E A e
' no-2m o+ ]
5 | k-2 = 1=
. 2(m-k') [LJ.:1 Rj + k Rk’[]

kK(k-1}(n - 2m + 1)

Since the last term is negiigible, the result is
obtained. ||

The bias, ot course, is the weighted average of the
biases for k and k=1 NOLBM estimators. In the limit as
batch size grows, R. decreases and all the estimators
are unbiased. J

MY -
As might be expected since Vm(X) is a weighted average
of the NOLBM estimators, the OLBM estimator has a
smaller variance.

Proposition 3.

. N ooz ol oy B
Tim V(Vm(X)) / V(Vk,m(X)) = 2/3
n =+ w
m = <o
n/m -+ e
Frocf: The limit of the denominator is

(m/n)2 Zcﬁ/(k—ﬂ, which follows directly from
(k~1)Si/uE having variance equal to 2(k-1)

since it has a chi-square distribution. The
Timit of the numerator is identical, except
the coefficient is 4/3 rather than 2, as shown
in Meketon [9]. |

Propositions 2 and 3 suggest that we should consider
confidence interval procedures based on OLBM. The
three obvious {extreme) possibilities are

A (X)

X r'(x/;,,\r\/m]—l m

4

£ ami-1 Va2t
and
- N
Xt (372)n/ml-1 N (X}

Mo o bl
The first is the direct substitution of V (X) for v, e

with no change in batch size m or the constant t. The
second increases the batch size by 50%. The third
increases the degrees of freedom of the constant by 50%
The third in some ways secems the most natural, and
Fishman [10, p.2847 suggests this is the customary
modification in a similar situation. We have not
studied these three possibilities empirically, but the
next proposition suggests the larger batch size of the
second procedure is appealing.

Proposition 4.

Ccrr(vm(i),i) > Corr(oi,m(i),i)
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Let ¢ Fov(A (x),x)
slight ervor ¢ X (‘ov\ k H(X},‘) for
i=2,3,....k. To a 1wght1y Targer error we
also nave ¢ :,(nv( k 1 m\x) LX) for
i=k'+1,...,m. Since +he OLBM estimator V”(X)

is a weighted averaye of the NOLBM estimators,
all of which have essentially covariance with X

of ¢, then Cov(vm(i),i) n Cov(ﬁg m(i)\i).

Then to a very

However, from Proposition 2 we krow the
variance is larger for NOLDM, ah1cn makas the
correlation for NOLDBM smaller. |

The good news for OLBM is that the correlation is zero
when NOLBM is zerc. The bad news is that OLBM are
Tess robust. However, the second confidence interval
procedure from the last page uses batch sizes 50%
larger than the MOLBM batch size, making the variances
in the comparison essentially egqual. This procedure
then has less bias than NOLBM, similar variance and
similar correlation with X.

We leave the issue of confidence interval procedures
now in favor of considering computational issues
and relationship to other estimators.

The computational effort required for v ’X) at first
appears guite large. A little thought, Thowever ,
quickly yields the following atgorithm for any yiven
m oand n:

n
L f n
a eIy Xy /

il

b I
s « (b—a)?
jeo

While j < n-m do

5 <« ws

’\7”]()_() < (m/n)(n - 2m + U_i

While reasonably efficient, this algorithm must be
repeated, except for the first step, for gach value of
m considered. Relationships developad in the next
section yield a more efficient algorithm when many
values of m are to be considered.

OLEH, HOLBM AND THE CLASSICAL ESTIMATOR
Since V() = [R0 + 255 % (1- %) R, ], a reasonable

estimator of V(X) is to subst1tute esvwmators of the
autocovariances into the equation to obtain what we
will call the classical estimator. Proposition 5, the
main result of this section, states that the OLBM
estimatar can be viewed as a classical estimator.
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Proposition 5.

B0 2 (n-m e TRy - 2800 0 - D Ry

m’
where §j = p7l 2?;% ()(j - X’)(XJM -0
for § = 0,1,....m-1.
prooss 00 = (m/mESTTTH (-0 7 (n-2mi)
v ey -
- v B %"’ P/ o)
~ (mn)J)jg;l’n)'EEm:l m-1 -X’)/(n-?mH)
-n 712 m-T;  eypn-i M 7
. llxzi:1(Xi—X) + ?Eiﬂ(I“"')zj:](Xi'x)(xjﬁi)_{?
- mn (n - 2m + 1)
n (Y4 -1 n-i,
i (R 205 (-5) B 000 -0

n "(n—2n+'1)

1 ml iy A
=(n-2m+ 1) [R + 22 - H) Ri]
The approximate aquality arises because of the end
effects; that is, some early and some late cross-
products would appear more often if they had occurred
in the center of the data. The reduction of the triple
sum to a double sum in the fourth step of the proof may
be substantiated algebraically or by organizing the
terms graphically, as shown in Figure 1 for n=8 and m=3.

Y"“?TG’;“?TT“l

X X +0%

iyx +1z77 +><j><3

Fak1 HAske sl

‘argﬁ FIRRIEC RTL B
L T ML
+ XBXS + X6X6 + X6X7 + X6X8
x7x5 -+ X7X6 + X X + X7 8
X X + X X + XSX
Figure 1. Graphical illustration of the terms summed

in the OLBM estimator.

Each cross-product occurs once for each rectangle in
which it is included. The doubling term arises from
symmetry. The main diagonal corresponds to estimating
RO, the first off-diagonal corresponds to R], and so

forth. ]

Proposition & says that the OLBM estimator v {X) is
algebraically equivalent, other than for minor end
effects, to the classical estimator that uses the same
number of autocorrelations as the OLBM uses in each
batch.

Fishman [10] discusses the classical estimator in the
context of spectral estimation. The specific estimator
considered there is
- -1 rh -1 A
my/n = (n-p) ! TRy + 210 01 - D) Ry

which differs only in the coefficient. Thus the
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asymptotic aspects of Propositions £ and 3 can be 5.
shown via Proposition 5 and the known asymptotic
properties of ms.

The relationship of Proposition 5 is useful for calcu-
lating the OLBM estimator for various values of the 5.
batch size m, since only the autocovariance estimates

are needed and they can be collected cumulatively.

As suggested by Fishman [10] and Meketon [9], plotting
V (X) as a function of m can be useful for determining 7.
an appropriate batch size m. In fact such plotting
suggests another estimator for V(X) at a still higher
Tevei:
o I m M 1),
vy ,my (X) = Emgm1 By Vm(X) where Em

ém] By =1 B

We now briefly coment on the relationship of the

NOLBM estimator 9, (%) and the OLBM estimator ¥ (B
Recall Figure 1 with the overlapping rectangles cor-
responding Lo the overlapping batch means. Not Sur-
prisingly, Vl m(X) corresponds to including only

10.

B
rectangles 1, m+l, 2m+1, ..., which are adjacent but
do not overlap, resulting in fewer terms being used.in
the estimator. In particular, the estimators for R,
covresponding to the terms in the j th off-diagonal
are missing terms that,ave as useful as the terms
included. Similarly, V& m(X) corresponds to
rectangles i, m+i, 2m+i' ..

SUMMARY

We have studied the relationship between nonoverlapping
batch means, overlapping batch means, and classical
estimators for V(X). The overlapping batch means

estimator, Wm(i), has been shown to be algebraically

equivalent, other than for end effects, to the
classical estimators using m-1 covariances.

A potential reason for the unpopularity of the
classical estimators arises in Proposition 4, where
the covariance of the overlapping estimator with the
point estimator for the mean was seen to be greater
than the same quantity for nonoverlapping batch means,
except in the 1imit when both are zerc. However,
given the popularity of nonoverlapping batch means and
Lhe near domination of nonoverlapping batch means by
overlapping batch means, we think the use of averlap-
ping batches deserves further study.
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