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ABSTRACT

Two-stage selection procedures have been widely studied
and applied in determining the required sample size
(i.e., the number of replications or batches) for selecting
the best of k systems and for selecting a subset. The
Enhanced Two-Stage Selection procedure is a heuristic
two-stage selection procedure that takes into account
not only the variance of samples, but also the difference
of sample means when determining the sample sizes.
This paper discusses the use of the same technique to
select a subset of size m that contains at least c of the v
best of k systems. Numerical experiments indicate that
the proposed sample size allocation strategy is superior
to other methods in the literature.

1 INTRODUCTION

Discrete-event simulation has been widely used to com-
pare alternative system designs or operating policies.
When evaluating k alternative system designs, we se-
lect one or more systems as the best and control the
probability that the selected systems really are the best.
Let µi denote the expected response of system i. Our
goal is to find the system with the smallest expected re-
sponse µ∗ = min1≤i≤k µi. If the system with the largest
expected response is desired, just replace min with max
in the formula. We achieve this goal by using a class
of ranking and selection (R&S) procedures. However,
efficiency is still a key concern for using simulation to
solve R&S problems.

Many R&S procedures are directly or indirectly
developed based on Dudewicz and Dalal (1975) or
Rinott’s (1978) indifference-zone selection procedures
and have focused on identifying the best system. Nev-
ertheless, Koenig and Law (1985) have developed a
two-stage indifference-zone procedure to select a sub-
set of size m that contains the v best of k systems;
where (1 ≤ v ≤ m < k). Sullivan and Wilson (1989)
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have developed a two-stage subset selection procedure
that determines a subset of maximum size m con-
taining at least one of the systems that are within a
pre-specified amount of the best. Let µil

be the lth

smallest of the µi’s, so that µi1 ≤ µi2 ≤ . . . ≤ µik
.

These indifference-zone selection procedures determine
the number of additional replications based on a conser-
vative least favorable configuration (LFC, i.e., assuming
µi1 + d∗ = · · · = µiv

+ d∗ = µiv+1
= · · · = µik

and do
not take into account the value of sample means; see
Section 2.2. Some new approaches including (Chen et
al. 2000) and (Chen and Kelton 2000, 2005) incorporate
first-stage sample mean information in determining the
number of additional replications. In an average case
analysis, these procedures are more efficient in allocat-
ing sample sizes than procedures that are derived based
on the LFC. There are several new approaches aiming
to improve the efficiency of R&S procedures; Chick and
Inoue (2001) use a Bayesian framework for construct-
ing ranking and selection procedures. Kim and Nelson
(2001) eliminates inferior systems based on whether a
partial sum is within a continuation region. For an
overview of existing methods of R&S see Bechhofer et
al. (1995), Swisher et al. (2003) or Branke et al. (2005).

Chen et al. (2006) point out that R&S procedures
have been incorporated with other simulation proce-
dures to make statistically valid inferences (e.g., Buch-
holz and Thümmler 2005) and consequently the need
to provide a subset of the v best systems (i.e., the
top-v systems); instead of only the best system. They
point out that the overall efficiency of certain types of
simulation-optimization algorithms (e.g., evolutionary
population-based search) depends highly on the quality
of the selected top-v systems. If the selected subset con-
tains poor systems, the convergence rate of simulation-
optimization procedures (that invoke the R&S process)
can be negatively affected.

Mahamunulu (1976) considers a generalized version
of selection problem. The goal is to select a subset of size
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m that contains at least c of the v best of k systems,
where max(1,m + v + 1 − k) ≤ c ≤ min(m, v) and
max(m, v) ≤ k−1. If c = v = m = 1, then the problem
is to choose the best system. When c = v < m, we are
interested in choosing a subset of size m that contains
the v best; Koening and Law (1985) have addressed this
case. If 1 < c = v = m, we are interested in choosing
the m best systems, i.e., the case considered by Chen et
al. (2006). We propose applying the techniques of Chen
and Kelton (2000, 2005) to the generalized selection
procedure.

The paper is organized as follows. In Section 2,
we provide the background necessary to understand
our proposed procedures. In Section 3, we present our
methodologies and proposed procedures for selecting a
subset of size m that contains at least c of the v best
of k systems. In Section 4, we show our empirical-
experiment results. In Section 5, we give concluding
remarks.

2 BACKGROUND

In this section, we introduce the necessary notation and
background:

Xij : the independent and normally distributed
observations from the jth replication or
batch of the ith system,

Ni: the total number of replications or batches
for system i,

ni: the intermediate number of replications or
batches for system i,

µi: the expected performance measure for sys-
tem i, i.e., µi = E(Xij),

X̄i(ni): the sample mean performance measure for
system i with ni samples, i.e.,

∑ni

j=1 Xij/ni,

X̄i: the sample mean performance measure for
system i shorthand for X̄i(ni),

σ2
i : the variance of the observed performance

measure of system i from one replication or
batch, i.e., σ2

i = Var(Xij),
S2

i (ni): the sample variance of system i with
ni replications or batches, i.e., S2

i (ni) =
∑ni

j=1(Xij − X̄i)
2/(ni − 1).

2.1 Indifference-Zone Selection Procedures

Our goal is to select a system with the smallest expected
response µi1 . Let CS denote the event of “correct se-
lection.” In a stochastic simulation, a CS can never
be guaranteed with certainty. The probability of CS,
denoted by P(CS), is a random variable depending on
sample sizes and other uncontrollable factors. Moreover,
in practice, if the difference between µi1 and µi2 is very
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small, we might not care if we mistakenly choose system
i2, whose expected response is µi2 . The “practically sig-
nificant” difference d∗ (a positive real number) between
the best and a satisfactory system is called the indiffer-
ence zone in the statistical literature, and it represents
the smallest difference about which we care. Therefore,
we want a procedure that avoids making a large number
of replications or batches to resolve differences less than
d∗. That means we want P(CS) ≥ P ∗ provided that
µiv+1

−µiv
≥ d∗, where the minimal CS probability P ∗

and the “indifference” amount d∗ are both specified by
the user.

2.2 Two-Stage Selection Procedures

The two-stage procedure of Dudewicz and Dalal (1975)
to select the best of k systems has been widely studied
and applied. Let n0 be the number of initial replications
or batches. The first-stage sample means

X̄
(1)
i =

1

n0

n0
∑

j=1

Xij ,

and marginal sample variances

S2
i (n0) =

∑n0

j=1(Xij − X̄
(1)
i )2

n0 − 1
,

for i = 1, 2, . . . , k are computed. Based on the number
of initial replications or batches n0 and the sample vari-
ance estimate S2

i (n0) obtained from the first stage, the
number of additional simulation replications or batches
for each system in the second stage is Ni − n0, where

Ni = max(n0 +1, ⌈(h1Si(n0)/d∗)2⌉), for i = 1, 2, . . . , k.
(1)

Here ⌈z⌉ is the smallest integer that is greater than or
equal to the real number z and h1 (which depends on
k, P ∗, and n0) is a constant that can be found from the
tables in Law and Kelton (2000).

The derivation of the procedure is based on that to
select the best of k systems

P(CS) ≥

∫ ∞

−∞

[F (t + h1)]
k−1f(t)dt

and we equate the right-hand side to P ∗ to solve for
h1. Here f and F , respectively, denote the probability
density function (pdf) and the cumulative distribution
function (cdf) of the t distribution with n0 − 1 degrees
of freedom (d.f.).
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We then compute the second-stage sample means

X̄
(2)
i =

1

Ni − n0

Ni
∑

j=n0+1

Xij .

Define the weights

Wi1 =
n0

Ni

[

1 +

√

1 −
Ni

n0

(

1 −
(Ni − n0)(d∗)2

h2
1S

2
i (n0)

)

]

and Wi2 = 1 − Wi1, for i = 1, 2, . . . , k. Compute the
weighted sample means

X̃i = Wi1X̄
(1)
i + Wi2X̄

(2)
i

and select the system with the smallest X̃i. Note that the
expression for Wi1 was chosen to make (X̃i−µi)/(d∗/h)
have a t distribution with n0 − 1 d.f. (see Dudewicz
and Dala 1975). Koenig and Law (1985) extended the
procedure to select a subset of size m that contains the
v best of k systems. They show that

P(CS) ≥ (k − m)

(

k − v

m − v

)

×

∫ ∞

−∞

[F (t + h)]v[F (t)]m−v[F (−t)]k−m−1f(t)dt. (2)

See Section 3.1 for an explanation of this formula. The
required sample sizes are computed by (1) except that
different critical constant h is used. We equate the right-
hand side to P ∗ and solve for the constant h (depends
on k, v, m, n0, and P ∗), which can be found from the
tables in Koenig and Law (1985) or Law and Kelton
(2000).

The derivation of these procedures are based on
the LFC. However, in reality, we rarely encounter the
LFC; therefore, these procedures are consequently con-
servative. Basically, the computing budget is allocated
proportionally to the estimated sample variances.

2.3 An Enhanced Two-Stage Selection (ETSS)
Procedure

Based on Rinott’s (1978) procedure, Chen and Kel-
ton (2000) propose an ETSS procedure that takes into
account not only the sample variances, but also the
difference of sample means across systems when deter-
mining the sample sizes. The ETSS is derived with the
assumption that the true means are known; however, the
true means are estimated by sample means in practice.
Thus, the ETSS procedure is a heuristic approach and
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does not guarantee P(CS) ≥ P ∗. Chen (2004) proposes
using a conservative adjustment to increase P(CS).

Let hr be the critical constant that solves Rinott’s
integral; let di = max(d∗, µi − µi1) and

Ni = max(n0, ⌈(hrSi(n0)/di)
2⌉), i = 1, 2, . . . , k. (3)

Then the allocated number of required simulation repli-
cations or batches for each system are large enough to
achieve the precision guarantee. Since the true means
are unknown, di’s need to be estimated by the sample
means. Let X̄bl

be the lth smallest of the sample means
X̄i’s, so that X̄b1 ≤ X̄b2 ≤ · · · ≤ X̄bk

. Then

d̂i = max(d∗, X̄i − X̄b1). (4)

The ETSS procedure computes the number of required
simulation replications or batches for each system using

Ni = max(n0, ⌈(hrSi(n0)/d̂i)
2⌉), i = 1, 2, . . . , k. (5)

Besides the difference in the critical constant hr, the
difference between (5) and (1) is that d̂i is being used
instead of d∗. This makes sense when our objective is
to achieve P[X̄i1 < X̄il

, for l = 2, 3, . . . , k] ≥ P ∗, i.e.,
to find the good systems. If the objective of the simu-
lation experiments is to estimate the differences of the
expected responses, we can use different experimental
designs and different procedures to obtain more pre-
cise estimates. The differences in the sample means are
embedded in d̂i; consequently, this procedure will allo-
cate fewer replications or batches to the less promising
system i, whose sample mean X̄i >> X̄b1 .

Even though under the LFC the observed P(CS) of
the ETSS procedure is likely to be less than the minimal
CS probability P ∗, the ETSS procedure can significantly
reduce the computational effort in more typical cases
that are far from the LFC. Furthermore, in many cases
the consequence of making a mistake is not too costly
when the chosen one is close to µi1 + d∗.

3 METHODOLOGIES

In this section we present the rationale of applying the
technique of ETSS to the generalized subset selection
procedure. We use a new approach to derive the lower
bound of subset selection P(CS). Like other selection
procedures, the proposed procedures assume input data
are independent and identically distributed (i.i.d.) nor-
mal and allow unknown and unequal variances across
systems. If non-normality of the input data is a concern,
users can use batch means (see Law and Kelton 2000,
Chen and Kelton 2007) to obtain sample means that
are essentially i.i.d. normal.
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3.1 Assessing theProbability ofCorrect Selection

Let wil
denote the half-width of the one-tailed

(P ∗)1/(k−1) confidence interval (c.i.) of dil
= µil

− µi1 ,
for l = 2, 3, . . . , k. Chen (2004) points out that pro-
cedures developed based on the LFC achieve wil

<
d∗ and consequently the one-tailed 1 − α c.i. of dil

CI1 = (d̂il
− d∗,∞]. Whereas procedures that take

into account sample means attempt to achieve wil
< dil

and CI2 = (d̂il
− dil

,∞] ≈ (0,∞]. Hence, the allo-
cated sample sizes are just large enough to conclude
µi1 < µil

(provided µi1 + d∗ ≤ µil
) with a desired

confidence but no more than necessary. That is, to
obtain P[X̄i1 < X̄il

] ≥ 1−α, the sample size should be
large enough so that the one-tailed 1−α c.i. half-width
wil

< dil
. In practice, dil

needs to be estimated by (4).

It is straightforward to use d̂i instead of d∗ in (1) to
compute the required sample size when the goal is to
select the best.

The derivation of (2) is based on the fact that for
i = 1, 2, . . . , k,

Ti =
X̃i(Ni) − µi

d∗/h

has a t distribution with n0−1 d.f., where h depends on
c, v, m, k, n0, and P ∗. Note that Ti’s are independent.
If f and F , respectively, are the pdf and the cdf of the
random variable T . It is known that the distribution of
the uth order statistic of n observations of T is

gu(tu) = β(F (tu);u, n − u + 1)f(tu),

where

β(x; a, b) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−1

is the pdf of the beta distribution with shape parameters
a and b; see Hogg and Craig (1995 p. 198). Note that
Γ(a) = (a − 1)! for any positive integer a. In our case,
f and F are functions of the t distribution with n0 − 1
d.f.

We now assess the P(CS) of this selection problem.
Let Yc be the cth smallest sample mean from X̃il

(Nil
)

for l = 1, 2, . . . , v and let µc be its unknown true mean.
Let Yd be the dth (d = m− c+1) smallest sample mean
from X̃il

(Nil
) for l = v + 1, v + 2, . . . , k and let µd be

its unknown true mean. Then

P(CS) = P[Yc < Yd]

= P

[

X̃ic
(Nic

) − µic

d∗/h
≤

X̃iv+d
(Niv+d

) − µiv+d

d∗/h
+

µiv+d
− µic

d∗/h

]

538
= P

[

Tic
≤ Tid+v

+
µid+v

− µic

d∗/h

]

≥ P
[

Tic
≤ Tid+v

+ h
]

.

The inequality follows since µid+v
− µic

= µim+v−c+1
−

µic
≥ µiv+1

− µiv
≥ d∗. Furthermore, if dicid+v

=
µid+v

−µic
is used instead of d∗ in the above equations,

then we obtain strict equality.
Note that Tic

∼ β(F (Tic
); c, v − c + 1)f(Tic

); and
Tiv+d

∼ β(F (Tiv+d
);m − c + 1, k − v − m + c)f(Tiv+d

).
Hence,

P(CS)

≥

∫ ∞

−∞

∫ x+h

−∞

β(F (y); c, v − c + 1)f(y)

β(F (x);m − c + 1, k − v − m + c)f(x)dydx

=
v!

(c − 1)!(v − c)!

(k − v)!

(m − c)!(k − v − m + c − 1)!
×

∫ ∞

−∞

∫ x+h

−∞

[F (y)]c−1[F (−y)]v−cf(y)

[F (x)]m−c[F (−x)]k−v−m+c−1f(x)dydx.

We equate the right-hand side to P ∗ to solve for h. In
the case that c = v, the above equation is simplified to
(2). See Appendix for the bound of the probability of
correct selection when the goal is to select the largest
µl’s.

Under the LFC, the inequality in above equations
becomes strict equality and P(CS) = P ∗. In the non-
LFC, the allocated sample sizes should be large enough
to distinguish systems iv and im+1. Let

dil
=

{

µim+1
− µil

1 ≤ l ≤ v
µil

− µiv
v + 1 ≤ l ≤ k.

The sample size

Nil
= max(n0 +1, ⌈(hSil

(n0)/dil
)2⌉), for l = 1, 2, . . . , k.

Then the allocated sample sizes are large enough to
provide the precision guarantee.

Again, since the true means are unknown, dil
’s need

to be estimated by the sample means. Moreover, we
incorporate the indifference amount in determining the
required sample sizes. Let

dbl
=

{

max(d∗, X̄bm+1
− X̄bl

) 1 ≤ l ≤ v
max(d∗, X̄bl

− X̄bv
) v + 1 ≤ l ≤ k.

The required sample sizes are estimated by

Nbl
= max(n0+1, ⌈(hSbl

(n0)/dbl
)2⌉), l = 1, . . . , k. (6)
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We denote this the ETSS procedure.
Furthermore, conservative adjustments can be used

to increase the P(CS). Let U(X̄bv
) and L(X̄bm+1

) be the
upper and lower P ∗ confidence limits of µbv

and µbm+1
,

respectively. Then

dbl
=

{

max(d∗, L(X̄bm+1
) − X̄bl

) 1 ≤ l ≤ v
max(d∗, X̄bl

− U(X̄bv
)) v + 1 ≤ l ≤ k.

(7)
We denote this the AT (Adjusted ETSS) procedure.

3.2 Discussion

Chen et al. (2006) develop a procedure (denoted OCBA-
m) to select a subset of size m that contains the m best
systems, i.e., the optimal subset of size m, with a fixed
sample size and they aim to maximize the P(CS). In
their setting, they do not incorporate the indifference-
zone strategy. Our previous empirical studies indicate
that when the goal is to maximize the P(CS) with a
fixed sample size, the sample size allocation strategy
that takes into account the indifference amount does
not perform better.

The problem of maximizing the P(CS) given a sam-
ple size is the dual of minimizing the sample size given
the P(CS). Consequently, the solutions to both prob-
lems are the same. To adapt the proposed procedure to
maximum P(CS) instead of minimizing the sample size,
we can set the indifference amount to X̄bv+1

−X̄bv
. Note

that in this case the indifference amount is a random
variable. Then

dbl
=

{

X̄bm+1
− X̄bl

1 ≤ l ≤ v
X̄bl

− X̄bv
v + 1 ≤ l ≤ k.

Following the strategy of Chen et al. (2006), we allocate
the sample sizes for each system such that

Ni

Nj
=

(

Si(n0)/di

Sj(n0)/dj

)2

, i, j ∈ {1, 2, . . . , k}, and i 6= j.

(8)
Note that in OCBA-m, di = X̄i − c, where c = (X̄bv

+
X̄bv+1

)/2.

3.3 Sequential Procedure of Selecting a Subset

We now present a cost-effective sequential approach to
select a subset of size m that contains at least c of the v
best systems from k alternatives. We denote this SRS
(Sequential Ranking and Selection) procedure.
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Generic Sequential Ranking and Selection Pro-
cedure:

1. Let Ni,t be the sample size allocated for system
i and X̄i,t be the sample mean of system i at
the tth iteration. Simulate n0 samples for all
systems. Set the iteration index t = 0, and
N1,t = N2,t = · · · = Nk,t = n0. Specify the
value of the indifference amount d∗ and the
required precision P ∗.

2. Calculate sample means and sample variances.
Rank the sample means and obtain the index
bl for l = 1, 2, . . . , k.

3. Calculate the new sample size Nbl,t+1 =
max(n0 + 1, ⌈(hSbl

(Nbl,t)/dbl
)2⌉), for l =

1, 2, . . . , k. Here dbl
is computed according to

(7).
4. If Ni,t+1 ≤ Ni,t, for i = 1, 2, . . . , k, go to step 6.
5. Simulate additional δi,t+1 = ⌈(Ni,t+1 −

Ni,t)
+/2⌉ samples for all systems. Here (X)+ =

max(X, 0). Set Ni,t+1 = Ni,t + δi,t+1 and
t = t + 1. Go to step 2.

6. Return the values bl and X̄bl
(Nbl

), for l =
1, 2, . . . ,m.

We can reduce the number of iterations with a larger
incremental sample size for system i at the tth iteration,
but we run the risk of allocating more samples than
necessary to non-promising systems. We propose to
compute the incremental sample size dynamically with
all the information obtained up to the current iteration.
The additional sample size for alternative i at iteration
t + 1 is

δi,t+1 = ⌈(Ni,t+1 − Ni,t)
+/2⌉. (9)

Weuse the equationS2
i (r) = (

∑r
j X2

ij/r−X̄2
i )r/(r−1) to

compute the variance estimator, so we are only required

to store the triple (Ni,t,
∑Ni,t

t=1 Xit,
∑Ni,t

t=1 X2
it) instead of

the entire sequences (Xi1,Xi2, . . . ,XiNi,t
).

The SRS procedure is able to estimate the required
sample size for each system to obtain the specified P ∗

based on information obtained up to the current stage,
so we are able to allocate incremental sample sizes in-
telligently. The procedure allocates a large incremental
sample size at the first iteration and reduces the in-
cremental sample sizes approximately by half at later
iterations; see (9). This makes sense because there
should be room for more aggressive budget allocation
at early iterations, which reduces the number of itera-
tions and the overhead in computing sample means and
sample variances. Furthermore, we don’t run the risk of
allocating more samples than necessary because we have
estimated the required sample size for each system. As
9
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the procedure proceeds, the incremental sample size al-
location become less aggressive to avoid allocating more
samples than necessary to non-promising systems.

Furthermore, the factor of 1/2 in (9) insures that
the allocated sample sizes satisfy approximately the
ratios of (8). Assuming (hSi(n0)/di)

2 − n0 > 0 at the
first iteration, then the sample size for each alternative
i Ni,1 is a little more than half of Ni obtained from
(6). Therefore, the ratios of (8) should be roughly the
same when Ni is replaced by Ni,1. On the other hand,
if the procedure stops when the subset contains only
the estimated m best systems, then sample size Ni,t

should be close to Ni. Thus, the ratios should also be
roughly the same. Consequently, the required ratios of
sample size for each alternative to maximize P(CS) is
maintained approximately at all iterations. The critical
value h depends on c, v, m, k, n0, and P ∗. Even though
the sample sizes for each system will change at each
iteration, we can use the initial value of h through all
iterations. This simplifies the programming effort and
provides conservative estimates of the sample sizes.

3.4 Selecting an Optimal Subset Given a Fixed
Computing Budget

We also implement the procedure to select the m best
systems given a fixed computing budget. The proce-
dure is basically the same as OCBA-m except that the
allocated sample sizes for each system are different. Fur-
thermore, the incremental sample size at each iteration
is computed dynamically. A smaller incremental sam-
ple size generally has better performance in terms of
P(CS), but will result in a larger number of iterations
and consequently longer runtime. Let T be the allo-
cated total number of simulation replications (budget)

and let Ωt+1 = T −
∑k

i Ni,t be the available computing
budget at the (t+1)th iteration. We set the incremental
computing budget at iteration t + 1

∆t+1 = min(Ωt+1,max(⌈Ωt+1/2⌉, 5k)).

Sequential Optimal Subset Selection Procedure:

1. Let Ni,t be the sample size allocated for system
i and X̄i,t be the sample mean of system i at
the tth iteration. Simulate n0 samples for all
systems. Set the iteration index t = 0, and
N1,t = N2,t = · · · = Nk,t = n0. Specify the
allowed total sample size T .

2. Calculate sample means and sample variances.
Rank the sample means and obtain the index
bl for l = 1, 2, . . . , k.

3. If
∑k

i=1 Ni,t = T , go to step 6.
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4. Increase the sample sizes by ∆t+1 and calculate
the new sample sizes, N1,t+1, N2,t+1, · · · , Nk,t+1

according to (8).
5. Simulate additional δi,t+1 = (Ni,t+1 − Ni,t)

+

samples for all systems. Set t = t + 1. Go to
step 2.

6. Return the values bl and X̄bl
(Nbl

), for l =
1, 2, . . . ,m.

4 EMPIRICAL EXPERIMENTS

In this section we present some empirical results ob-
tained from simulations using the KL (Koenig and Law
1985), ETSS, AT (ETSS with a conservative adjust-
ment), and SRS (sequentialized AT) procedures. In
order to compare our procedures with other known pro-
cedures, we use the similar experiments of Chen et al.
(2006). Furthermore, we select the m (= c = v) best
systems based on the sample means (i.e., X̄i’s) instead
of the weighted sample means (i.e., X̃i’s).

4.1 Experiment 1: Equal Variances

There are ten alternative systems under consideration.
SupposeXij ∼ N (i, 62), i = 1, 2, . . . , 10, whereN (µ, σ2)
denotes the normal distribution with mean µ and vari-
ance σ2. We want to select three systems with the
smallest means, i.e., m = c = v = 3. It is obvious that
systems 1, 2, and 3 are the best three systems. The
indifference amount d∗ is set to 1.0 in all cases. We
experimented with two initial sample sizes n0 = 20 and
40. We compare the actual P(CS) of KL, ETSS, AT,
and SRS procedures.

Furthermore, 100,000 independent experiments are
performed to obtain the actual P(CS). The number
of times we successfully selected the true three best
systems (systems 1, 2, and 3 in this example) is counted
among the 100,000 independent experiments. P(CS),
the correct selection proportion, is then obtained by
dividing this number by 100,000.

Table 1 lists the results of Experiment 1. The
P(CS) column lists the proportion of correct selection.
The T column lists the average of the total simulation
replications (T =

∑100000
R=1

∑k
i=1 NR,i/100000, NR,i is

the total number of replications or batches for system i
in the Rth independent run) used in each procedure. The
KL(20), ETSS(20), AT(20), and SRS(20) rows list the
results of the procedures with initial replications n0 =
20. Note that the observed P(CS)’s are all higher than
the specified P ∗ = 0.90 and P ∗ = 0.95. AT has better
coverage than the ETSS procedure with a larger total
number of replications. The SRS has better coverage
than AT with a smaller total number of replications.
Because the variance of the sample mean is larger with
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Table 1: P(CS) and Sample Sizes of Experiment 1.

P ∗ 0.90 0.95
Procedure P(CS) T P(CS) T
KL(20) .99243 4955 .99692 6273
ETSS(20) .94425 1445 .95691 1812
AT(20) .98676 2704 .99264 3411
SRS(20) .99560 2078 .99844 2819
KL(40) .99249 4615 .99652 5771
ETSS(40) .97295 1394 .96980 2634
AT(40) .99107 2254 .99544 2788
SRS(40) .99435 1860 .99777 2439

Table 2: P(CS) and Sample Sizes of Experiment 2.

P ∗ 0.90 0.95
Procedure P(CS) T P(CS) T
KL(20) .99288 5307 .99654 6712
ETSS(20) .98196 808 .98811 1006
AT(20) .99095 1277 .99622 1803
SRS(20) .99473 988 .99808 1335
KL(40) .99264 4964 .99708 6194
ETSS(40) .99163 747 .99535 882
AT(40) .99263 992 .99660 1309
SRS(40) .99399 873 .99737 1102

a smaller initial sample size n0, the adjustment yields
more improvement in P(CS) when n0 is small.

4.2 Experiment 2: Increasing Variances

This is a variation of Experiment 1. All settings are
preserved except that the variance of each system in-
creases as the mean increases. Namely, Xij ∼ N (i, i2),
i = 1, 2, . . . , 10.

The results are listed in Table 2. Because good sys-
tems have smaller variances than systems in Experiment
1, the total simulation replications are smaller than Ex-
periment 1 for ETSS and its extensions. In this setting
we are more confident of the best selections at the first
stage. Therefore, less simulation replications are needed
to obtain the desired confidence. For KL’s procedure,
the simulation replications allocation is based entirely
on the variances; thus, Ni > Nj when Si(n0) > Sj(n0).
Consequently, KL allocates more simulation replications
than Experiment 1. All other procedures take into con-
sideration the difference of sample means; therefore,
some Ni < Nj even though Si(n0) > Sj(n0). Proce-
dures that take into account the sample means have the
most significant reduction in the number of replications
or batches in this setting, i.e., the inferior alternatives
have the largest variances. All observed P(CS)’s are
greater than the specified nominal level.
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4.3 Experiment 3: Decreasing Variances

This is another variation of Experiment 1. All set-
tings are preserved except that the variance of each
system decreases as the mean increases. Namely,
Xij ∼ N (i, (11 − i)2), i = 1, 2, . . . , 10.

The results are listed in Table 3. Because good
systems have larger variances than Experiment 1, the
total simulation replications are larger than Experiment
1. In this setting we have less confidence of the good
selection at the first stage. Therefore, more simulation
replications are needed to obtain the desired confidence.
All procedures allocate smaller additional simulation
replications for systems with inferior systems in this
setting, i.e., the variances decrease as the sample means
increase. Once again, AT has better coverage than ETSS
with additional replications or batches. Since inferior
systems have smaller variances, we are confident to
exclude those systems from further simulations at early
iterations.

4.4 Experiment 4: the LFC

In this experiment, we test the procedure under the
LFC since the minimum P(CS) occurs in this setting.
Namely, Xij ∼ N (0, 62), i = 1, 2, 3; Xij ∼ N (d∗, 62),
i = 4, 5, . . . , 10. The indifference amount is set to 1.

The results are listed in Table 4. As expected,
the observed P(CS)’s of ETSS are smaller than the
specified P ∗ under the LFC, especially with smaller n0.
The conservative adjustment significantly increases the
P(CS)’s; however, they are still slightly smaller than the
nominal values. Three of the observed P(CS)’s of KL
are also smaller than the nominal values. We believe this
is because of the stochastic nature of the experiments.
The SRS performs well even under the LFC; achieves the
highest observed P(CS)’s while allocates less samples
than KL.

Table 3: P(CS) and Sample Sizes of Experiment 3.

P ∗ 0.90 0.95
Procedure P(CS) T P(CS) T
KL(20) .99217 5306 .99654 6711
ETSS(20) .90940 2101 .92840 2626
AT(20) .98113 3955 .98768 4992
SRS(20) .99521 3145 .99831 4177
KL(40) .99288 4965 .99706 6192
ETSS(40) .95481 2124 .96497 2605
AT(40) .98805 3536 .99345 4381
SRS(40) .99431 2892 .99771 3780
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Table 4: P(CS) and Sample Sizes of Experiment 4.

P ∗ 0.90 0.95
Procedure P(CS) T P(CS) T
KL(20) .89906 4955 .95036 6273
ETSS(20) .63686 3111 .70969 3931
AT(20) .87156 4626 .93952 6057
SRS(20) .93286 4890 .97304 6232
KL(40) .89870 4615 .94939 5771
ETSS(40) .78479 3430 .84791 4283
AT(40) .89223 4427 .94744 5654
SRS(40) .91453 4550 .96060 5730

4.5 Experiment 5: Maximizing the P(CS)

We compare the performance of the SRS procedure
with OCBA-m to select the top-m systems with a fixed
computing budget. The three settings we tested are
as defined in experiments 1 through 3 and we vary the
computing budget T between 200 and 7000 for these
two procedures. In order to correctly compare these
procedures’ performance only in the sample-sizes allo-
cation strategy. The incremental sample size of SRS at
each iteration is set to 50 instead of using the dynamic-
incremental-sample-size rule described in Section 3.4.
The detail of the results are not listed here. However,
in general SRS performs better than OCBA-m. In the
increasing variance setting, OCBA-m performs slightly
better than SRS; if there is a difference in the perfor-
mance. On the other hand, SRS performs significantly
better in the other two settings.

5 CONCLUSIONS

Many two-stage indifference-zone selection procedures
ignore a large amount of first-stage sampling informa-
tion. The ETSS procedure utilizes both the means and
variances from the first stage. Hence, the marginal
computational effort required for the ETSS procedure
is minimized, yet the achieved efficiency improvement is
significant. Even though ETSS is a heuristic procedure,
derived with the assumption that the true means are
known, it does have strong basis.

From our experiments, we notice that ETSS often
makes a wrong selection when a non-best alternative
has the smallest sample mean at the first stage. We
recommend using a conservative adjustment, which is
computed dynamically according to the variance of the
best alternative at the first stage, to ETSS to increase
P(CS). The adjustment effectively allocates additional
replications or batches to more promising alternatives.
We have more confidence in the mean estimator when
its variance is small resulting in a smaller adjustment.
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On the other hand, we have less confidence in the mean
estimator when its variance is large resulting in a larger
adjustment.

Moreover, since the quality of the first-stage sample
means have great influence in the performance of the
ETSS procedure, we recommend using a larger first-
stage sample size for the ETSS procedure. Note that
with the same minimal required probability of correct
selection P ∗, the total sample sizes using n0 = 40 may
be less than using n0 = 20 and achieve higher P(CS)
at the same time. One drawback of two-stage selection
procedures is that they rely heavily on the information
from only one stage. To eliminate this drawback, we
have sequentialized the AT procedure.

Our experimental results show that ETSS and its
extensions are powerful tools for selecting a subset of size
m that contains at least c of the v best systems out of k
alternatives. The main advantage of the procedures is
that the algorithm determines the number of additional
simulation replications based on both the means and
variances, which significantly improves the efficiency of
R&S procedures. We strongly recommend using the
sequentialized version of the selection procedure since
it performs better than two-stage procedures in terms
of sample size and probability of correct selection. The
simplicity of this method should make it attractive to
simulation practitioners or software developers.

A APPENDIX

When the goal is to select the largest µi’s, the P(CS)
is equal to the probability that the (m − c + 1)th

largest of (X̄i1 , X̄i2 , . . . , X̄ik−v
) is less than the cth

largest of (X̄ik−v+1
, X̄ik−v+2

, . . . , X̄ik
). This is equal

to the probability that the (k − v − m + c)th smallest
of (X̄i1 , X̄i2 , . . . , X̄ik−v

) is less than the (v − c + 1)th

smallest of (X̄ik−v+1
, X̄ik−v+2

, . . . , X̄ik
).

It is helpful to regard c′ = k−v−m+ c, v′ = k−v,
and m′ = k−m. This is consistent with the fact that the
graphs of the pdf of β(x; a, b) and β(x; b, a) are mirror
images of each other. Hence,

P(CS)

≥

∫ ∞

−∞

∫ x+h

−∞

β(F (y); k − v − m + c,m − c + 1) ×

f(y)β(F (x); v − c + 1, c)f(x)dydx

=
(k − v)!

(k − v − m + c − 1)!(m − c)!

v!

(v − c)!(c − 1)!
×

∫ ∞

−∞

∫ x+h

−∞

[F (y)]k−v−m+c−1[F (−y)]m−cf(y)

[F (x)]v−c[F (−x)]c−1f(x)dydx.
2
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Furthermore,

dil
=

{

µk−v+1 − µil
1 ≤ l ≤ k − v

µil
− µik−m

k − v + 1 ≤ l ≤ k.
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2000. Simulation Budget Allocation for Further
Enhancing the Efficiency of Ordinal Optimization.
Journal of Discrete Event Dynamic Systems 10(3):
251–270.

Chen, E. J. 2004. Using Ordinal Optimization Ap-
proach to Improve Efficiency of Selection Proce-
dures. Journal of Discrete Event Dynamic Systems
14(2): 153-170.

Chen, E. J. and W. D. Kelton. 2000. An Enhanced
Two-Stage Selection Procedure. Proceedings of the
2000 Winter Simulation Conference, ed. J.A. Joines,
R. Barton, P. Fishwick, and K. Kang, 727–735.
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

Chen, E. J. and W. D. Kelton. 2005. Sequential
Selection Procedures: Using Sample Means to Im-
prove Efficiency. European Journal of Operational
Research 166(1): 133-153.

Chen, E. J. and W. D. Kelton. 2007. Confidence-
Interval Estimation Using Quasi-Independent Se-
quences. IIE Transactions. Forthcoming.

Chick, S. E. and K. Inoue. 2001. New Two-Stage
and Sequential Procedures for Selecting the Best
Simulated System. Operations Research 49: 1609-
1624.

Dudewicz, E. J. and S. R. Dalal. 1975. Allocation of
Observations inRanking andSelectionwithUnequal
Variances. Sankhya B37: 28–78.
543
Hogg, R. V. and A. T. Craig. 1995. Introduction
to Mathematical Statistics. 5th ed. New Jersey:
Prentice Hall.

Kim, S.-H. and B. L. Nelson. 2001. A Fully Sequential
Procedure for Indifference-Zone Selection in Simu-
lation. ACM TOMACS 11(3): 251–273.

Koenig, L. W. and A. M. Law. 1985. A Procedure for
Selecting a Subset of Size m Containing the l Best of
k Independent Normal Populations. Communica-
tions in Statistics - Simulation and Communication
B14: 719-734.

Law, A. M. and W. D. Kelton. 2000. Simulation Model-
ing and Analysis. 3rd ed. New York: McGraw-Hill.

Mahamunulu, D. M. 1967. Some Fixed-Sample Ranking
and Selection Problems. Ann. Math. Statist 38:
1079-1091.

Rinott, Y. 1978. OnTwo-stage SelectionProcedures and
Related Probability Inequalities. Communications
in Statistics A7: 799-811.

Sullivan, D. W. and J. R. Wilson. 1989. Restricted Sub-
set Selection Procedures for Simulation. Operations
Research 37: 52-71.

Swisher, J. R., S. H. Jacobson, and E. Yücesan.
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