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ABSTRACT

Computational methods play an important role in

modern finance. Through the theory of arbitrage-

free pricing, the price of a derivative security can be

expressed as the expected value of its payouts under

a particular probability measure. The resulting in-

tegral becomes quite complicated if there are several

state variables or if payouts are path-dependent. Sim-

ulation has proved to be a valuable tool for these cal-

culations. This paper summarizes some of the recent

applications and developments of the Monte Carlo

method to security pricing problems.

1 INTRODUCTION

The increase in complexity of financial models and

securities in recent years has led to greater atten-

tion to computational methods in the financial in-

dustry. Numerical methods are routinely used for a

variety of applications, including the valuation of se-

curities, the estimation of their sensitivities, risk anal-

ysis and stress testing of portfolios. Simulation is a

useful tool for many of these calculations, evidenced

in part by the voluminous literature of successful ap-

plications. Examples include the stochastic volatil-

it y applications in Duan (1995) and Hull and White

(1987); the valuation of mortgage-backed securities in

Schwartz and Torous (1989); the valuation of exotic

options in Kemna and Vorst (1990); and the valu-
ation of interest-rate derivative claims in Carverhill

and Pang (1995) and Rltchken and Sankarsubrama-

nian (1995).

We focus on the use of simulation in pricing deriva-

tive securities, also called contingent claims. These

are securities, such as options or futures, whose pay-

outs are determined by the value of certain underly-

ing assets. The prices of derivative securities can be

represented as expectations with respect to an appro-

priate probability measure involving the underlying

assets. If the number of underlying assets is large, or

if the rule by which the derivative security derives its

value is sufficiently complex, simulation becomes an

attractive means for computing the price.

The representation of derivative security prices as

expectations is a consequence of a deep result of finan-

cial theory; see, e.g., Duffie (1992) for background.

Briefly, under a condition called market completeness,

a derivative security can be replicated through trad-

ing in the underlying assets. The absence of arbi-

trage thus entails a relation between the price of the

derivative security and those of the underlying assets.

It turns out that, to preclude arbitrage, the price of

the derivative security must be the expected value of

its discounted payouts with respect to an equivalent

martingale measure, also called a risk-neutral proba-

bility. This is the probability measure under which

the discounted underlying assets become martingales;

i.e., all assets have the same expected rate of return,

which must then be the riskless rate.

To make this more concrete, we consider the Black-

Scholes option pricing model. A typical model in
continuous-time finance of the evolution of the price

St of a stock or other asset is the stochastic differen-

tial equation

dS = @ dt + QS dW, (1)

in which p is the rate of return, g is the volatility, and

W is a standard Brownian motion process. Under the

risk-neutral measure, the drift p is replaced by the
risk-free rate, r, thus making e–”t St a martingale. An

option to buy the stock at time T at price K (called
the strike price) will pay (ST – K)+ at time T. The

current price of the option is the expected present

value of this payout with respect to the risk-neutral
measure; i.e., it is

C = E[e-’~(S~ – K)+],

the expectation taken with ~ = r in (l).
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This particular expectation can be evaluated in

closed-form, resulting inthecelebrated Black-Scholes

formula (see, e.g., Hull 1993). For purposes of il-

lustration, we nevertheless point out how simulation

would be used to compute the expectation. It fol-

lows from (1) that ST has a lognormal distribution.

Specifically, under the risk-neutral measure, it admits

the representation

ST = floe(”-~”2)T+”=z, (2)

where Z is a standard normal random variable. Sub-

stituting independent samples Z1, . . . . Zn from the

standard normal distribution into (2) yields indepen-

dent samples S$), i = 1, . . . . n, of the terminal stock

price. An unbiased estimator of the option price is

then given by

From this simple example, we may abstract the fol-

lowing general steps in pricing by simulation:

o Simulate sample paths of the underlying state

variables (e.g., underlying asset prices and inter-

est rates) over the relevant time horizon. Simu-

late these according to the risk-neutral measure.

o Evaluate the discounted cash flows of a security

on each sample path, as determined by the st ruc-

ture of the security in question.

o Average the discounted cash flows over sample

paths.

In the example above, the “paths” consisted simply of

‘i) More generally, (as we willthe terminal values ST .

see shortly) a pricing problem may require simulating

a discrete-time approximation to the continuous-time

process modeled by (l).

The rest of this paper is organized as follows. Sec-

tion 2 discusses the use of some variance reduction

techniques. Section 3 examines the application of low

discrepancy sequences (quasi-Monte Carlo methods).

Section 4 discusses the estimation of risk measures.

Section 5 touches on further topics of current inter-

est.

2 VARIANCE REDUCTION

In this section, we discuss the implementation of three
specific variance reduction techniques in security pric-
ing problems. The met hods we discuss are antithetic

variates, cent rol variates, and moment matching.
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2.1 Antithetic Variates

This method is more notable for its widespread famil-

iarity among finance professionals than for its eficacy.

Its popularity is no doubt due to its simplicity.

Consider, again, the problem of computing the

Black-Scholes price of a call option, as discussed

around (3). Though there is no need to use simu-

lation in this case, it serves as a useful illustration.

In this setting, the implementation of antithetic vari-

ates is particularly simple; for if Z~ has a standard

normal distribution, then so does –Zi. The price ~$)

obtained from (2) with Zt replaced by – Zi is thus a

valid sample from the terminal stock price distribu-

tion. Similarly, each

~i = e-”T max{O, 5$) – -K}

is an unbiased estimator of the option price, and

therefore so is

is

Because ~,’+v uses twice as many samples as ~, it

preferred only if

2var[dAv]< Var[d],

which simplifies to Cov[Ci, &i] < 0. That this con-

dition is in fact met is a simple consequence of the

monotonicity of the mapping from Z{ to C%.

More elaborate options may depend on the en-

tire path of stock prices rather than just the ter-

minal value ST. In this case, it becomes necessary

to simulate a discrete-time approximation {S~,, j =

o,.. . ,m} of the path {St, O < t < 7’}. Each Stj+l

can be generated from the preceding price Sij and

a normal variate Zj+l according to (2), with T re-

placed by tj+l– tj in the exponent. An antithetic

path can then be generated using –Zl,.. ., –Z~ in

place of Zl,. . . ,Zm.

For some further examples of the application of an-

tithetic in finance, see Boyle (1977), Clewlow and

Carverhill (1994), and Hull and White (1987).

2.2 Centrol Variates

The use of control variates to reduce variance is well-

known in simulation and has attracted some interest

in financial applications. We describe two particu-

larly effective examples specific to the financial set-

ting.
Our first example is an application to Asian op-

tions proposed by Kemna and Vorst (1990). The pay-

off on an Asian option depends on the (arithmetic)
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average price of the underlying asset. An example of

an Asian option pricing problem is the computation

of

where
T

~A=+

/

St dt.
o

As always, the expectation is taken with the rate of

return on S equal to the risk-free rate r; i.e., the ex-

pectation is with respect to the equivalent martingale

measure.

There is no closed-form expression for PA because

there is no simple characterization of the distribution

of 3A. Even in discrete time, the distribution of an

average of lognormal random variables does not admit

a simple expression. In contrast, the geometric mean

is itself lognormally distributed, resulting in a

tractable expression for

Based on this observation, Kemna and Vorst

(1990 )_replaced the straightforward estimator PA =

e-”T(S.4 – 2’)+ with the control-adjusted estimator

PA+ (PG – ~G),
where P~ = e-’T(~~A– K)+ .ABecause of the strong

correlation between PG and PA, they achieved sub-

stantial variance reduction using this approach. A

further reduction in variance could presumably be

obtained by optimizing the coefficient on (PG – PG ),

implicitly taken to be 1 in their implementation.

The martingales inevitably present in a security

pricing simulation provide another source of control

variates. The simplest of these in an option pric-

ing simulation is the underlying asset itself. Because

{e-”tS,} is a martingale, we have ~[e-’T&] = So,

so (e–rT& – So) provides a simple control. If there

are multiple underlying assets, then multiple controls

are readily available.

Clewlow and Carverhill (1994) have taken this ob-
servation a step further. They simulate a discrete-

time approximation {St,, j = O, . . . . m} of the asset
price and build a control variate from the increments

ASj = S~,~l – St,. They choose the coefficients on

these increments to approximate the change in the

option price resulting from AS9. Specifically, they

use the derivative of the option price with respect to

the underlying asset. This approach mimics the trad-

ing strategy used to replicate (or hedge) the option.

As the time increment used in the discrete-time ap-

proximation decreases to zero, the hedging strategy

exactly replicates the option, ultimately resulting in a

zero-variance simulation estimate. A possible weak-

ness of this approach is the difficulty of computing

the derivative of the option price at each time step.

For further applications of the control variate

technique in financial simulation, see Boyle (1977),

Broadie and Glasserman (1993), Carverhill and Pang

(1995), Duan (1995), and Ritchken and Sankarsubra-

manian (1995).

2.3 Moment Matching

Next we describe a variance reduction technique pro-

posed by Barraquand (1994), who termed it quadratic

resampling. His technique is based on moment match-

ing. As before, we introduce it with the simple ex-

ample of estimating the call option price on a single

asset and then generalize.

As before, let Zi, i = 1. . . . . n, denote independent

standard normals used to drive a simulation. The

sample moments of the n Z’s will not exactly match

those of the standard normal. The idea of moment

matching is to transform the Z’s to match a finite

number of the moments of the underlying population.

For example, the first moment of the standard normal

can be matched by defining

.Z=zi–z, i=l, . . ..n. (4)

where 2? = ~~=1 Zi/n is the sample mean of the 2’s.

Note that the ~~’s are normally distributed if the Zi’s

are normal. However, the ~,’s are not independent.

As before, terminal stock prices are generated from

the formula

&(i) = SOe(”-~”’)~+”fi2’, i=l, . . ..n.

An unbiased estimator of the call option price is the

average of the n values d~ = e–”T max(~T(i) – K, O).

In the standard Monte Carlo method, confidence

intervals for the true value C could be estimated from

the sample mean and variance of the estimator. This

cannot be done here since the n values of ~ are no
longer independent, and hence the values ~% are not

independent. This points out one drawback of the

moment mat thing method: confidence intervals are

not as easy to obtain. Indeed, the sample variance of

the 6,’s is usually a poor estimate of Var[~i].

Equation (4) shows one way to match the first mo-

ment of a distribution with mean zero. If the under-

lying population has mean pz, transformed Z’s can

be generated using ~, = Z. – 2 + ,LLZ. The idea can
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easily be extended to match two moments of a distri-

bution. In this case, an appropriate transformation

is

2, = (Zi–z):+vz, 2=1, . . ..?2. (5)

where sz is the sample standard deviation of the

Zt’s and Cz is the population standard deviation. Of

course, for a standard normal, pz = O and crz = 1.

An estimator of the call option price is the average of

the n values ~~.

Using the transformation (5), the 2i’s are not nor-

mally distributed even if the Zi’s are normal. Hence,

the corresponding ~i are biased estimators of the true

option value. For most financial problems of practical

interest, this bias is likely to be small. However, the

bias can be arbitrarily large in extreme circumstances

(even when only the first moment of the distribution

is matched). This can happen, for example, if the

transformation (4) changes the support of the 2’s.

From (2), the mean and variance of the terminal

stock price ST are also known, so the moment match-

ing idea could be applied to the simulated terminal

stock values ST(i). Our (limited) numerical experi-

ence does not provide consistent evidence for choos-

ing between these moment mat thing methods. Both

methods tend to outperform antithetic, but control

variates seem most effective of all. This is not surpris-

ing, since it can be shown that moment matching is

asymptotically equivalent to using moments as con-

trols wit bout optimizing the coefficients.

3 LOW DISCREPANCY SEQUENCES

Many studies have found that for the computation of

integrals in moderate dimensions, quasi-Monte Carlo

based on low discrepancy sequences outperforms ordi-

nary Monte Carlo based on random inputs. Typically,

the error in Monte Carlo decreases at rate 0(1/fi),

whereas the error using low discrepancy sequences de-

creases at rate O((log n)d/n), where d is the dimen-

sion. For background on low discrepancy methods,

see Niederreiter (1992) and Spanier and Maize (1994).

These methods have recently been applied to finan-

cial simulation problems with considerable empirical

success. Specific applications are more fully described

in papers by Birge (1995), Joy, Boyle, and Tan (1995)

and Paskov (1994). These suggest that the integrals

involved in security pricing may be well suited to

quasi-Monte Carlo. There are two reasons why se-

curity prices might lend themselves better to quasi-
Monte Carlo than do other classes of integrals. The
first is that the integrands tend to be fairly smooth,

and it is generally recognized that smoothness helps

in using quasi-Monte Carlo. The second reason is that

the dimension of pricing problems is often linked to

the length of the time horizon over which a security

has payouts, and payouts in the distant future are

significantly discounted in computing a price. Thus,

many of the higher dimensions may contribute little

to the value of the integral which potentially reduces

the effective dimension of the problem.

Next we test standard Monte Carlo versus the low

discrepancy sequences of Faure, Sobol’, and Halton.

We estimate the price of a discretely sampled geomet-

ric average Asian option, which is given by

C = E[e-”T(S – K)+],

where ~ = (~~=1 S3)ljd and S1 is the asset price

at time jT/d. Since ~ is lognormally distributed, an

exact formula is available for C. We generate 500 test

problems by selecting random problem parameters.

For each test problem, we compute price estimates

based on n = 50,000 sample paths of the asset price

using the four methods. Root-mean-squared (RMS)

relative error results are shown in the next figure for

problems of dimension d = 10, 50, and 100.
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Results for the Halton sequence were not compet-

itive and are suppressed. RMS error for standard

Monte Carlo is nearly independent of the problem di-

mension. The error with the Sobol’ method grows

smoothly with the problem dimension and grows er-

ratically for the Faure method (though this could be

an artifact of the value of n).

These results are broadly consistent with existing

literature. Bratley, Fox, and Niederreiter (1992) con-

clude that quasi-Monte Carlo is unlikely to outper-

form ordinary Monte Carlo in dimensions higher than

about 12, but their test problems could be more dif-
ficult than those that typically arise in a financial

context. Paskov (1994) reports successful application

of Sobol’ sequences in the evaluation of a 360 dimen-
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sional integral arising from the pricing of a collateral-

ized mortgage obligation. He uses much larger values

of n and this could explain the better performance

for such a high dimensional problem.

The application of low discrepancy methods in fi-

nance is not immune from other shortcomings associ-

ated with these met hods: there are no simple, reliable

error bounds or termination criteria.

4 ESTIMATING RISK MEASURES

Most of the discussion in this paper centers on the

use of Monte Carlo for pricing securities. In prac-

tice, the evaluation of price sensitivities is often as

import ant as the evaluation of the prices themselves.

Indeed, whereas prices for some securities can be ob-

served in the market, their sensitivities to parameter

changes typically cannot and must therefore be com-

puted. Since price sensitivities are important mea-

sures of risk, the growing emphasis on risk manage-

ment systems suggests a greater need for their effi-

cient computation.

The derivatives of a derivative security’s price with

respect to various model parameters are collectively

referred to as Greeks, because several of these are

commonly referred to with the names of Greek letters.

(See, e.g., Chapter 13 of Hull (1993) for background.)

Perhaps the most important of these — and the one

to which we give primary attention — is delta: the

derivative of the price of a contingent claim with re-

spect to the current price of an underlying asset. The

delta of a stock option, for example, is the derivative

of the option price with respect to the current stock

price. An option involving multiple underlying assets

has multiple deltas, one for each underlying asset. In

the rest of this section, we discuss various approaches

to estimating price sensitivities, especially delta.

4.1 Finite-Difference Approximations

Consider the problem of computing the delta of the

Black-Scholes price of a call option; i.e., computing

.=g,

where C is the option price and SO is the current

stock price. There is an explicit expression for delta,

so simulation is not required, but the example is use-

ful for purposes of illustration. A crude estimate of

delta is obtained by inde~endently generating two

discounted option payoffs, C(SO) and C’(SO + ~), from

initial prices So and So + c (according to (2)-(3)) and

computing the finite-difference ratio

A = rl[qso + 6)6)– 6(s0)]. (6)

Repeating this many times and averaging we obtain

an estimator converging to

6-1 [C’(SO+6) – C(so)], (7)

where C(. ) is the option price as a function of the

current stock price.

This discussion suggests that to get an accurate

estimate of A we should make e small. However, be-

cause we generated ST and ST(e) independently of

each other, we have

Var[A] = f-2(Var[d(S0 +6)] +Var[C(SO)]) = 0(6-2),

so the variance of ~ becomes very large if we make

~ small. To get an estimator that converges to A we

must let c decrease slowly as n increases, resulting in

slow overall convergence. A general result of Glynn

(1989) shows that the best possible convergence rate

using this approach is typically n–l t4. Replacing the

forward difference estimator i: (6) with the central

difference (2e)–1 [C(SO + c) – C(SO – e)] typically im-

proves the optimal convergence rate to n–lj3. These

rates should be compared with n–~12, the rate ordi-

narily expected from Monte Carlo.

Better estimators can generally be obtained using

the method of common random numbers, which, in

t~is context, simply USESthe same Z for ~(So ) and

C(SO + c). Denote by A the finite-difference approx-

imation thus obtained. For fixed e, the sample mean

of indep~ndent rep~cations of A also converges to (7).

But if C(SO) and C(SO + e) are positively correlated

when simulated with common random numbers, then

Var[A] < Var[~]. That they are in fact positively

correlated is easily verified in this example.

The impact of this variance reduction is most dra-

matic when e is small. A simple calculation shows

that, using common random numbers,

,?@(so + e)e)– C5(SO)12]= 0(62), (8)

and therefore that

Var[c-l{~(SO + c) – ~(So)}] = O(l);

i.e., the variance of A remains bounded as e * O,

whereas we saw previously that the variance of & in-
creases at rate 6– 2. Thus, the more precisely we try

to estimate A (by making e small) the greater the

benefit of common random numbers. Moreover, this

indicates that to get an estimator that converges to

A we may let e decrease faster as n increases than

was possible with A, resulting in faster overall con-

vergence. An application of Proposition 2 of L’Ecuyer

and Perron (1994) shows that a convergence rate of

n – If 2 can be achieved.
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The dramatic success of common random numbers

in this example relies on the fast rate of mean-square

convergence of C(SO + c) to C(SO ) evidenced by (8).

This rate does not apply in all cases. It fails to hold,

for example, in the case of a digital option paying a

fixed amount B if ST > K and O otherwise. The price

of this option is C = e–TTBP(ST > K); the obvious

simulation estimator is

~(SO) = e–rTBl{s.>~],

where 1{ . } denotes the indicator of the event { . }.

Because d(So ) and C(SO + e) differ only when ST <

K < ST(6), we have

E[lqs(l + e)e)– qso)y] = 0(6),

compared with O(C2 ) for a standard call. As a re-

sult, delta estimation is more difficult for the digi-

tal option, and a similar argument applies to barrier

options generally. Even in these cases, the use of

common random numbers can result in substantial

improvement compared with differences based on in-

dependent runs.

4.2 Direct Estimates

Even with the improvements in performance obtained

from common random numbers, derivative estimates

based on finite differences still suffer from two short-

comings. They are biased (since they compute differ-

ence ratios rather than derivatives) and they require

multiple resimulations: estimating sensitivities to d

parameter changes requires repeatedly running one

simulation with all parameters at their base values

and d additional simulations with each of the param-

eters pert urbed. The computation of 10–50 Greeks

for a single security is not unheard of, and this repre-

sents a significant computational burden when mul-

tiple resimulations are required.

Over the last decade, a variety of direct meth-

ods have been developed for estimating derivatives

by simulation. Direct methods compute a derivative

estimate from a single simulation, and thus do not

require restimulation at a perturbed parameter value.

Under appropriate conditions, they result in unbiased

estimates of the derivatives themselves, rather than

of a finite-difference ratio. Our discussion focuses on

the use of pathwise derivatives as direct estimates,

based on infinitesimal perturbation analysis.

The pathwise estimate of the tru~ delta dC/dSo is

the derivative of the sample price C’ with respect to

SO. More precisely, it is

dti

dSo
— = liioc-l[d(so + 6)6)– qso)],

provi~ed the limit exists with probability 1. If 6( S.)

and C(SO + ~) are computed from the same Z, then

provided ST # K, we have

dk de d& ST

—=&%=edSo
‘TTl{ST>K}~. (9)

At ST = K, C fails to be differentiable; however,

since this occurs with probability zero, the random

variable d~/dSo is almost surely well defined.

The pathwise derivative d6/dSo can be thought of

as a limiting case of the common random numbers

finite-difference estimator in which we evaluate the

limit analytically rather than numerically. It is a di-

rect estimator of the option delta because it can be

computed directly from a simulation starting at So

without the need for a separate simulation at a per-

turbed value So. This is evident from the expression

in (9). The question remains whether this estimator

is unbiased; that is, whether

[-1* de dC

dSo = – “ 4Y”dSo

The unbiasedness of the pathwise estimate thus re-

duces to the interchangeability of derivative and ex-

pectation. The interchange is easily justified in this

case; see Broadie and Glasserman (1993) and Fu and

Hu (1993) for this example and others.

The utility of this technique rests on its applicabil-

ityy to more general models. In Broadie and Glasser-

man (1993), pathwise estimates are derived and stud-

ied (both theoretically and numerically) for Asian op-

tions and a model with stochastic volatility. For ex-

ample, the Asian option delta estimate is simply

e““T% –so {S> K}’

where ~ is the average asset price used to determine

the option payoff. Evaluating this expression takes

negligible time compared with restimulating to esti-

mate the option price from a perturbed initial stock

price. The pathwise estimate is thus both more accu-

rate and faster to compute than the finite-difference

approximation. These advantages extend to a wide

class of problems.

As already noted, the unbiasedness of pathwise

derivative estimates depends on an interchange of

derivative and expectation. In practice, this generally

means that the security payoff should be a pathwise

continuous function of the parameter in question.
The standard call option payoff e–r~ max{O, ST – ~}

is continuous in each of its parameters. An example

where continuity fails is a digital option with payoff
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e–“T1{ST>K} ,B with B the amount received if the

stock finishes in the money. Because of the disconti-

nuity at ST = K, the pathwise method (in its sim-

plest form) cannot be applied to this type of option.

The problem of discontinuities often arises in the

estimation of gamma, the second derivative of an op-

tion price with respect to the current price of an un-

derlying asset. Consider, again, t~e standard call op-

tion. We have an expression for dC/dSo in (9) involv-

ing the indicator l{s~ >K}. This shows that d~/dSo

is discontinuous in ST, preventing us from differenti-

ating pathwise a second time to get a direct estimator

of gamma.

To address the problem of discontinuities, Broadie

and Glasserman (1993) construct smoothed estima-

tors. These estimators are unbiased, but not as sim-

ple to derive and implement as ordinary pathwise esti-

mators. Broadie and Glasserman also investigate the

use of the likelihood ratio method for derivative es-

timation. This method differentiates the probability

density of an asset price, rather than the outcome of

the asset price itself. The domains of this method and

the pathwise method overlap, but neither contains

the other. When both apply, the pathwise method

generally has lower variance.

Overviews of these methods can be found in

Glasserman (1991), Glynn (1987), and Rubinstein

and Shapiro (1993). For discussions specific to fina-

ncial applications see Broadie and Glasserman (1993)

and Fu and Hu (1993).

5 FURTHER TOPICS

We conclude this paper with a brief discussion of

other recent developments in the application of Monte

Carlo methods to security pricing.

There have recently been some advances made on

the problem of pricing American contingent claims by

simulation. These are securities whose cash flows de-

pend on decisions of the owner as well as on the path

of the underlying asset or assets. (When no decisions

are involved, the security is called European. ) Pricing

an American contingent claim involves determination

of an optimal policy and of the present value of a se-

curity’s payouts under that policy. The optimization
involved makes this a difficult problem for simulation.
Other numerical methods, however, face difficulties

when the dimension of the problem is large. Tilley
(1993), Grant, Vera, and Weeks (1994), Barraquand

and Martineau (1995), and Broadie and Glasserman

(1995), have proposed simulation-based methods to

price American-style securities.

Reider (1993) and Nielsen (1994) have explored the

possibility of using importance sampling to speed up

the computation of option prices. This technique

changes the underlying probability measure to give

greater weight to paths with otherwise low proba-

bility. The resulting estimate is then weighted by a

likelihood ratio to eliminate bias resulting from the

change of measure. Reider’s implementation changes

the drift in a process with continuous state space;

Nielsen’s changes the transition probabilities in a bi-

nomial lattice. Both techniques show potential for

variance reduction.

An important issue in any security-pricing simu-

lation (but one that we have not addressed) is the

approximation of a diffusion by a discrete-time pro-

cess. Kloeden and Platen (1992) discuss a variety

of methods for constructing discrete-time approxi-

mations with different orders of convergence. For

any such scheme, decreasing the time step can be

expected to give more accurate results, but at the

expense of greater computational effort. Duffie and

Glynn (1993) analyze this trade-off and characterize

asymptotically optimal time steps as the overall com-

putational effort grows.
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