
Proceedings of the 2007 Winter Simulation Conference

S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

EXTENSION OF THE DIRECT OPTIMIZATION ALGORITHM FOR NOISY FUNCTIONS

Geng Deng

Department of Mathematics

University of Wisconsin

480 Lincoln Dr.

Madison, WI 53706, U.S.A.

Michael C. Ferris

Computer Sciences Department

University of Wisconsin

1210 W. Dayton Street

Madison, WI 53706, U.S.A.
ABSTRACT

DIRECT (DIviding RECTangles) is a deterministic global

optimization algorithm for bound-constrained problems.

The algorithm, based on a space-partitioning scheme, per-

forms both global exploration and local exploitation. In

this paper, we modify the deterministic DIRECT algorithm

to handle noisy function optimization. We adopt a simple

approach that replicates multiple function evaluations per

point and takes an average to reduce functional uncertainty.

Particular features of the DIRECT method are modified

using acquired Bayesian sample information to determine

appropriate numbers of replications.

The noisy version of the DIRECT algorithm is suited

for simulation-based optimization problems. The algorithm

is a sampling approach, that only uses objective function

evaluations. We have applied the new algorithm in a number

of noisy global optimizations, including an ambulance base

simulation optimization problem.

1 INTRODUCTION

In simulation-based optimization, the objective is often as-

sociated with certain performance measure of a simulation

system. In this paper, we consider simulation problems that

are subject to simple bounds. The form of the optimization

problem is expressed as follows:

min
x∈Ω

f (x) = E[F(x,ξ (ω)], (1)

where

Ω = {x ∈ R
n : l ≤ x≤ u}.

l and u are the lower and upper bounds for the input parameter

x, respectively. The underlying function f (·) is unknown

and must be estimated. The function F(·,ξ (ω)) is called

a sample response function. The output of the function

F is affected by a random variable ξ (ω). Thus, several
41-4244-1306-0/07/$25.00 ©2007 IEEE
characteristics of our objective function are relevant here: (a)

evaluation has various levels of noise, (b) not differentiable,

and (c) computationally expensive to evaluate.

The DIRECT optimization algorithm (Jones, Perttunen,

and Stuckman 1993, Jones 2001, Finkel 2003, Finkel 2005)

is a global optimization method first motivated by Lipschitz

optimization, that has proven to be effective in a wide range

of application domains. The algorithm centers around a

space-partitioning scheme that divides large hyperrectan-

gles into smaller ones. The center of each hyperrectangle,

considered as a representing point of the hyperrectangle, is

evaluated via the objective function. At each iteration, a

set of potentially optimal hyperrectangles are selected for

further divisions. See Figure 1 for an illustration of the al-

gorithm on the Goldstein price function (see also Figure 5).

Figure 1: The DIRECT optimization algorithm

When the objective function is subjected to uncertainty,

some crucial operational steps of the DIRECT algorithm

are affected. For example, the choice of potentially optimal

hyperrectangles becomes incorrect because of the noisy func-

tion values, possibly misleading the algorithm to search in
97

Deng and Ferris
inferior regions. We modify the original DIRECT algorithm

using a simple approach - sampling multiple replications

at each point to reduce output uncertainty. We expect the

algorithm to proceed correctly as in the deterministic case.

However, we must face the issue of handling the tradeoff

between two design goals: efficiency of the algorithm versus

total computational effort. Since the objective function is

often computationally expensive to evaluate, we must be

very cautious in using function evaluations. On the other

hand, we need to maintain a certain precision in the functions

for correctness of the algorithm. In our modification, we

apply Bayesian techniques to derive a posterior distribution

for the function output at each point, and incorporate the

distribution information into the algorithm to determine an

appropriate number of replications to be used.

The remainder of the paper is arranged as follows.

In Section 2 we will describe the DIRECT optimization

algorithm. In Section 3 we focus on the modifications of

the algorithm, including the constructions of a Bayesian

posterior distribution and a variance controlling rule to

determine the replication numbers. In Section 4, we will

present test examples and comparison of the algorithm with

other algorithms.

2 THE DIRECT OPTIMIZATION ALGORITHM

The DIRECT algorithm is defined for Lipschitz continu-

ous objective function, a class that includes non-smooth

functions. Bounds on the range of the simulation para-

meter x are required in the design of the algorithm. The

feasible region starts as a single hyperrectangle that is in-

ternally normalized to a unit hyperrectangle. The algorithm

partitions the hyperrectangle into a collection of smaller

hyperrectangles and evaluates the objective function at their

center points. Potentially optimal hyperrectangles are iden-

tified and passed to the next iteration for further partitioning

and investigation. The DIRECT algorithm will converge

to the global optimum of the objective function for dense

enough sampling, but the search process may consume a

large amount of function evaluations. For the algorithm to

be effective, the typical dimension of a problem, as cited

in Jones, Perttunen, and Stuckman (1993), should be less

than 30.

We will give a brief description of the DIRECT algo-

rithm, including two major component steps: (a) partition-

ing hyperrectangles, and (b) identifying potentially optimal

hyperrectangles.

Partitioning hyperrectangles For each hyperrectan-

gle, let D be the coordinate directions corresponding to the

largest side lengths, δ be one third of the largest length,

and c be the center point. The function will explore the

objective values at the points c±δei, for all ei ∈D , where

ei is the ith unit vector. The hyperrectangle will be trisected

along the dimensions in D , first along dimensions whose
49
objective values are better. The procedure continues until

each point c±δei occupies a single hyperrectangle.

In a two-dimensional case, two possible partitioning

scheme are illustrated as follows. Since we only perform

trisections, the length of any side in the unit hyperrectangle

can possibly be 3−k,k = 1,2, . . .

Figure 2: Partitioning hyperrectangles

Identifying potentially optimal hyperrectangles

Selection of potentially optimal hyperrectangles combines

the purposes of both global and local searches. Let H

be the index set of existing hyperrectangles. For each

hyperrectangle j ∈H , we evaluate the function value at

the center representing point f (c j) and note the size of the

hyperrectangle α j. The size α j is computed as the distance

from the center point to the corner point. A hyperrectangle

j ∈H is said to be potentially optimal (j ∈S) if there

exists a constant K̃ such that

f (c j)− K̃α j ≤ f (ci)− K̃αi,∀i ∈H , (2)

f (c j)− K̃α j ≤ fmin− ε| fmin|. (3)

In the above expressions, fmin is the lowest function value

available and ε is a parameter that balances between global

and local search. The parameter is typically nonsensitive

and set as 0.0001.

An equivalent interpretation of the process of selecting

potential optimal rectangles is illustrated in Figure 3. First

sort the hyperrectangles in groups according to the size α .

Each hyperrectangle is plotted in the figure as a black dot

in accordance with its center function value f (c j) and size

α j. Criteria (2) and (3) correspond to selecting rectangles

on the lower convex hull of the graph (hyperrectangles that

are selected are denoted as white dots). The introduction of

ε may result in exclusions of good hyperrectangles in the

smaller size groups. Thus ε is considered as a balancing

parameter between local and global search. As noted from

the figure, the best hyperrectangle in the largest size group

is always selected. The author claims that the algorithm
8

d Ferris

9

Deng an

will eventually converge to the global optimum because the

maximum size max j α j decreases to zero and the entire

search space is thoroughly explored.

Figure 3: Identifying potentially optimal hyperrectangles

With the two key component steps available, the process

of the DIRECT algorithm is straightforward and we summa-

rize the steps of the algorithm below. More details on this

algorithm can be found in Jones, Perttunen, and Stuckman

(1993).

The DIRECT optimization algorithm

Given the lower bound l and upper bound u for the

optimization problem.

1. Normalize the domain as a unit hyperrectangle.

2. For iterations k = 1,2, . . .

(a) Identify the potentially optimal hyperrectangle

set S ⊂H .

(b) Divide the hyperrectangles in S according to

the partitioning scheme.

3. Terminate the algorithm when the total number of

function evaluations hits a maximum limit or no

improvement of the objective function values is

observed after a number of iterations.

4. Return the best point found.

3 MODIFICATIONS

In this section, we will focus on describing our modifica-

tions to the deterministic DIRECT algorithm. When noise

is present in the objective function output, there are two

problematic points in the original DIRECT algorithm.

• Incorrect potentially optimal hyperrectangle set

S As we have discussed in Section 2, S ⊂H

is determined according to the function values

f (c j), j∈H and size α j (see the equivalent process

4

in Figure 3). When the objective values are volatile,

the resulting set S is unstable. Therefore, the al-

gorithm working with the unstable set will possibly

miss important search regions or waste computa-

tional effort in redundant regions.

• Biased solution The DIRECT algorithm always

keeps track of the best point and corresponding

best objective value fmin. If the objective function

is noisy, we cannot assert that the point with the

lowest objective value fmin is the best point. In

such cases, the algorithm may return a solution

that is incorrect due to bias from noise.

As we have mentioned above, our primary approach

is to sample multiple replications per point and use the

averaged value in the algorithm. In order to choose the

appropriate number of replications, we first construct a

Bayesian posterior distribution for the functional output at

each point, and incorporate the distribution information to

help determine the appropriate number of replications (see

Figure 4). Based on the replication samples, the Bayesian

posterior distribution provides not only mean but also vari-

ance information of the functional output that can be utilized

by the algorithm. At each iteration of the algorithm, our

modification focuses on determining and evaluating a nec-

essary number of replications at each point, such that the

algorithm can maintain a certain accuracy. The accuracy

here explicitly addresses the two problematic issues: the

accuracy of the identified promising set S and the accuracy

of the final output of the algorithm.

Based on the mean and variance information, our sam-

pling scheme may generate different numbers of samples

for different points. For example, in Figure 4, since Point

1 has a large mean function value (or the volatility is rela-

tively small), 3 replications are enough to obtain the desired

accuracy. The number 3 is the minimum number of repli-

cations in order to construct the posterior distribution. For

Point 3 and Point 5, since their objective values are small

(or volatilities are relatively large), more replications are

necessary at these points.

3.1 Bayesian Posterior Analysis

There is an extensive literatures on using Bayesian meth-

ods in simulation output analysis. Pertinent work includes

Chick and Inoue (2001) and Chick and Inoue (2003), which

have implemented Bayesian estimation in ordering discrete

simulation systems (see ranking and selection (Chen, Chen,

and Yucesan 1999, Kim and Nelson 2003)). Deng and

Ferris (Deng and Ferris 2006a, Deng and Ferris 2006b)

propose a similar Bayesian analysis to improve a surrogate

model based optimization algorithm.

In the Bayesian framework, the unknown mean µ(c j)
and variance σ2(c j) of F(c j,ξ (ω)) are considered as ran-

9

Deng an
Figure 4: Generate multiple replications at each point and

derive Bayesian posterior distributions

dom variables, whose distributions are inferred by Bayes’

rule. Since we do not have any prior assumption for the

distributions of µ and σ2, we assign non-informative prior

distributions for them. We can estimate the joint posterior

distributions of µ(c j) and 1/σ2(c j) as

1
σ2(c j)

|X ∼ Gamma((r j−1)/2, σ̂2(c j)(r j−1)/2),

µ(c j)|σ2(c j),X ∼ N(µ̄(c j),σ
2(c j)/r j).

(4)

Here we denote the sample mean and sample variance of

the data by µ̄(c j) and σ̂2(c j). The notation ‘ |X’ stands

for ‘posterior distribution with the knowledge of data’.

The gamma distribution Gamma(α,β) has mean α/β and

variance α/β 2. r j is the number of replications at c j.

The distribution of the mean value µ(c j) is of the most

interest to us. When the sample size is large, we can replace

the variance σ2(c j) with the sample variance σ̂2(c j) in (4),

and can asymptotically derive the posterior distribution of

µ(c j)|X as

µ(c j)|X ∼ N(µ̄(c j), σ̂
2(c j)/r j). (5)

Moreover, using an exact computation, the marginal dis-

tribution of µ(c j)|X inferred by (4) (eliminating σ2(c j))
is,

µ(c j)|X ∼ St(µ̄(c j),r j/σ̂2(c j),r j−1), (6)

where a random variable with Student’s t-distribution

St(µ ,κ,ν) has a mean µ , precision κ , and degrees of

freedom ν . The St(µ,κ,ν) turns out to be a transformation
5

d Ferris

of a standard t-distribution with ν degrees of freedom,

St(µ ,κ,ν) =
1√
κ

St(0,1,ν)+ µ .

(6) is an exact formulation and matches the result of the

frequentists’ estimation in constructing confidence intervals

for µ(c j).
The normal formulation (5) is not as precise. It underes-

timates the output variance when n is small. But compared

to the t-distribution (6), it is more convenient to manipulate,

and the results of both versions turn out to be close, as we

show below. In practice, it may be that using the normal

distribution formulation (5) is adequate.

3.2 Monte Carlo Validation

The goal of our approach is to quantify how the randomness

in the objective function affects the identification of the

promising hyperrectangle set S . This is done by Monte

Carlo validations. Note that the set S is derived using the

observed sample means µ̄(c j) in place of f (c j). As we

know, increasing the number of replications r j at c j can

reduce the uncertainty of the set S , but in our procedure

we want to control the total number of function evaluations

∑ j r j. We do this by sampling the posterior distribution

and use the samples to determine if further replications are

needed.

Suppose we carry out Nt Monte Carlo trial experi-

ments. In the ith experiment i = 1,2, . . . ,Nt , we sample ob-

jective values f̃i(c j) from the derived posterior distribution

µ(c j)|X , j ∈H (cf. (5)) and plug them into the potentially

optimal set identification process (e.g., Figure 3) to generate

a trial set S̃i. On completion of all the experiments (corre-

sponding to multiple executions of one step of DIRECT),

we come up with a collection of trial sets S̃1,S̃2, . . . ,S̃Nt .

We then test the difference between the set S̃i and the

original set S that is suggested by the default execution

of DIRECT. Here, we introduce a volatility controlling rule

that requires the trial sets to be close to the set S

1

Nt

Nt

∑
i

card
(
S̃i

⋂
S

)

card (S)
≥ β , (7)

where β is a threshold value that is normally set as 90%.

The function card returns the cardinality of a set. The

rule is a Monte Carlo validation criterion that guarantees

a sufficiently large overlap between S̃i and S (S̃i and

S are 90% alike on average). Increasing r j should help

reduce the volatility of S , and thus increase the possibility

of satisfying the rule (7).

One the other hand, satisfying the above rule necessi-

tates an appropriate number of replication r j. We adopt a
00

Deng and Ferris
sequential resource allocation procedure. That is, we grad-

ually increase the number r j until the rule (7) is satisfied.

In doing this, we attempt to minimize the total number of

function evaluations. We will selectively increase

r j := γ · r j

for j ∈R, where γ is an inflation factor and

R =
Nt⋃

i

((
S̃i/S

)⋃(
S /S̃i

))
. (8)

The index set R is the union of the possible potential optimal

rectangles in S̃i and S , but excluding the intersection of

them. That implies we only increase r j for hyperrectangles

that are likely to be potentially optimal, but for which the

Monte Carlo experiments give differing output. Note that

if rule (7) is not satisfied, the set R is nonempty. The rule

(7) will be eventually satisfied because when r j increase to

infinity, Monte Carlo samples f̃i(c j) are nonvolatile (gener-

ated from delta distributions), and the trial sets S̃i become

stable.

Procedure to determine a stable set S

Given an initial sample size r0, a threshold value β , and

a number Nt of Monte Carlo experiments. At each iteration

of the DIRECT algorithm, the following procedures should

be executed to identify the potentially optimal set S .

1. Generate r0 function evaluations for each point c j

for pre-estimations of sample mean and sample

variance. Set r j← r0, j ∈H .

2. Carry out Nt Monte Carlo experiments to generate

S̃1,S̃2, . . . ,S̃Nt .

3. While the test rule (7) is not satisfied, increase

r j→ γ · r j, for j ∈R. R is defined in (8). Repeat

Step 2.

4. Return the potentially optimal set S .

Previously evaluated function values can certainly be reused.

Our modification does not change the fact that one of

the rectangles in the largest size group is divided. Therefore,

the division process will finally generate a dense collection

of points filling the entire domain. At the return of the

algorithm, the point with the lowest averaged sample mean

(or averaged sample response function value) is selected.

We cannot guarantee the selected point is the real best point

(in term of the underlying function f (x)) among the explored

points, because the sample mean is still subject to noise.

In fact, choosing the best point from the vast candidate

points is itself a difficult problem (Kim and Nelson 2003).

However, compared to the single replication case in the

original method, our approach of returning the point with

the best sample mean is much more reliable.
50
4 NUMERICAL EXAMPLES

In this section, several numerical experiments of the noisy

DIRECT algorithm are reported, including a particular sim-

ulation optimization problem. We also consider comparing

the noisy DIRECT against the standard DIRECT and the

Snobfit (Stable Noisy Optimization by Branch and Fit) op-

timization algorithm (Huyer and Neumaier 2006), both of

which are well know global optimization methods.

4.1 Numerical Functions

For a numerical objective function f (x,ξ (ω)), we consider

a special case where ξ (ω) is an additive ‘white noise’ term,

thus the form of the objective function becomes

F(x,ξ (ω)) = f (x)+ξ (ω). (9)

We assume the noise term is a normally distributed variable

N(0,σ2), therefore, the expectation form of the objective is

consistent with model (1). Using this formulation, we are

able to compare to the known solutions of the deterministic

function f (x).
The first test function we employed was the Goldstein

price function; see Figure 5 for a contour plot. The function is

a two-dimensional function with a global optimum at (0,−1).
The global objective value at this point is 3. We used the

bounds [−2,2]× [−2,2] in the optimization methods. The

iterates of DIRECT on the noiseless Goldstein price function

were shown in Figure 1. We used the following parameter

settings for the noisy DIRECT algorithm: the initial sample

number r0 = 3, the threshold value β = 90%, the number

of Monte Carlo trial experiments Nt = 100, the inflation

factor γ = 1.3, and the maximum number of replications

per point Nmax = 100.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5: Contour plot of the Goldstein price function

Table 1 shows the performance of the noisy DIRECT

algorithm for the case σ2 = 10. We terminated the algorithm
1

Deng and Ferris
when the total number of function evaluations reached 3000.

The column F̄(xk) records the best value of the averaged

sample response function at iteration k, and f (xk) records

the corresponding best underlying objective function value.

In the earlier iterations, the algorithm used relatively few

function evaluations. We found only 3 replications were used

per point in iterations 1-6. As the iterates got close to the real

solution, more and more replications were used to maintain

the accuracy of the algorithm. Several points that were near

the global solution (0,−1) hit the maximum replication

number 100. We generated a replication number plot for

the whole optimization process, as shown in Figure 6. It can

be shown in this figure that replication numbers increase in

promising regions.

Table 1: The performance of noisy DIRECT for the Gold-

stein price function, with σ2 = 10.

Iteration (k) f (xk) F̄(xk) FN

1 200.54 201.03 15

2 200.54 201.03 21

3 14.92 12.68 39

4 14.92 12.68 63

5 3.64 7.16 81

6 3.64 7.16 111

7 5.84 -0.74 298

8 4.55 2.13 380

9 3.55 3.89 1270

10 3.55 3.72 3010

Based on the same Goldstein price example, we com-

pared the noisy version DIRECT algorithm against the de-

terministic DIRECT and Snobfit. See Table 2 for the com-

parison results. We present both the normal and t version

Bayesian approaches. In order to show the advantage of

our automatic replication number selection scheme, we used

different fixed replications numbers for other algorithms,

for example, 1, 5, 10, 50, and 100. We generated 10 runs

of each algorithm and computed the averaged difference in

terms of the objective value and the position of solution. (y∗

and x∗ are the optimal objective value and solution to the

Goldstein price function.) Our noisy DIRECT performed

the best among all the algorithms. As we observed in the

table, DIRECT with 1 replication generated worse solutions

because the best point is biased by noise, similar to our

analysis in Section 3. DIRECT with 50 fixed replications

performed very close to our algorithm, and DIRECT with

100 fixed replications performed slightly worse because of

early termination of the algorithm (not enough iterations).

The automatic scheme indeed saved computation effort in

the earlier iterations of the algorithm compared to the fixed

replications approaches (cf. Figure 6). The Snobfit al-

gorithm showed the same issues. The Snobfit algorithm

in general needed more function evaluations. As we used
5

Figure 6: Replication number plot in Goldstein price func-

tion optimization. The center region is magnified for a clear

view.

3000 maximum function evaluations, Snobfit with 50 and

100 fixed replications cases terminated very early, thus the

solutions were significantly worse. We expect the algorithm

would perform better given more function evaluations.

We also tested the algorithm on higher dimensional

problems. Although the author claims that the suggested

dimension of problem should be less than 30, the test

problems in Jones, Perttunen, and Stuckman (1993) have

dimensions ranging from 4-6. Here we introduce the ‘perm’

function, which has an adjustable dimension n

f (x) =
n

∑
k=1

(
n

∑
i=1

[ik +θ][xk
i − (1/i)k])2.

This function has a global solution at xi = 1/i, i = 1,2, . . . ,n,

at which the global objective value attains 0. The value

θ was set at 0.5, and the range of the region was [0,1]n.

In our experiment, we allowed a total of 100,000 function

evaluations. Increasing the dimension n made the problem

significantly more difficult to solve. In fact, we were not able

to obtain a satisfactory solution for 20 dimensional problems.

A single run of a 10 dimensional problem (Table 3) showed

the same pattern as in the Goldstein price case.
02

Deng and Ferris
Table 2: Compare noisy DIRECT and other algorithms. (Re-

sults are based on 10 replications of each algorithm).

Replication

#

Mean

| f (xend)− f ∗|
Mean

|xend− x∗|
Noisy

DIRECT

(normal)

Auto 0.3787 0.0288

Noisy DI-

RECT (t)

Auto 0.3445 0.0283

DIRECT

1 2.4570 0.0694

5 1.5045 0.0601

10 0.6119 0.0432

50 0.4073 0.0296

100 0.6474 0.0370

Snobfit

1 2.3231 0.0688

5 2.0332 0.0802

10 0.9761 0.0536

50 11.683 0.1805

100 44.456 0.5695

Table 3: The performance of noisy DIRECT for the 10-

dimensional perm function, with σ2 = 1.

Iteration (k) f (xk) F̄(xk) FN

1 372.5 372.6 63

5 45.9 45.3 435

10 5.45 5.84 1299

15 2.3 1.52 2598

20 0.87 0.82 14139

25 0.55 0.28 50131

30 0.30 0.16 107593

4.2 A Simulation Problem

We applied the noisy DIRECT algorithm to solve the am-

bulance base problem, one of the testbed problems pro-

vided in Pasupathy and Henderson (2006). The problem

aims to determine the optimal locations of ambulance bases

p(i), i = 1,2, . . . ,d, where d is the number of bases. The

emergency calls follow a Poisson arrival process at the rate

of λa, and all calls are initiated in the region [0,1]2. The lo-

cation of a call follows a joint triangle distribution function

g(x1,x2) = ĝ(x1)ĝ(x2), where ĝ(x) is a triangle distribution

ĝa,b,c(x) (Figure 7).

We assume each ambulance travels at a constant speed

v, thus the routing time is twice the distance between the call

location and the base divided by the speed v (round trip).

The scene time of an ambulance follows an exponential

distribution with a location parameter λs. The total time
5

of an ambulance at work will be the routing time plus the

scene time.

When a call arrives, the nearest free ambulance should

respond to the call. If no ambulance is available, the call

will be put on wait, and the first ambulance to be freed will

respond to this call. The waiting calls are added in FIFO

order. In the problem, we aim to find the optimal positions

of the ambulance bases such that the total response time is

minimized. The response time is consisted of the one-way

routing time plus the possible waiting time. We considered

two objectives (a) minimize the expected response time,

and (b) minimize the maximum response time in a fixed

period.

A particular model had the following parameter settings.

We considered a simulation period time 500 hours, and

λa = 0.5, thus around 1000 calls occurred in each simulation

run. ĝ(x) used parameters a = 0,b = 1,c = 0.8, thus the

distribution of calls centered around the location (0.8,0.8).
The vehicle speed was 0.5 and parameter λs = 0.1. The

simulation showed that roughly 10% of calls were put on

wait.

We allowed a maximum of 20,000 simulation runs.

The noisy DIRECT algorithm ended up with 25 iterations

and the final positions of the ambulance bases are plotted

in Figure 8. Since the calls were symmetrically distributed

about the diagonal of the unit square, the final positions were

also observed approximately symmetric about the diagonal.

The solution we obtained shows an averaged response time

of an ambulance is 0.3307 hour. For a comparison, we ran an

exhaustive computation using a dedicate model with 2,500

hours simulation time, which is equivalent to replicating

the coarse model 50 times. The best solution we obtained

yielded an average response time 0.3291 hour, about a 0.48%

improvement over our previous solution. We note however

that this solution while being close to symmetric again, is

not simply a refinement to the solution our DIRECT code

generates.

Figure 7: Pdf function of a triangular distribution

5 CONCLUSIONS

We present a modification to the DIRECT algorithm for

noisy function optimization. A Bayesian sampling strategy

is introduced to measure the number of replications to use

at each point. The appropriate replication number is deter-

mined by whether the algorithm can generate an accurate
03

Deng and Ferris
Figure 8: Positions of the ambulance bases

potential optimal hyperrectangle set for further division. The

variable number sampling scheme shows advantage over the

fixed number sampling approaches. As we have illustrated

in numerical examples, the algorithm adaptively has an ‘im-

portance sampling’ flavor - spending computational effort

only in interesting regions, while for sub-interesting regions,

the minimum numbers of replications are normally used.

The noisy DIRECT algorithm is suited for global opti-

mization of noisy functions. Since it is a sampling approach,

it can handle simulation-based optimization problem whose

objective function is a ‘black-box’ type function.

We are currently developing a generalized two-phase

optimization framework for simulation-based optimization.

The noisy DIRECT algorithm can be fit into Phase I to

serve the purpose of identifying multiple promising regions

of interest. Following the return of this algorithm, in Phase

II, we apply local search algorithms (for example, the noisy

UOBYQA in Deng and Ferris 2006a) to refine solutions.

REFERENCES

Chen, H.-C., C.-H. Chen, and E. Yucesan. 1999. An as-

ymptotic allocation for simultaneous simulation exper-

iments. In Proceedings of the 1999 Winter Simulation

Conference, 359–366.

Chick, S. E., and K. Inoue. 2001. New procedures to se-

lect the best simulation system using common random

numbers. Management Science 47 (8): 1133–1149.

Chick, S. E., and K. Inoue. 2003. New two-stage and

sequential procedures for selecting the best simulated

system. Operations Research 49:1609–1624.

Deng, G., and M. C. Ferris. 2006a. Adaptation of the

UOBYQA algorithm for noisy functions. In Proceed-

ings of the 2006 Winter Simulation Conference, ed. L. F.

Perrone, F. P. Wieland, B. G. L. J. Liu, D. M. Nicol,

and R. M. Fujimoto, 312–319.
Deng, G., and M. C. Ferris. 2006b. Variable-number sample-

path optimization. Submitted to Mathematical Program-

ming.

Finkel, D. E. 2003. DIRECT optimization algorithm user

guide. Technical Report CRSC-TR03-11, Center for

Research and Scientific Computation, North Carolina

State University, Raleigh, NC.

Finkel, D. E. 2005. Global optimization with the DIRECT

algorithm. Ph. D. thesis, North Carolina State Univer-

sity.

Huyer, W., and A. Neumaier. 2006. Snobfit - stable noisy

optimization by branch and fit. Submitted.

Jones, D. R. 2001. The DIRECT global optimization algo-

rithm. Encyclopedia of Optimization.

Jones, D. R., C. D. Perttunen, and B. E. Stuckman. 1993. Lip-

schitzian optimization without the Lipschitz constant.

Journal of Optimization Theory and Application 79 (1):

157–181.

Kim, S.-H., and B. L. Nelson. 2003. Selecting the best sys-

tem: Theory and methods. In Proceedings of the 2003

Winter Simulation Conference. S. Chick, P. J. Sánchez,

D. Ferrin, and D. J. Morrice, eds. 101–112.

Pasupathy, R., and S. G. Henderson. 2006. A testbed of

simulation-optimization problems. In Proceedings of

the 2006 Winter Simulation Conference. L. F. Perrone,

F. P. Wieland, B. G. L. J. Liu, D. M. Nicol, and R. M.

Fujimoto, eds. 255–263.

ACKNOWLEDGMENTS

This research was partially supported by Air Force Office of

Scientific Research Grant FA9550-07-1-0389, and National

Science Foundation Grants DMS-0427689 and IIS-0511905.

AUTHOR BIOGRAPHIES

GENG DENG is a PhD student in the optimization group

at the University of Wisconsin–Madison. His research is

focused on simulation-based optimization, dynamic pro-

gramming, and applied statistics. He is a member of

INFORMS, SIAM and AMS. He can be reached via

〈geng@cs.wisc.edu〉.

MICHAEL C. FERRIS is Professor of Computer Sci-

ences and Industrial Engineering at the University of

Wisconsin–Madison. His research interests are in com-

putational algorithms and modeling, coupled with ap-

plications in economics, structural and mechanical en-

gineering and medicine. His work emphasizes practi-

cal solution of large scale optimization and complemen-

tarity problems. He is a member of the Mathematical

Programming Society, SIAM and INFORMS. His email

and web addresses are 〈ferris@cs.wisc.edu〉 and

〈http://www.cs.wisc.edu/∼ferris〉.
504

mailto:geng@cs.wisc.edu
mailto:ferris@cs.wisc.edu
http://www.cs.wisc.edu/~ferris

	INTRODUCTION
	THE DIRECT OPTIMIZATION ALGORITHM
	MODIFICATIONS
	Bayesian Posterior Analysis
	Monte Carlo Validation

	NUMERICAL EXAMPLES
	Numerical Functions
	A Simulation Problem

	CONCLUSIONS

