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ABSTRACT 

Limit standards are probabilistic requirements or bench-
marks regarding the proportion of replications conforming 
or not conforming to a desired threshold.  Sample propor-
tions resulting from the analysis of replications are known 
to be beta distributed.  As a result, standard constructs for 
defining a confidence interval on such a proportion, based 
on critical points from the normal or Student’s t distribu-
tion, are increasingly inaccurate as the mean sample pro-
portion approaches the limits of 0 or 1.  We consider the 
Bayesian relationship between the beta and binomial dis-
tributions as the foundation for a sequential methodology 
in the analysis of limit standards.  The benefits of using 
the beta distribution methodology are variance reduction, 
and smaller sample size (when compared to other analysis 
methodologies). 

1 INTRODUCTION

In our continuing investigation into the sequential meth-
odologies for analysis of limit standards, we were in-
trigued by the analysis and findings of Raatikainen 
(1995).  He observed that, as the distribution of sample 
proportions moves closer to the limits of 0 or 1, the distri-
bution becomes increasingly skewed.  Therefore, the re-
sults obtained from use of the current confidence interval 
methodology, or 

,)ˆ1(ˆˆ 2/1 n
ppzp

where is the point estimator for the population (or sys-
tem) proportion  and the sample size n is “sufficiently 
large” (Law and Kelton, 2000), becomes increasingly in-
accurate as  0 or  1. 

p̂

p̂ p̂
 Raatikainen (1995) utilized an arcsin transformation 
methodology of the sample proportions, which provides a 
near Normal distribution at smaller or larger proportions 
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and has the added benefit of variance reduction, resulting 
in a tighter confidence interval of the population propor-
tion.  However, Raatikainen acknowledges this approach 
still results in skewed distributions at very small or very 
large proportions. 

In the study of limit standards, we are particularly in-
terested in the distribution of the sample proportions, be-
cause one objective is to determine if the population pro-
portion meets the proportion standard.  Furthermore, 
typical limit standards contain either very small or very 
large proportions.  If any information can be obtained 
about the proportion distribution prior to taking an obser-
vation, fewer observations may be necessary to provide a 
statistically valid comparison of the system to the stan-
dard using the posterior distribution, or the resulting dis-
tribution after considering the observations. 

Consider an M/M/1 queuing system with traffic in-
tensity (utilization) of 0.8.  Figure 1 depicts two distribu-
tions of sample proportions taken from 400 replications, 
where n = 24000 observations per replication.  The distri-
bution marked “A” depicts the proportion of observations 
with a queue length greater than 15 minutes.  Next con-
sider the distribution marked “B”, which depicts, from the 
same 400 replications, the proportion of observations with 
a queue length greater than 20 minutes.  Notice how the 
skewness of the distribution increases as the distribution 
approaches 0.  The model and findings were consistent 
with those of Raatikainen (1995).  Upon further review of 
Raatikainen’s (1995) work, and through study of Bayes-
ian statistics, the distribution of sample proportions fol-
lows a beta distribution when the output of the observa-
tions are considered random variables (r.v.) from a 
binomial distribution.  (Lee, 1997) 

This paper considers the relationship between the 
beta distribution and the binomial, and the application of 
Bayesian statistics in the analysis of limit standards. 

Although the concept of Bayesian statistics in dis-
crete event simulation (DES) is not old, interest has been 
renewed in recent years.  Chick (2006) provides an excel-
lent tutorial of its potential use. Several papers by Chick 
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(1997, 2001, 2006) and Chick and Inoue (1998) focused 
on the use of Bayesian statistics for input analysis and 
ranking and selection procedures. 
 Law and Kelton’s (2000) methodology for DES out-
put analysis of proportions centers on the confidence in-
terval technique, with the assumption the distribution of 
sample proportions is Normal.  Chen and Kelton (1999, 
2004A, 2004B) have investigated the use of histograms 
and quantiles to determine confidence intervals and point 
estimators for proportions. 

Figure 1. Distribution of proportions from M/M/1 system 
with traffic intensity of 0.8. 

2 BACKGROUND ON LIMIT STANDARDS 

To aid in model development and to provide a statistically 
valid analysis, customer-specified standards should be de-
fined in probabilistic terms.  One such type of standard is 
known as a limit standard, which is a maximum or mini-
mum threshold the customer would not enjoy exceeding. 
(Creasey, et al. 2005; Creasey and White 2006, 2007)  
The typical limit standard is a proportional requirement, 
but differs from a confidence interval requirement in that 
the analyst is not interested in determining a point esti-
mate and confidence interval for the population propor-
tion, but simply if the population proportion meets some 
minimum or maximum proportion limit with a specified 
degree of confidence.  In other words, confidence inter-
vals are allowed to change as more observations are ana-
lyzed, but with limit standards the intervals are fixed and 
the degree of confidence changes as more observations 
are analyzed. 
 For example, a requirement from NASA’s Constella-
tion Program states “The Constellation Architecture shall 
deliver at least 20,000 kg (44,092 lbm) of cargo to the lu-
nar surface for Lunar Outpost missions.  The verification 
shall be considered successful when the analysis shows 
that the calculated Mass Delivered capability of the Con-
stellation Architecture is equal to or greater than the Mass 
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Delivered requirement for 99.73% of the simulations with 
a 90% confidence.” (White, et al. 2007)  
 Based on the definition of limit standards provided in 
Section 2, typical analysis of limit standards within DES 
models requires representation of the output observations 
as a set of Bernoulli random variables.  Subsequently, the 
probability distribution of x successes out n observations 
with probability of success p exhibits a binomial density 
function. 
 To date, we have investigated and applied two meth-
odologies used in quality control for acceptance sampling 
based on attributes.  White, et al. (2007) and Creasey, et
al. (2005) describe the use of binomial equations to prede-
termine the necessary sample size, n, and maximum num-
ber nonconforming, c, to meet customer-specified Type I 
(defined as ) and Type II (defined as ) risk.  Creasey 
and White (2006) discuss the use of Wald’s sequential 
probability ratio test (SPRT), which performs very well 
when the output result from a sample is either very good 
(very few observations exceed the standard) or very bad 
(many observations exceed the standard).  In cases where 
the sample proportion exceeding is near the standard, the 
ability of the SPRT methodology to discern good or bad 
systems diminishes. 
 Define  as a system, or a unique set of input, process 
and output distributions.  Let i denote the ith system of k
systems under investigation, where i = 0, 1, …, k.  Let 0
denote the standard system.  The other systems will be re-
ferred to as the alternative systems, or systems under in-
vestigation.  Therefore, for a single system comparison to 
a standard, there are two systems: 0 and 1.  Each alter-
native system contains a series of n observations of an 
output, which are defined as a set of random variables Xi
= {Xij , j = 1, 2, …, n}.  Each observation is assumed to be 
independent and identically distributed (i.i.d.).  For the 
standard system, there is only one observation of interest, 
which is the limit standard.  Let Xmax and Xmin be con-
stants from system 0, defined as the upper and lower 
specification limits on Xij, respectively, where Xmax > Xmin.
It is, therefore, desired but not required that Xmax > Xij >
Xmin, for j, and i > 0. 

Within each alternative system i, let Ui Xi be the set 
of all output observations that exceed the upper limit (Xi > 
Xmax) and let Li Xi be the set of all output observations 
that fall short of the lower limit (Xi < Xmin).  Let |Ui| be the 
cardinality of Ui and |Li| be the cardinality of Li, where |Ui|
+ |Li| < n.  Define the constants 
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as the limiting proportions from system i (for i > 0) of 
the number of observations above and below the upper 
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and lower limits, respectively.  Let the constants max and 
min be the desired upper and lower performance bounds 

from system 0 on iU and iL, respectively.  We define a 
limit standard for the output as the septuple (Xmax, Xmin,

max, min, 2, , ) from system 0, where 2 is as de-
fined below,  is the acceptable estimation-error probabil-
ity for max + min and  is the acceptable estimation-error 
probability for 2.

From this definition, three types of limit standards are 
distinguished. 

Type 1: Single-sided standard.  This type can be a 
maximum standard, where Xmin = -  (implying min = 0), 
or a minimum standard, where Xmax =  (implying max = 
0).  A special case is where an absolute boundary has 
been established for Xmax or Xmin.  For example, in sys-
tems where elapsed time is the observation of interest, 
Xmin = 0 and min = 0. The problem is to determine iU or 

iL, based on a sample of n observations and test the null 
hypothesis that 

  H0: iU < max or iL < min with 
        P(accepting H0 | H0 true) > 1 – .

 In addition, the customer or analyst may wish to im-
pose a second hypothesis of 
  H1: ( iU or iL) > 2 with 
        P(accepting H1 | H1 true) > 1 – ,

where ( max or min) < 2.

Type 2: Double-sided standard with a single propor-
tion limit.  Define pi as the total proportion of observa-
tions in system i outside the limits, or pi = iU + iL, for i
= 1, 2, …, k.  Also, define 0 as the total proportion of ob-
servations in system 0 outside the limits, or 0 = max + 

min.  This is the more common of the two types of dou-
ble-sided standards, because the values of max and min

are secondary to 0.  In other words, the customer need 
only decide upon 0 and not the apportionment of 0 to 

max and min.  The problem is to determine pi, based on a 
sample of n observations and test the null hypothesis that 

H0: pi < 0 with P(accepting H0 | H0 true) > 1 – .

In addition, the customer or analyst may wish to im-
pose a second hypothesis of 

 H1: pi > 2 with P(accepting H1 | H1 true) > 1 – ,

where 0 < 2.

Type 3: Double-sided standard with two proportion 
limits.  With this type of double-sided standard, the cus-
tomer must define values for max and min.  For example, 
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in a bread production system, the customer may wish to 
limit the proportion of breads receiving less than the 
minimum necessary baking time and limit the proportion 
receiving more than the maximum necessary baking time.  
The problem is to determine iU and iL, based on a sam-
ple of n observations and test the null hypothesis that 

H0: iU < max and iL < min with 
      P(accepting H0 | H0 true) > 1 – .

 This paper focuses on only one alternative system, 
1, and only on Type I and II standards.  A Type I or II 

limit standard can also be defined as the expected value of 
an indicator variable.  In other words, 

E[I] = 1/j * Ij,
 E[I] p as n  , where 

.                     ,0
or          ,1

maxmin

maxmin
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j = 1, 2, …, n,
  H0: p  [0, max + min] with 
        P(accepting H0 | H0 true) > 1 – , and 
  H1: p > 2 with P(accepting H1 | H1 true) > 1 – 
        (if defined by the customer). 

 Accordingly, we can treat the 1/0 outcome of a series 
of observations as a set of Bernoulli trials.  The P(X = x)
can be defined by the binomial distribution function, with 
probability density bi(x; p, n), as 
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and cumulative distribution function Bi(x; p, n) of 
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(Wasserman 2002) 
 The above definition of limit standards does not fit a 
Bayesian approach, because it considers both observa-
tions that were actually taken and evaluated and observa-
tions that could have been taken but were not.  The 
Bayesian approach would simply find the two posterior 
probabilities 

pa = P(0 < p < max + min| X)
pb = P(p > 2| X)

and decide between the two hypotheses.  Therefore,  is 
defined not as an error probability but simply  = 1 – pa.
Similarly,  is defined as  = 1 – pb.  (Lee 1997) 
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3 BETA DISTRIBUTION 

The Beta distribution, b( , ) is generally defined as the 
distribution of u/(u + w), where u is a r.v. from a 2

v1 dis-
tribution and w is a r.v. from a 2

v2 distribution, and u and 
w are independent.  The ratio exhibits a Beta distribution 
with parameters  = 1/2 and  = 2/2. (Johnson, et al,
1994)  Specifically, the beta distribution has a density 
be(t; , ) of 

11 )1(
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1),;( tt
b

tbe , (3) 

where be(t; , ) = 0 for t not in the interval [0, 1], 
1

0
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is the Beta function, ( ) is the Gamma function and ,
> 0.  The cumulative distribution function, Be(t;  , ) is 
defined as 
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where the right hand integral  is known 

as the incomplete or partial Beta distribution. (Lee, 1997) 
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 The Beta distribution has the following properties. 
[Lee (1997) and Law and Kelton (2000)] 

.)(tE (6) 

.
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be(t; 1, 1) is the Uniform distribution U[0, 1]. 
The distribution is limited to the interval [0, 1]. 
If  = 1 or  = 1, the distribution is strictly de-
creasing or increasing. 
If  > 1 and  > 1, the distribution is unimodal. 
If  = , the distribution is symmetrical. 
When   +   = 1, the distribution is an arcsin dis-
tribution. 

4 RELATIONSHIP BETWEEN BETA AND 
BINOMIAL 

One notices the similarity between Equations (1), (2), (3) 
and (4).  A mathematical relationship exists between these 
equations.  Specifically, Equation (4) is contained in the 
marginal distribution of Equation (1), as follows. 
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 Assume the distribution of the proportion p is uni-
form between 0 and 1, or f(p) = U[0, 1]  The marginal dis-
tribution fx(x, p) of bi(x; p, n) is 

 (7) 
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 The integral part of Equation (7) constitutes the Beta 
function with parameters  b(x + 1, n – x + 1).  In fact, any 
prior distribution of p, conditioned on the binomial den-
sity function, results in a posterior, or marginal, density 
function containing the Beta distribution.  Consequently, 
if the conditioning function is a binomial density function, 
the prior density distribution of p is a Beta distribution. 
(Lee 1997 and Waterman, et al. 1976) 

5 THE BAYESIAN RELATIONSHIP 

In typical (or Frequentist) output analysis using the bino-
mial distribution, the value of p is estimated or, in the 
case of limit standards, the maximum acceptable propor-
tion p0 is used.  From this proportion, one can determine 
the minimum sample size necessary to make a statistically 
valid decision regarding the system (i.e., compliance to 
the standard).  However, there can be considerable uncer-
tainty in the sample proportion. 

In Bayesian statistics analysis, the parameters of a 
conditioning function are treated as random variables.  
The analyst then attempts to specify the distribution of 
these parameters, known as the prior distribution.  The 
prior distributions are then used in the conditioning func-
tion, resulting in the posterior distribution. 

As Chick (2006) points out, one of the challenges 
with the application of Bayesian statistics to simulation 
experiments is in specifying these prior distributions.  The 
elicitation methods used for determining these distribu-
tions can be challenging and subject to the desires of the 
customer. (Gavasakar, 1988) 

Fortunately, for a binomial conditioning function the 
prior distribution is known to be a beta distribution. (Lee, 
1997)  Recall from Section 3 that one of the properties of 
the beta distribution is be(t; 1, 1) = U[0, 1].  If we con-
sider the general be(t; , ) distribution as the prior distri-
bution of p, the resulting posterior distribution for p is 

11 )1(
),(

1)|( xnx pp
xnxb

xpf , (8) 

with expected value and variance of 
7
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(Lee, 1997) 

 Therefore, specifying the prior distribution reduces to 
selection of  and . Also (and this is generally true with 
Bayesian analysis), we enjoy a recursive nature, in that 
the posterior distribution becomes the prior distribution 
for consideration of the next observation.  In the case 
where the observations exhibit a binomial distribution, the 
beta-distributed proportion is updated as we consider suc-
cessive observations. 

6 APPLICATION TO LIMIT STANDARD 
ANALYSIS 

The most difficult task in Bayesian analysis is in devel-
opment of the initial prior density distribution for p.  If the 
initial prior does not adequately represent the pre-
conceived assumptions of the customer, or is informative, 
then the use of the distribution could result in a bias of the 
final posterior.  Correcting this bias usually requires re-
consideration of the initial prior or evaluation of substan-
tially more observations. 
 In general, the problem is one of input model uncer-
tainty.  Proper development of an input model requires 
knowledge of the distribution and the parameters associ-
ated with that distribution.  (Henderson 2003)  For the 
problem at hand, we know the distribution of the initial 
prior is Beta, but we do not know the initial values of 
and , which we define as ’ and ’.
 If we desire to use a Bayesian approach for limit 
standard analysis, determination of ’ and ’ is not 
straightforward.  Typical elicitation methods involving 
the Beta distribution requires the customer to define at 
least two points in the distribution, such as the expected 
value and first quartile or expected value and 95th percen-
tile.  However, the limit standard definition from above 
only provides one point of reference, or p0 at the 1 – 
percentile. 
 Therefore, we must elicit from the customer addi-
tional information regarding the desired Beta distribution.  
To do so, we make two assumptions.  First, we assume 
the customer desires the shape of the prior density distri-
bution to resemble the shape of the final posterior distri-
bution.  (Wasserman 2002)  Since the final posterior is 
typically unimodal, we assume the customer wants a uni-
modal distribution for the initial prior, which requires    
’ > 1 and ’ > 1. 

Second, we believe the customer is interested in 
finding values of ’ and ’ such that the initial prior dis-
548
tribution also meets the limit standard.  In other words, we 
want to find ’ and ’ such that, with a Beta distribution, 
P[X < p0] = 1 – ., or 

0
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p

dppppBe1 (11) 

where ’ > 1 and ’ > 1.  Since, for limit standards, a near 
infinite set of solutions exist for Equation (11), further 
elicitation of preferences from the customer is required.  
The remainder of this section explores an elicitation 
methodology based on p0 and .
 Upon review of Equation (6), we observe that the ex-
pected value of the Beta distribution is a pseudo-
proportion containing  pseudo-failures out of (  + )
pseudo-observations.  Now, consider Figure 2, which de-
picts three Beta distributions, each with E(p) = 0.01.  The 
distribution with the shortest peak has  = 2 (for be(p; 2,
198)), the next shortest peak  = 3 (for be(p; 3, 297)), and 
the tallest peak has  = 4 (for be(p; 4, 396)).  Therefore, as 
the value of  increases, the mode of the distribution gets 
closer to E(p).  In addition, small values of  indicates less 
certainty about the distribution and large values of  indi-
cates greater certainty about the distribution. (Haigh 
2002)  Subsequently, the variance of the Beta distribution 
(Equation (7)) is a decreasing function of (  + ), with     
0 < Var(t) < E(t)[1 – E(t)] = /(  + )2.  Therefore, as (  + 
) ,  the mass becomes concentrated at E(t). (Water-

man, et al. 1976)  Consequently, the larger the variance, 
the less informative the prior distribution will be on the 
posterior. 
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Figure 2. Three beta distributions of b(2, 198) (leftmost), 
b(3, 297) (center), b(4, 396) (rightmost), all with 
E(p) = 0.01. 

 As stated in Section 2, the customer desires pi < p0.  It 
is also desirable for the expected value of the initial prior, 
E(p’), to be less than p0, or E(p’) = ’/( ’ + ’) < p0.  We 
therefore must elicit from the customer how much less 
should E(p’) be compared to p0.  To assist in this elicita-
tion, we define  as the degree of separation between 
E(p’) and p0, or  = p0/E(p’).  Since we are only con-
cerned with small values of p0 and E(p’), a separation of, 
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say,  = 2 means p0 is twice as large as E(p’).   Table 1 
contains minimum values of ’ and ’ for various values 
of E(p’), p0 (with corresponding ), and .  The values of 
’ and ’ were obtained by first selecting a value for ( ’ + 
’) such that the right side of Equation (10) was less than 

1 – , finding the corresponding values for ’ and ’ using 
Equation (6), then increasing ( ’ + ’) until Equation (11) 
was satisfied.  This procedure can be expressed as an op-
timization problem: 

Given:  p0, ,
Objective: min[ ’ + ’] (12)  

Subject to: Subject to: 
)''(

'0p
, (13)

     
0

0

1'1' ,)1(
)'()'(

)''(1
p

dppp

      ’, ’ > 1. 

 Upon review of Table 1, we observe two items of in-
terest.  First, as  1 or , ’ and/or ’ is signifi-
cantly larger, with the later condition occurring because 
we desire ’ > 1, which forces ’ >> 1.  Second, looking 
at the values of ’ for a specific  and , it appears that a 
linear relationship exists between min[ ’] and p0.  Figure 
3 depicts this relationship for specific values of  and for 
 = 2 within a range of p0 of [0.005, 0.1]. 

 Determination of a mathematical solution to the lin-
ear relationship using Equations (11), (12) and (13) is 
challenging.  Not only is the goal to find the min[ ’ + ’]
which satisfies the equations, we also require ’, ’ > 1.  
As  or  increases, values of ’ get closer to 1, and line-
arity is lost.  For the three relationships in Figure 3, the 
approximate linear relationships are: 

 = 0.01: ’  8.0004 – 6.0063p0;
 = 0.02: ’  6.0473 – 4.4018p0;
 = 0.05: ’  3.5618 – 2.3508p0.

 Therefore, in order to develop an initial prior distri-
bution for a Bayesian sequential analysis of limit stan-
dards, the customer only needs to provide the desired 
value of .  We recommend using  = 2, and do so for two 
reasons.  First, since  should be small, the result is a 
slightly positively-skewed distribution, which mimics our 
findings and those of Raatikainen (1995) for small pro-
portions.  [A near-symmetrical distribution can be ob-
tained by establishing a  slightly less than 2.]  Second, as 
observed in the above regression equations, for small  it 
is not possible for ’ to fall below 1 within the range p0
[0, 1]. 
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Figure 3. Relationship between ’ and p0 at  = 2 for 
values of p0 between [0.005, 0.1] 
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7 POSTERIOR DISTRIBUTION EVALUATION 

As stated in Section 1, the posterior density distribution of 
p of a binomial conditioning function exhibits a beta dis-
tribution.  The parameters of this distribution are be(p; ’
+ xn, ’ + (n – xn)), where xn is defined as the number of 
failed observations after assessment (conditioning) of n
observations, or xn = Ui + Li (from Section 2). (Lee 1997) 
 In the sequential analysis of simulation output, the 
analyst must determine an appropriate sample size of ob-
servations.  The goal is to determine this sample size prior 
to conducting experiments; in situations where conducting 
the experiment impacts cost or schedule, knowledge of 
the necessary sample size allows for proper planning and 
budgeting of the experiment.  The sample size should be 
small enough to minimize cost and schedule impacts but 
large enough to minimize the need to re-conduct the ex-
periment to obtain additional observations.  Although we 
would normally develop a Bayesian informative stopping 
rule, for our initial investigation we determined the initial 
sample size n0 using a desired half-width error, from 
Cochran (1963), 

,)1(
2

00
2
1

0
ppzn  (14) 

where   indicates rounding up to the next integer, z is 
the position on the standard normal distribution corre-
sponding to a cumulative distribution of 1 – , and  is 
the desired upper half-width of the estimated proportion.  
We took the conservative approach of using p0, which re-
sults in a larger sample size than using E(p’) while usually 
meeting the desired upper half-width. 
 After obtaining and analyzing n0 observations for 
each replication, we determined the across-run average 
posterior values for  and , defined as ” and ”, using 
9



Creasey and White 
Table 1. Minimum Initial Prior Parameter Values for Given E(p’), p0, and .

 = 0.05  = 0.02  = 0.01 
p0 E(p’) ’ ’ ’ ’ ’ ’

0.10 0.09 1.111 207.495 2098.005 326.295 3299.205 420.075 4247.425 
0.10 0.08 1.250 43.336 498.364 68.880 792.120 89.048 1024.052 
0.10 0.07 1.429 15.687 208.413 25.277 335.823 32.837 436.263 
0.10 0.06 1.667 6.942 108.758 11.394 178.506 14.904 233.496 
0.10 0.05 2.000 3.330 63.270 5.610 106.590 7.400 140.600 

0.08 0.07 1.143 129.815 1724.685 204.694 2719.506 263.816 3504.984 
0.08 0.06 1.333 25.584 400.816 40.950 641.550 53.076 831.524 
0.08 0.05 1.600 8.555 162.545 13.985 265.715 18.265 347.035 
0.08 0.04 2.000 3.376 81.024 5.696 136.704 7.520 180.480 

0.050 0.040 1.250 45.420 1090.080 72.280 1734.720 93.480 2243.520 
0.050 0.030 1.667 7.218 233.382 11.880 384.120 15.552 502.848 
0.050 0.025 2.000 3.445 134.355 5.828 227.273 7.703 300.398 
0.050 0.010 5.000 1.001 99.099 1.001 99.099 1.001 99.099 

0.020 0.015 1.333 26.9745 1771.3255 43.2525 2840.2475 56.0985 3683.8015 
0.020 0.010 2.000 3.5150 347.9850 5.9600 590.0400 7.8810 780.2190 
0.020 0.005 4.000 1.0005 199.0995 1.0005 199.0995 1.3170 262.0830 

0.010 0.008 1.25 47.0888 5839.0112 75.0000 9300.0000 97.0320 12031.9680 
0.010 0.005 2.00 3.5385 704.1615 6.0035 1194.6965 7.9400 1580.0600 
0.010 0.002 5.00 1.0002 499.0998 1.0002 499.0998 1.0002 499.0998 
0.010 0.001 10.00 1.0001 999.0999 1.0001 999.0999 1.0001 999.0999 
  
,1'"

,1'"

0
k

k

x
k

n

x
k

 (15) 

where x is the number of observations in a replication ex-
ceeding the standard and k is the number of replications.  
We then used the parameters from the posterior distribu-
tion to determine the posterior value of p0, defined as ppost,
satisfying Equation (5) with P(p < ppost) = 1 – .
 If ppost < p0, we would conclude the system (or 
model) from which the sample of observations was ob-
tained meets the limit standard.  

8 EMPIRICAL EXAMPLE 

Although not the focus of this paper, we provide some 
initial results of our empirical experiment.  We developed 
a model of an M/M/1 queuing system with utilization of 
0.8.  We chose this model because it is the same used by 
Raatikainen (1995), Kim and Nelson (2006) and others.  
Law and Kelton (2000) employed a similar M/M/1 system 
55
but with utilization of 0.9.  Each replication consisted of  
n = 24000 observations, with 400 replications made.  We 
were interested in the proportion of observations exceed-
ing a 15-minute delay time. We established the septuple 
limit standard requirement of (15, 0, 0.05, 0, 0, 0.05, 0), 
or p0 = 0.05 with  = 0.05.  Using Equations (11), (12), 
and (13) with  = 2, we set the initial prior parameters to 
’ = 3.444 and ’ = 134.326.  We evaluated the replica-

tions at a half-width of  = 0.005, resulting in a sample 
size of n0 = 5141 through the use of Equation (13).  (As 
stated in Section 7, this is a non-Bayesian approach to de-
termine sample size.)  We also evaluated the replications 
at n0 = 24000, with the shape of the distribution of propor-
tions for this sample size shown in Figure 1. Using Equa-
tion (15), we found ” = 202.999 and ” = 5075.771 for 
n0 = 5141, resulting in a ppost = 0.0429.  (If we use the 
normal confidence interval methodology, we find the     
1 –  confidence interval to be 0.0432.)  We also found 
” = 915.035 and ” = 23222.74 for n0 = 24000, resulting 

in a ppost = 0.0399.  (If we use the normal confidence in-
terval methodology, we find the 1 –  confidence interval 
to be 0.0400.)   
0
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9 CONCLUSION 

The beta distribution accurately represents the distribution 
of sample proportions of DES models.  The Bayesian 
elicitation methodology defined above provides a rational 
process for developing an initial prior to evaluate limit 
standards. 
 This paper focused on an overview of the Bayesian 
approach to analysis of limit standards and development 
of the initial prior.  Further research includes refinement 
of the process for determining the initial prior distribu-
tion, developing an informative stopping rule and further 
comparison to current (Frequentist) methodologies. 
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