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ABSTRACT

Some ranking and selection (R&S) procedures for steady-

state simulation require an estimate of the asymptotic vari-

ance parameter of each system to guarantee a certain proba-

bility of correct selection. We show that the performance of

such R&S procedures depends on the quality of the variance

estimates that are used. In this paper, we study the perfor-

mance of R&S procedures with two new variance estimators

— overlapping area and overlapping Cramér-von Mises es-

timators — which show better long-run performance than

other estimators previously used in R&S problems.

1 INTRODUCTION

In ranking and selection (R&S), we are concerned with the

selection of the best system out of a number of alternatives.

We also require a certain probability of correct selection

(PCS) in our procedures. In steady-state simulation, we

are usually interested in determining the system that has

either the largest or smallest expected value of a specific

steady-state performance measure.

Many R&S procedures have been developed assum-

ing that basic observations are independent and identically

distributed (i.i.d.) normal random variates. Those R&S

procedures can be used for steady-state simulation, if an

experimenter is willing to use as basic observations within-

replication averages from multiple replications (after dele-

tion of initial data) or batch means from a single replication.

However, Goldsman et al. (2002) and Kim and Nelson (2006)

found that both approaches could diminish the efficiency of

fully sequential procedures and proposed two procedures

that take individual observations (such as consecutive wait

times) as basic observations from a single replication.

It is often the case that individual observations from

steady-state simulations possess an inherent dependence

structure, and thus the usual marginal variance is not a

good measure for the variability of such dependent data.

Instead, most selection procedures require estimates for the
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so-called variance parameters of the competitors, which are

unknown in typical simulation applications; the variance

parameter for a particular steady-state process is simply

the sum of the covariances at all lags. For instance, the

procedures due to Goldsman et al. (2002) and Kim and

Nelson (2006) — called R+, KN+, and KN++ — use well-

known estimators for the variance parameter that happen to

be asymptotically chi-squared distributed.

A number of new variance parameter estimators have

recently been developed in the literature. For example,

Alexopoulos et al. (2006b) proposed various overlapping

standardized time series (STS) estimators. These overlap-

ping STS estimators have smaller asymptotic variance and

smaller bias compared to their non-overlapping counterparts.

As better variance estimators are introduced, one might be-

come interested in whether these new variance estimators

can be incorporated into R&S procedures with beneficial

results in terms of the required number of observations and

the attained probability of correct selection. In the current

paper, we investigate such issues.

This paper is organized as follows: Section 2 defines

notation and introduces the variance estimators considered

herein. Section 3 gives an overview of three R&S procedures

specifically designed for steady-state simulation. In Sections

4 and 5, we discuss our experimental setup and results,

followed by conclusions in Section 6.

2 VARIANCE ESTIMATORS

This section describes the notation used throughout the

paper and introduces the variance estimators that we will

implement in the selection procedures.

2.1 Notation

Let Yi ≡ {Yi j : j = 1, . . . ,m} be a realization from a single

replication of a simulation of system i = 1, . . . ,k. For exam-

ple, Yi j could be the jth individual waiting time in the ith
queueing system under consideration. After deleting some
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initial data during a carefully chosen warm-up period, this

process is believed to be stationary.

Throughout the paper, we assume that Yi satisfies a

Functional Central Limit Theorem (FCLT):

Assumption 1 For the process {Yi j; j = 1, . . . ,m}
there exist constants μi and σ2

i > 0 such that

�mt�(Ȳi,�mt� −μi)√
m

⇒ σiW (t) for 0 ≤ t ≤ 1,

where �·� is the floor function, Ȳi,� ≡∑�
j=1 Yi j/�, � = 1, . . . ,m,

⇒ denotes weak convergence as m → ∞, and W stands for
a standard Brownian motion process.

For a stationary process, an FCLT holds using the

steady-state mean μi and the asymptotic variance param-

eter σ2
i ≡ limm→∞ mVar[Ȳi,m] (see, for example, Glynn

and Iglehart 1990). Further, we assume that common

random numbers are not employed and thus the following

assumption holds:

Assumption 2 The processes Yi and Y� for i 	= �
are independent.

As σ2
i is unknown, it needs to be estimated; we con-

sider here three STS variance estimators from the literature:

batched area, overlapping area, and overlapping Cramér-von

Mises estimators. Healey, Goldsman, and Kim (2007) study

the performance of R&S procedures using additional vari-

ance estimators, including the modified jackknifed Durbin–

Watson estimator (Batur, Goldsman, and Kim 2007) as well

as the overlapping version of it.

2.2 Batched Area Estimator

To calculate a batched area estimator, we first split the n data

points into b adjacent batches of size m (where n = bm).

The jth batch mean for system i is defined as

Ȳi, j,m ≡ 1

m

m

∑
�=1

Yi,( j−1)m+� for j = 1, . . . ,b.

Further, the STS for batch j of system i is

Ti, j,m(t) ≡ �mt�(Ȳi, j,m − Ȳi, j,�mt�)
σi
√

m

for t ∈ [0,1] and j = 1, . . . ,b.
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The area estimator for σ2
i from the jth batch from

system i is defined by

Ai, j( f ;m) ≡
[

1

m

m

∑
�=1

f (
�

m
)σiTi, j,m(

�

m
)

]2

for j = 1, . . . ,b,

where f (·) is a continuous weighting function on the inter-

val [0,1] and normalized so that
∫ 1

0

∫ 1
0 f (s) f (t)(min(s, t)−

st)dsdt = 1.

Finally, the batched area (A) estimator for σ2
i is defined

as

Ai( f ;b,m) ≡ 1

b

b

∑
j=1

Ai, j( f ;m) ⇒ σ2
i χ2

b
b

as m → ∞

where χ2
b denotes a chi-squared random variable with b

degrees of freedom.

Goldsman, Meketon, and Schruben (1990) show that

the A estimator becomes first-order unbiased when f2(t)≡√
840(3t2−3t +1/2) is used as a weighting function. More

specifically,

E[Ai( f2;b,m)] = σ2
i +o(1/m)

and

lim
m→∞

Var[Ai( f2;b,m)] = 2σ4
i /b,

where the notation o(1/m) indicates a function that goes to

zero more quickly than 1/m as m → ∞.

2.3 Overlapping Area Estimator

The overlapping area estimator is similar to the batched

area estimator, but differs slightly in that we now have

n−m + 1 overlapping batches of size m. The jth over-

lapping batch from system i consists of observations

Yi j,Yi, j+1, . . . ,Yi, j+m−1, and the corresponding overlapping

batch mean is defined as

Ȳ O
i, j,m ≡ 1

m

m−1

∑
�=0

Yi, j+�

for j = 1, . . . ,n−m+1. Then the STS for the jth overlapping

batch is given as

T O
i, j,m(t) ≡

�mt�(Ȳ O
i, j,m − Ȳ O

i, j,�mt�)

σi
√

m

for t ∈ [0,1] and j = 1, . . . ,n−m+1.



Healey, Goldsman, and Kim
Alexopoulos et al. (2006a) define the overlapping area

estimator for σ2
i from the jth overlapping batch as

AO
i, j( f ;m) ≡

[
1

m

m

∑
�=1

f (
�

m
)σiT O

i, j,m(
�

m
)

]2

for j = 1, . . . ,n−m+1, and the (overall) overlapping area

(OA) estimator for σ2
i as

AO
i ( f ;b,m) ≡ 1

n−m+1

n−m+1

∑
j=1

AO
i, j( f ;m),

where b = n/m (but can no longer be interpreted as “the

number of batches”). Moreover, Alexopoulos et al. (2006a)

show that

E[AO
i ( f2;b,m)] = σ2

i +o(1/m),

lim
m→∞

Var[AO
i ( f2;b,m)] =

3514b−4359

4290(b−1)2
σ4

i ,

and

AO
i ( f2;b,m) ≈ σ2

i χ2
ν

ν
for large m and b,

where

ν =
[[

8580(b−1)2

3514b−4359

]]
,

and [[·]] rounds to the nearest integer.

2.4 Overlapping Cramér–von Mises Estimator

The Cramér–von Mises (CvM) estimator for σ2
i , obtained

from the jth overlapping batch, is defined as

CO
i, j(g;m) ≡ 1

m

m

∑
�=1

g(
�

m
)
[

σiT O
i, j,m(

�

m
)
]2

for j = 1, . . . ,n−m+1, where g(·) is a normalized weighting

function on the interval [0,1] such that
∫ 1

0 g(t)t(1−t)dt = 1.

Alexopoulos et al. (2006a) define the (overall) over-

lapping CvM (OCvM) estimator for σ2
i as

CO
i (g;b,m) ≡ 1

n−m+1

n−m+1

∑
j=1

CO
i, j(g;m).

When g�
2(t)≡−24+150t−150t2 is considered as a weight-

ing function, we have

E[CO
i (g�

2;b,m)] = σ2
i +o(1/m),
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lim
m→∞

Var[CO
i (g�

2;b,m)] =
10768b−13605

13860(b−1)2
σ4

i ,

and

CO
i (g�

2;b,m) ≈ σ2
i χ2

ν�

ν�
for large m and b,

where

ν� =
[[

27720(b−1)2

10768b−13605

]]
.

Henceforth, let mV 2
i denote a generic estimator for σ2

i
using batch size m.

3 SELECTION PROCEDURES

In this section, we elaborate on the details of three selection

procedures, each of which we will implement with the A,

OA, and OCvM estimators.

3.1 Extended Rinott Procedure (R+)

The following two-stage “indifference-zone” procedure is

an extension of Rinott’s (1978) classic procedure, and was

studied in Goldsman and Marshall (1999).

1. Setup: Select a confidence level 1/k < 1 − α < 1,

indifference-zone parameter δ > 0, first-stage sample size

n0 ≥ 2, and batch size m0 < n0. The indifference-zone

parameter δ is chosen as the smallest difference between

systems that the experimenter deems as “worth detecting”

and is explained more fully in, for example, Bechhofer,

Santner, and Goldsman (1995).

2. Initialization: Obtain Rinott’s constant h = h(d,k,1−α)
from, say, Bechhofer, Santner, and Goldsman (1995), where

d is the degrees of freedom for the associated variance

estimator. Take n0 observations Yi j, j = 1, . . . ,n0, from each

system i = 1, . . . ,k. For i = 1, . . . ,k, compute m0V 2
i , the

sample asymptotic variance parameter from system i. Let

Ni = max

{
n0,

⌈
h2m0V 2

i
δ 2

⌉}
,

for i = 1, . . . ,k, where ·� is the ceiling function.

3. Stopping Rule: If n0 ≥ maxi Ni then stop and select

the system with the largest first-stage sample mean Ȳi,n0
as

the best. Otherwise, take Ni − n0 additional observations

Yi,n0+1,Yi,n0+2, . . . ,Yi,Ni from each system i for which Ni > n0.

Select the system with the largest overall sample mean Ȳi,Ni

as the best.
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3.2 Extended Kim and Nelson Procedure (KN+)

The next procedure, due to Kim and Nelson (2006), is a

sequential indifference-zone procedure and is somewhat

more efficient with observations than Rinott’s method. This

savings of observations is gained by screening out clearly

inferior systems. Note that we require an estimator for the

asymptotic variance of the difference between systems i
and �, which is equal to σ2

i +σ2
� under Assumptions 1 and

2. Given the sample size n0 and batch size m0, we denote

the estimator of this quantity as m0V 2
i� , which we calculate

using the estimators in Section 2 with the data points of

the difference Zi,�, j ≡ Yi, j −Y�, j for j = 1, . . . ,n0.

1. Setup: Select a confidence level 1/k < 1 − α < 1,

indifference-zone parameter δ > 0, first-stage sample size

n0 ≥ 2, and batch size m0 < n0. Calculate the constant

η ≡ 1

2

(
[2(1− (1−α)1/(k−1))]−2/d −1

)
.

2. Initialization: Let I = {1, . . . ,k} be the set of systems

still in contention, and let h2 = 2ηd, where the degrees of

freedom d is determined by which variance estimator is used.

Obtain n0 observations Yi j, j = 1, . . . ,n0, from each system

i = 1, . . . ,k. For each system i = 1, . . . ,k, compute the

first-stage sample mean Ȳi,n0
. In addition, for all i 	= �, use

the first n0 observations to compute the sample asymptotic

variance of the difference between systems i and �, m0V 2
i� .

Then set the sequential counter r = n0 and go to the

Screening phase of the procedure.

3. Screening: Set Iold = I. Let

I ≡
{

i : i ∈ Iold and Ȳi,r ≥ Ȳ�,r −Wi�(r),∀� ∈ Iold, � 	= i
}

,

where

Wi�(r) ≡ max

{
0,

δ
2r

(
h2m0V 2

i�
δ 2

− r
)}

.

4. Stopping Rule: If the cardinality |I| = 1, then stop and

select the system whose index is in I as the best. Otherwise,

take one additional observation Yi,r+1 from each system i∈ I,

set r = r +1, and go to Screening.

3.3 Extended KN Procedure with Updates (KN++)

Goldsman et al. (2002) and Kim and Nelson (2006) present

another selection procedure similar to KN+, but one that

updates a variance estimator according to a batching

sequence (mr,br), where mr and br denote the batch size
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and number of batches when there are r observations. Both

mr and br are non-decreasing functions of r. Goldsman et

al. (2002) present three modified batching sequences; we

consider the batching sequence leading to more updates than

the other two. This batching sequence doubles the number

of batches while holding the batch size steady until the

first update level at r = m2
0. Once we reach the first update

level, the batching stops doubling and takes mr = br = �√r�.

1. Setup: Same setup as KN+.

2. Initialization: Let I = {1, . . . ,k} be the set of systems

still in contention, and let h2 = 2ηd. Obtain n0 obser-

vations Yi j, j = 1, . . . ,n0, from each system i = 1, . . . ,k.

Set the observation counter r = n0 and mr = m0, compute

m0V 2
i�(n0), and proceed to Screening.

3. Update: If mr has changed since the last update, then

for all i 	= �, i, � ∈ I, calculate the estimator mrV 2
i�(r), d,

and η .

4. Screening: Set Iold = I. Let

I ≡
{

i : i ∈ Iold and Ȳi,r ≥ Ȳ�,r −Wi�(r),∀� ∈ Iold, � 	= i
}

where

Wi�(r) ≡ max

{
0,

δ
2r

(
h2mrV 2

i�(r)
δ 2

− r
)}

.

5. Stopping Rule: If |I| = 1, then stop and select the

system whose index is in I as the best. Otherwise, take

one additional observation Yi,r+1 from each system i ∈ I,

set r = r +1, and go to Update.

4 EXPERIMENTAL SETUP

At this point, we are interested in the performance of the

R&S procedures when they incorporate the new variance

estimators. We follow the same experimental setup that

Goldsman et al. (2002) used. In particular, we take system

1 as the best system, i.e., that with the largest mean. For

all of the experiments, we set the nominal PCS to 0.95.

For purposes of conducting our experiments, we set the

indifference-zone parameter δ = σ1/
√

n0.

We tested two different configurations for the mean

performance measure: the slippage configuration (SC) and

the monotone decreasing means (MDM) configuration. For

the SC, all inferior systems are separated from the best system

by a distance of δ . For example, μ1 = δ , while μ2 = · · · =
μk = 0. For the MDM configuration, we have μi = μ1 −
(i− 1)δ . The MDM configuration exploits a procedure’s

ability to discard clearly inferior systems quickly, while the

SC configuration tends to be a worst-case scenario where
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all inferior systems are equal and very close to the best

system (and is often used to test the statistical validity of

the procedure).

For our analysis, we concentrate on two key measures:

actual PCS and the sample average of the total number of

raw observations. Experimental results are based on 1000

independent replications.

The experimental study here compares AR(1) processes,

but Healey, Goldsman, and Kim (2007) include other exam-

ples such as the waiting time process from an M/M/1 queue

to illustrate performance under systems with extremely non-

normal observations. Healey, Goldsman, and Kim (2007)

show that similar results in terms of savings of observations

and preservation of PCS can be expected in these waiting

time systems, even with highly nonnormal processes.

AR(1) processes Yi for i = 1, . . . ,k, are defined as

Yi j = μi +φ(Yi, j−1 −μi)+Zi j,

where Zi j, j = 1,2, . . ., are i.i.d. Norm(0,1− φ 2) random

variables with φ ∈ (−1,1), and Yi,0 are independent and

distributed Norm(0,1). In this paper, we chose a fairly high

value for the serial correlation coefficient, φ = 0.9.

5 RESULTS

Goldsman et al. (2002) tested the performance of R&S

procedures when nonoverlapping batch means, overlapping

batch means, and A estimators were considered. Their

experimental results show that R&S procedures exhibit the

best performance in terms of the expected number of total

observations when the A estimator is used. We are interested

here in comparing the performance of the R&S procedures

incorporating the OA and OCvM estimators with that of

the A estimator.

Our experiments show that overlapping variance esti-

mators provide a substantial improvement in observations

required, without sacrificing PCS. The savings in observa-

tions garnered with the use of the OA or OCvM estimators

(compared to the A estimator) depends on the choice of

the batch size and selection procedure, but typically ranges

from 10% to 50%.

We illustrate our results in pairs of tables, which show

the sample average of the total number of raw observations

and the estimated PCS for various choices of initial batch

size m0 when n0 is fixed. The first pair, Tables 1 and 2,

display results for k = 2 systems under the SC configuration,

Tables 3 and 4 show results for k = 10 systems under the SC

configuration, and Tables 5 and 6 show results for k = 10

systems under the MDM configuration.
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5.1 Expected Number of Observations

The advantages of implementing the overlapping estimators

are most clearly seen in the R+ and KN+ procedures.

We notice in Table 1 that, even in the least complicated

configuration of an AR(1) process with 2 systems, we record

a savings of roughly up to 40% over the A estimator with

both of our overlapping variance estimators for R+ and

KN+. Tables 3 and 5 show that we get even more savings

(up to 66%) when the number of systems increases to 10

for R+ and KN+. These savings are gained because R+

and KN+ calculate variance estimates only once, using the

first n0 observations. Thus, the better variance estimates

from the OA and OCvM estimators reduce the number of

observations compared to the implementation with the A

estimator.

Our savings are much smaller when using OA or OCvM

in KN++. As the procedure progresses, the updating pro-

cedure of KN++ quickly recovers from a poor variance

estimate by allowing us to recalculate variance estimates

from much larger collections of data than the initial sample.

So the OA, OCvM, and A estimators can all eventually

produce good variance estimates. We still can save up to

10% by implementing the OA or OCvM estimator over the

A estimator when using KN+.

As we decrease the batch size m0, fewer observations

are needed until a decision is made, but our percentage

savings compared to the A estimator tends to decrease for

all three R&S procedures. This is because as the batch size

decreases for given n0, the number of batches increases and

the χ2 distributions of the three estimators approach each

other, implying that statistical properties (including mean

and variance) of the three estimators become similar.

5.2 Probability of Correct Selection

Kim and Nelson (2006) and Goldsman et al. (2002) point

out that the actual PCS does not always meet the nominal

PCS for the A estimator, and there is some degradation

in the actual PCS from the nominal level. However, they

showed that such degradation is not significant, a large

m0 helps to satisfy the PCS requirement, and the coverage

problem goes away under the MDM configuration. We

observed exactly the same tendency when the OA and

OCvM estimators are used. Moreover, in most cases, the

actual PCS with the OA and OCvM estimators is either

equal to or slightly larger than the actual PCS with the A

estimator for all three R&S procedures. This implies that

the OA and OCvM estimators give us savings in the number

of observations without sacrificing the statistical validity of

the R&S procedures.
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6 CONCLUSION

We have shown that implementing overlapping variance

estimators can provide a significant savings in observa-

tions needed for certain ranking and selection procedures

implemented in steady-state simulation problems, without

sacrificing much in the probability of finding the correct

system. Implementing either of the two new overlapping

variance estimators produces a savings over the A estimator.
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Table 1: Sample average of total number of raw observations when AR(1) processes are tested under the SC configuration,

k = 2, φ = 0.9, n0 = 1000, and δ = σ1/n0. Entries are shown in units of 104.

R+ KN+ KN++

m0 OA OCvM A OA OCvM A OA OCvM A

500 2.35 2.35 4.08 1.48 1.47 2.54 0.67 0.67 0.74

250 1.24 1.22 1.74 0.77 0.77 1.10 0.60 0.60 0.64

200 1.14 1.11 1.51 0.72 0.69 0.97 0.57 0.57 0.63

125 0.92 0.91 1.09 0.58 0.58 0.72 0.51 0.51 0.55

100 0.83 0.82 0.90 0.52 0.51 0.59 0.46 0.46 0.48

Table 2: Estimated PCS when AR(1) processes are tested under the SC configuration, k = 2, φ = 0.9, n0 = 1000, nominal

PCS of 0.95, and δ = σ1/n0.

R+ KN+ KN++

m0 OA OCvM A OA OCvM A OA OCvM A

500 0.970 0.969 0.966 0.953 0.953 0.964 0.934 0.936 0.935

250 0.939 0.945 0.943 0.936 0.936 0.942 0.927 0.931 0.925

200 0.940 0.943 0.951 0.949 0.943 0.949 0.941 0.942 0.942

125 0.934 0.938 0.939 0.924 0.923 0.946 0.931 0.931 0.929

100 0.937 0.932 0.938 0.914 0.912 0.919 0.931 0.932 0.926

Table 3: Sample average of total number of raw observations when AR(1) processes are tested under the SC configuration,

k = 10, φ = 0.9, n0 = 1000, and δ = σ1/n0. Entries are shown in units of 104.

R+ KN+ KN++

m0 OA OCvM A OA OCvM A OA OCvM A

500 51.65 51.54 145.76 32.45 33.06 90.83 6.52 6.56 7.20

250 17.92 17.86 31.03 9.78 9.78 18.51 5.95 5.96 6.34

200 15.83 15.30 24.04 8.48 8.05 13.95 5.79 5.75 6.07

125 12.26 12.08 15.98 6.22 6.12 8.46 5.12 5.09 5.32

100 10.94 10.86 13.34 5.45 5.39 7.02 4.74 4.71 4.85

Table 4: Estimated PCS when AR(1) processes are tested under the SC configuration, k = 10, φ = 0.9, n0 = 1000, nominal

PCS of 0.95, and δ = σ1/n0.

R+ KN+ KN++

m0 OA OCvM A OA OCvM A OA OCvM A

500 0.988 0.992 0.964 0.987 0.990 0.972 0.943 0.947 0.901

250 0.963 0.968 0.956 0.951 0.958 0.957 0.943 0.947 0.923

200 0.964 0.953 0.963 0.948 0.947 0.945 0.954 0.953 0.929

125 0.964 0.941 0.957 0.933 0.931 0.949 0.922 0.920 0.909

100 0.947 0.923 0.932 0.917 0.917 0.919 0.902 0.900 0.896
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Table 5: Sample average of total number of raw observations when AR(1) processes are tested under the MDM configuration,

k = 10, φ = 0.9, n0 = 1000, and δ = σ1/n0. Entries are shown in units of 104.

R+ KN+ KN++

m0 OA OCvM A OA OCvM A OA OCvM A

500 51.33 51.26 143.49 14.25 14.28 40.10 3.47 3.51 4.11

250 18.02 17.96 31.35 4.32 4.31 8.19 2.88 2.88 3.28

200 15.88 15.35 24.00 3.74 3.58 6.02 2.74 2.61 3.08

125 12.28 12.09 15.90 2.77 2.75 3.75 2.44 2.43 2.66

100 10.92 10.86 13.35 2.49 2.46 3.16 2.25 2.24 2.43

Table 6: Estimated PCS when AR(1) processes are tested under the MDM configuration, k = 10, φ = 0.9 and n0 = 1000,

nominal PCS of 0.95, and δ = σ1/n0.

R+ KN+ KN++

m0 OA OCvM A OA OCvM A OA OCvM A

500 0.995 0.998 0.994 0.999 0.997 0.995 0.992 0.993 0.995

250 0.993 0.994 0.995 0.992 0.993 0.995 0.990 0.990 0.987

200 0.993 0.992 0.995 0.992 0.992 0.996 0.994 0.994 0.990

125 0.985 0.987 0.989 0.987 0.990 0.986 0.985 0.984 0.982

100 0.983 0.985 0.983 0.984 0.984 0.987 0.986 0.986 0.991
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