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ABSTRACT

We present a single-stage multiple-comparison procedure
for comparing parameters of independent systems, where
the parameters are not necessarily means or steady-state
means. We assume that for each system, the parameter has
an estimation process that satisfies a central limit theorem
(CLT) and that we have a consistent variance-estimation
process for the variance parameter appearing in the CLT.
The procedure allows for unequal run lengths or sample sizes
across systems, and also allows for unequal and unknown
variance parameters across systems. The procedure is as-
ymptotically valid as the run lengths or sample sizes of all
system grow large. One setting the framework encompasses
is comparing quantiles of independent populations. It also
covers comparing means or other moments of independent
populations, functions of means, and steady-state means of
stochastic processes.

1 INTRODUCTION

Suppose that we have k systems, labeled 1,2, . . . ,k, that
are to be compared relative to a given parameter. Let θi
denote the value of the parameter for system i. For example,
suppose there are 10 possible designs for a fault-tolerant
computing system, and we want to compare the alternatives
in terms of their 0.9-quantile of the time to failure.

This paper presents a single-stage multiple-comparison
procedure to compare θ1,θ2, . . . ,θk, where we assume larger
values of θi are better. Specifically, we consider multiple
comparisons with the best (MCB, Hsu 1984), which pro-
duces simultaneous confidence intervals for θi−max j 6=i θ j
for i = 1,2, . . . ,k. Note that if θi −max j 6=i θ j > 0, then
system i is the best. In some situations when secondary
considerations (e.g., ease of installation) are taken into ac-
count, one may opt to implement a non-optimal design, as
long as it is “close enough” to the best. For example, we
may choose a system i with θi−max j 6=i θ j < 0 as long as
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θi−max j 6=i θ j >−δ for some specified δ > 0, so system i
is not the best but is within δ of the best.

As the run length or sample size of each system grows
to infinity, our MCB procedure is asymptotically valid under
the following two assumptions. First we assume that for
each system i, θi has an estimation process that satisfies
a central limit theorem (CLT). The CLT has a variance
parameter σ2

i , and we require that we have a consistent
estimator for σ2

i . We allow for the run lengths or sample
sizes of the different systems to differ, and we allow for
the σ2

i , i = 1,2, . . . ,k, to be unequal and unknown.
Most previous work on multiple-comparison procedures

(Hochberg and Tamhane 1987, Swisher, Jacobson, and Yuce-
san 2003, Kim and Nelson 2006) assumes that θi is the mean
of a normally distributed population, and that independent
and identically distributed (i.i.d.) sampling is used within
each population. Exceptions include Nakayama (1997) and
Damerdji and Nakayama (1999), which compare steady-
state means using standardized time series (STS) methods
(Schruben 1983, Glynn and Iglehart 1990) for “estimating”
σ2

i . STS methods do not yield consistent estimates of the
σ2

i when the run length grows large but the number of
batches remains fixed, so the results in the current paper do
not include the multiple-comparison methods using STS.

Our framework in the current paper allows for compar-
ing systems relative to quite general parameters, including
means or other moments of independent (not necessarily
normally distributed) populations, functions of means, and
steady-state means of stochastic processes. One specific
example we consider here is comparing quantiles of inde-
pendent populations.

The rest of the paper is organized as follows. Section 2
describes the mathematical framework we adopt. We present
our MCB procedure in Section 3, and Section 4 shows
explicitly how the procedure applies to comparing quantiles
of independent populations. Section 5 presents empirical
results comparing quantiles, and we summarize our findings
in Section 6.
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2 MATHEMATICAL FRAMEWORK

Suppose that we have k systems, labeled 1,2, . . . ,k, where
the ith system has parameter θi. The goal is to compare
the k systems in terms of the θi. We assume that for each
i, we have an estimation process θ̂i = [θ̂i(t) : t > 0] for
θi, where θ̂i(t) is the estimator of θi based on running a
simulation of system i for a run length of t or taking t
i.i.d. samples from population i, depending on the context.
Let N(a,b) denote a normal random variable with mean a
and variance b, and let ⇒ denote weak convergence (see
Chapter 5 of Billingsley 1995). We assume that each θ̂i
satisfies a central limit theorem:

Assumption 1 The estimation processes θ̂1, . . . , θ̂k
are independent, and there exists a finite positive constant
η such that for each i,

tη

[
θ̂i(t)−θi

]
⇒ N(0,σ2

i ) (1)

as t → ∞, where 0 < σi < ∞ is a constant.
In most applications, the parameter η in Assumption 1

takes on the canonical value of 1/2, but we do not require
this. Glynn and Whitt (1992) list examples of processes
satisfying the CLT in (1). For example, the CLT holds
(under various conditions) for sample means or other sam-
ple moments of i.i.d. samples, functions of sample means,
quantile estimators, and time-average rewards of stochastic
processes having a steady state. Specifically, for the last ex-
ample, let Xi = [Xi(t) : t ≥ 0] be a stochastic process on state
space Si representing the evolution over time of system i,
and let fi : Si → ℜ be a real-valued “reward” function on
Si. Then we can define θ̂i(t) = (1/t)

∫ t
0 fi(Xi(s))ds, which

is the time-average reward of Xi over the interval [0, t].
Under a wide variety of assumptions (Glynn and Iglehart
1990), θ̂i satisfies the CLT in (1) with η = 1/2, and θi is
the steady-state mean reward of Xi.

We call σ2
i in (1) the variance parameter for system i.

We assume that for each i, we have a variance-estimation
process Vi = [Vi(t) : t > 0] that is consistent, in the following
sense:

Assumption 2 For each system i, Vi(t) ⇒ σ2
i as

t → ∞.
In our previous example of comparing steady-state mean

rewards, suppose that each process Xi is regenerative (Crane
and Iglehart 1975), and let 0≤ Ai,0 < Ai,1 < Ai,2 < · · · be the
sequence of regeneration epochs of system i. For j = 1,2, . . .,
let τi, j = Ai, j −Ai, j−1 be the length of the jth cycle of

system i. Also, define Yi, j =
∫ Ai, j

Ai, j−1
fi(Xi(s))ds to be the

cumulative reward over the jth cycle of system i. Assume
that E[τi,1] < ∞ and that there exists a finite constant θi such
that E[Yi,1 − θiτi,1] = 0 and E[(Yi,1 − θiτi,1)2] < ∞. Then
θi = E[Yi,1]/E[τi,1] and the CLT in (1) holds with η = 1/2
and σ2

i = E[(Yi,1−θiτi,1)2]/E[τi,1]. Define Ni(t) = sup{ j ≥
0 : Ai, j ≤ t}, which is the number of regenerative cycles that
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process i completes by time t. Then the variance estimator

Vi(t) =
1
t

Ni(t)

∑
j=1

[
Yi, j − θ̂i(t)τi, j

]2

satisfies Assumption 2; see Glynn and Iglehart (1993) for
details.

An example of a setting in which Assumption 1 holds
for a non-canonical value of η is for estimators based on
the Kiefer-Wolfowitz (1952) stochastic approximation algo-
rithm. Ruppert (1982) shows that under certain regularity
conditions, such estimators satisfy (1) with η = 1/3. Vent-
ner (1967), p. 189, provides directions for constructing Vi(t)
such that Assumption 2 holds.

3 MCB PROCEDURE

We now present a MCB procedure for comparing the pa-
rameters θi, i = 1,2, . . . ,k, of independent systems.

1. Specify the number of systems 2 ≤ k < ∞, the
confidence level 1 − α with 0 < α < 1, and
T̄ = (T1, . . . ,Tk), where Ti is the run length (or
sample size) for system i. Define the constant
γ = z(1−α)1/(k−1) , where zβ satisfies Φ(zβ ) = β for
0 < β < 1, and Φ is the distribution function of a
standard (mean 0 and variance 1) normal distrib-
ution.

2. Run independent simulations of the k systems,
where the simulation of system i has a run length
of Ti.

3. For each system i, compute Vi(Ti), and define
the joint MCB intervals Ii(T̄ ), i = 1,2, . . . ,k, for
θi−max j 6=i θ j, i = 1,2, . . . ,k, respectively, with

Ii(T̄ )

=

−
 min

j∈A (T̄ ),
j 6=i

(
θ̂i(Ti)− θ̂ j(Tj)−Wi, j(T̄ )

)−

,

(
min
j 6=i

(
θ̂i(Ti)− θ̂ j(Tj)+Wi, j(T̄ )

))+
]

, (2)

where (x)+ = max(x,0), −(x)− = min(x,0),

Wi, j(T̄ ) = γ

√
Vi(Ti)

T 2η

i

+
Vj(Tj)

T 2η

j

,

and

A (T̄ )=
{

` : min
j 6=`

(
θ̂`(T`)− θ̂ j(Tj)+W`, j(T̄ )

)
≥ 0

}
.

In (2), we define min j∈ /0 x j = 0.
1
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The following establishes the asymptotic validity of the
MCB intervals in (2).

Theorem 1 Suppose Ti = ζiT for i = 1,2, . . . ,k,
where ζ1 > 0, . . . ,ζk > 0, are any constants. If Assump-
tions 1 and 2 hold, then

lim
T→∞

P
{

θi−max
j 6=i

θ j ∈ Ii(T̄ ), i = 1,2, . . . ,k
}
≥ 1−α.

4 QUANTILES

We now specifically discuss the setting of comparing quan-
tiles of independent populations, which covers the case of
comparing quantiles in terminating simulations. For exam-
ple, given k alternative designs for a manufacturing system
that shuts down each night, we might be interested in com-
paring the alternatives in terms of the 0.9-quantiles of the
average flow times of the first 10 jobs each day.

For 0 < y < 1 and any distribution function G, we define
the yth quantile of G to be G−1(y) ≡ inf{x : G(x) ≥ y}.
Let Fi be the distribution function of population i. Fix p
with 0 < p < 1, and let θi = F−1

i (p) be the pth quantile
of system i. For each system i, let Xi,1,Xi,2, . . . ,Xi,t be t
i.i.d. samples from Fi, and define the empirical distribution
function Fi,t(x) = (1/t)∑

t
j=1 1{Xi, j ≤ x}, where 1{A} is the

indicator function of the event A. Also, define

θ̂i(t) = F−1
i,t (p), (3)

the estimator of θi based on t samples from Fi.
Assume that for each i, Fi is differentiable at θi, and

F ′
i (θi) > 0, where prime denotes derivative. Then the CLT

in Assumption 1 holds with η = 1/2 and

σ
2
i =

p(1− p)
[F ′

i (θi)]2
; (4)

e.g., see p. 77 of Serfling (1980). To develop an estimator
for σ2

i , define constants qi,t such that

qi,t = p+

√
p(1− p)

t
+o

(
1

t1/2

)
(5)

as t →∞, where f (t) = o(g(t)) for functions f and g means
f (t)/g(t)→ 0 as t → ∞. Then the variance estimator

Vi(t) = t
[
F−1

i,t (qi,t)−F−1
i,t (p)

]2
(6)

satisfies Assumption 2; e.g., see p. 94 of Serfling (1980).
Thus, we can apply the MCB procedure in Section 3 with
θ̂i(t) and Vi(t) defined in (3) and (6), respectively. In
the current setting of comparing quantiles, Ti in the MCB
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procedure of Section 3 denotes the number of i.i.d. samples
taken from population i.

5 EMPIRICAL RESULTS

We ran some experiments with our MCB procedure to com-
pare the pth quantiles of independent populations. Specif-
ically, we compared k = 4 exponentially distributed popu-
lations, where the ith population has distribution function
Fi(x) = 1− e−x/µi for x ≥ 0, so its mean is µi. In all our
experiments, we fixed µ1 = µ2 = µ3 = 1, and we varied µ4
over the values 1.1, 1.2, 2 and 5. Thus, the pth quantile of
the ith population is θi =−µi ln(1− p), which we assume is
unknown, and for any fixed p, population 4 is the best since
θ4 is the largest among θ1, . . . ,θ4, which we also assume is
unknown. We used the same sample size T1 = · · ·= T4 = T
for each population, and we set T to be 20, 80 or 320. We
varied the quantile level p between 0.1 and 0.9. From (4)
we can calculate σ2

i = µ2
i p/(1− p), which we assume is

unknown, and we estimated σ2
i in our experiments using

Vi(T ) in (6) with qi,T = p+
√

p(1− p)/T in (5). We ran 104

independent replications for each set of parameters, where
we constructed MCB intervals having nominal confidence
level 1−α = 0.9 in each replication.

Table 1 gives the coverage results from our simulations.
In all but one case, for a fixed sample size T and quantile
level p, the coverage increases as µ4 increases, which also
corresponds to θ4−θi, i = 1,2,3, increasing. Moreover, for
a fixed configuration of means and quantile level p, coverage
increases as the sample size T for each population increases
(i.e., as we go across a row), with the coverage levels close
to or at the nominal level of 90% for the largest sample
size T = 320. This agrees with our asymptotic theory in
Theorem 1. In addition, considering the coverages for all
p and means for each sample size T , we see that there is a
larger range of coverages for smaller T than for larger T .
This may indicate that quantile estimators and their variance
estimators require large sample sizes to be accurate. Finally,
comparing the coverages for the different quantile levels p
for the same configuration of means and for same T , we see
that the coverages are typically lower for p = 0.1 and 0.9
than for p = 0.3, 0.5 or 0.7 when T is either 20 or 80, which
is when coverages are significantly below the nominal level
of 0.9. This may indicate that extreme quantiles (i.e., when
p is close to 0 or 1) are harder to estimate than those with
p close to 0.5.

For comparison Table 2 presents results from running
experiments comparing the means of the 4 exponential
distributions, so now each parameter θi = µi. In this case the
coverages are all close to the nominal level of 1−α = 0.9,
even for the smallest sample size T = 20. Hence, the
asymptotics for MCB intervals comparing means seem to
take effect for smaller sample sizes than they do when
comparing quantiles.
2
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Table 1: Coverage results (in percents) for MCB intervals
comparing pth quantiles of k = 4 exponential populations,
with T samples from each population.

T
p Means 20 80 320

0.1 1,1,1,1.1 72.4 75.7 86.3
0.1 1,1,1,1.2 72.6 76.1 86.7
0.1 1,1,1,2 73.9 78.8 88.3
0.1 1,1,1,5 75.7 81.6 90.1
0.3 1,1,1,1.1 84.9 86.8 89.3
0.3 1,1,1,1.2 85.1 87.1 89.5
0.3 1,1,1,2 86.1 88.0 90.7
0.3 1,1,1,5 87.2 89.6 92.4
0.5 1,1,1,1.1 83.6 85.3 86.7
0.5 1,1,1,1.2 83.8 85.7 87.0
0.5 1,1,1,2 84.7 86.6 88.7
0.5 1,1,1,5 85.3 88.4 90.6
0.7 1,1,1,1.1 86.7 89.1 90.2
0.7 1,1,1,1.2 86.6 89.2 90.5
0.7 1,1,1,2 86.9 89.8 91.4
0.7 1,1,1,5 87.0 90.9 92.4
0.9 1,1,1,1.1 74.9 78.2 88.6
0.9 1,1,1,1.2 74.8 78.3 88.9
0.9 1,1,1,2 73.8 79.7 89.6
0.9 1,1,1,5 72.8 80.3 90.8

6 CONCLUSIONS

We presented a single-stage MCB procedure for comparing
parameters θ1, . . . ,θk of independent systems. The proce-
dure is asymptotically valid when the estimator of each θi
satisfies a CLT and there is a consistent estimator of the
variance parameter appearing in the CLT. The procedure
allows for unequal run lengths across systems, and unknown
and unequal variances. This framework encompasses com-
paring means of populations, functions of means, quantiles,
and steady-state means.

We consider two-stage MCB procedures in Nakayama
(2006) for the same general framework as in the current
paper. The two-stage procedures have random run lengths
for each system, and to establish the asymptotic validity of
these procedures, we require a slight strengthening of the
CLT assumption so that the CLT also holds when applied
at the random time.
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