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ABSTRACT

Machine failure is often an important factor in throughput
of manufacturing systems. To simplify the inputs to the
simulation model for complex machining and assembly lines,
we have derived the Arrows classification method to group
similar machines, where one model can be used to describe
the breakdown times for all of the machines in the group and
breakdown times of machines can be represented by finite
mixture model distributions. The Two-Sample Cramér-von
Mises statistic is used to measure the similarity of two
sets of data. We evaluate the classification procedure by
comparing the throughput of a simulation model when run
with mixture models fitted to individual machine breakdown
times; mixture models fitted to group breakdown times; and
raw data. Details of the methods and results of the grouping
processes will be presented, and will be demonstrated using
an example.

1 INTRODUCTION

Ford uses simulation modeling to evaluate new designs for
assembly and machining lines and to improve the efficiency
of existing lines. Our work has focused on an existing
assembly line within a Ford manufacturing plant, where
nearly 100 different machines are involved in the assembly
process. The breakdown times of many machines follow
similar distributions and so, to reduce the number of in-
put distributions and increase the data available for fitting
each of these distributions, we propose a method of group-
ing machines based on the breakdown data available. The
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grouping is such that two machines with statistically sig-
nificantly different breakdown times data cannot be placed
in the same group. We then fit finite mixture distributions
to the grouped breakdown data.

Finite mixture models are particularly flexible and use-
ful, and McLachlan and Peel (2000) describe their structure
and applications. A finite mixture model has probability
density function,

h(x) =
k

∑
i=1

wi fi(x|θi), (1)

where

0 < wi ≤ 1 for i = 1, . . . ,k (2)

and

k

∑
i=1

wi = 1 (3)

are the weights of the components whose individual densities
are fi(x|θi) for i = 1, . . . ,k. The parameter k is the number
of components in the finite mixture model. We assume that
all of the component densities take the same form, i.e.

fi(x|θi) = f (x|θi), i = 1, . . . ,k. (4)

It is assumed that none of the θi nor the number of
components k are known in the model. Fitting such models
is therefore a non-standard statistical problem. Some of
the issues this raises are given in Cheng (1998) and the
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procedure we use for fitting finite mixture models to data
is described in Cheng and Currie (2003).

Other methods exist for fitting data that are not dis-
tributed according to standard stochastic models. These are
generally based on using flexible families of distributions,
such as the Bézier distribution (Wagner and Wilson 1996,
Wagner and Wilson 1993, Law 2006) or the Johnson family
(see Chapter 12 of Johnson and Kotz 1970, or page 297 of
Law 2006). The Bézier distribution exploits the properties
of Bézier curves and allows the modeler to fit the cumulative
distribution function F(x) to a wide range of distributions
of data, its flexibility being due in part to the fact that the
number of parameters to be used is not fixed. Johnson
distributions are based on transformations of normal vari-
ables and, although they offer a wide range of shapes of
distributions, do not cope as well with multimodality. The
advantage of the use of finite mixture models is that they
provide a good description of multimodal data, using para-
meters that have an intuitive meaning. They are also easy
to implement in most standard simulation packages using
a two-stage approach, where the component is sampled in
the first step and then a random number is sampled from
the component density.

In Section 2 we describe the details of the classifica-
tion of the machines by their breakdown data, including
a description of the Arrows classification method. This
has similarities with cluster analysis and a comparison with
the cluster analysis method is also given. We evaluate the
classification using a simulation model of an assembly line
with individual machine breakdown input distributions and
group breakdown input distributions, comparing the output
with that generated using raw data as the input to the model.
This is described in Section 3. Finally, we conclude and
discuss potential future work in Section 4.

2 CLASSIFICATION OF THE MACHINES

In order to simplify the inputs to the simulation model, we
aim to classify the machines involved in the assembly line
into a smaller number of groups, based on their breakdown
data, such that one mixture model distribution can be used
to describe the distribution of breakdown times for each
group of machines.

We measure the similarity of the breakdown data of
any two machines using the Two-Sample Cramér-von Mises
goodness-of-fit statistic (Anderson 1962). Bootstrapping is
used to determine the p-values of the statistics, which are
stored in the similarity matrix. The similarity matrix is
then used to classify the machines into groups. We have
derived a method for classifying the data from the similarity
matrix, termed the Arrows classification method, but Cluster
Analysis (Anderberg 1973) could also be used. In this
section, we describe the estimation of the similarity matrix
and how it is used to classify the machines.
4

2.1 Estimating the Similarity Matrix

The similarity matrix we produce is made up of the p-
values of every pair of the machines, where the p-value
gives the probability that the breakdown data for the two
machines are drawn from the same distribution. The p-
values are estimated using bootstrapping as described below,
following the calculation of the Two-Sample Cramér-von
Mises goodness-of-fit statistic (Anderson 1962).

We wish to measure the similarity of two samples
of breakdown data (x1,x2, . . . ,xn), and (y1,y2, . . . ,ym) for
machines X and Y respectively, and so obtain a measure
of the goodness-of-fit. We consider using the Anderson-
Darling statistic (Stephens 1974) but this requires some
information about the hypothesized distribution in order to
calculate the goodness-of-fit (Stephens 1974). Thus, we
use the Cramér-von Mises test. The Cramér-von Mises T
criterion for testing that that the two samples come from
the same unspecified continuous distribution is

T = (nm/(n+m))
∫

∞

−∞

(Fn(x)−Gm(x))2dHn+m(x), (5)

where Fn(x) is the empirical distribution function (EDF) of
the first sample; that is, Fn(x) = (no. of xi ≤ x)/n; Gm(x)
is the EDF of the second sample and Hn+m(x) is the EDF
of the two samples together; that is, (n + m)Hn+m(x) =
nFn(x)+mGm(x).

Let ri and s j be the ranks in the pooled sample of
the ordered observations of the two samples X and Y ,
respectively, where i = 1,2, . . . ,n and j = 1,2, . . . ,m. Then

Fn(x)−Gm(x) = i/n− (ri− i)/m (6)

at the ith x-observation and

Fn(x)−Gm(x) = (s j − j)/n− j/m (7)

at the jth y-observation. Thus we can write the criterion T
as

T =
U

nm(n+m)
− 4nm−1

6(n+m)
, (8)

where

U = n
n

∑
i=1

(ri− i)2 +m
m

∑
j=1

(s j − j)2. (9)

To test the null hypothesis that the two samples are
drawn from the same distribution, all of the observations are
ordered, the ranks r1 < r2 < .. . < rn of the n observations
from the first sample and the ranks s1 < s2 < .. . < sm
of the m observations from the second sample are then
determined and U is computed. If T is too large, we reject
81
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2

the null hypothesis, that the samples are drawn from the
same distribution.

Tabulated criterion values are not very extensive and
do not cover the samples that we are dealing with and so
we use bootstrapping to determine the distribution of T ,
Φ(T ), and hence the significance level. To carry out the
bootstrapping, let Z = (z1,z2, . . . ,zn+m) be the pooled sample
of breakdown data from machines X and Y . The EDF of
Z is denoted by Hn+m(z). We generate two samples of
size n and m from the original pooled set of observations,
Z, with replacement and call this our bootstrap sample,
written as X∗ = (x∗1,x

∗
2, . . . ,x

∗
n) and Y ∗ = (y∗1,y

∗
2, . . . ,y

∗
m).

By comparing X∗ and Y ∗, we can calculate the Cramér-von
Mises statistic T ∗ for the bootstrap sample. In order to
estimate Φ(T ), we generate a number, B, pairs of bootstrap
samples from Z : (X∗1,Y ∗1),(X∗2,Y ∗2), . . . ,(X∗B,Y ∗B) and
calculate the statistic T ∗ j for each pair of samples. The
EDF of the sample T ∗ = (T ∗1,T ∗2, . . . ,T ∗B) is then written
as

ΦB(T ) =
(no. of T ∗ j ≤ T )

B
(10)

The bootstrap distribution ΦB(T ) will converge to Φ(T )
with probability one as B tends to infinity (Cheng 2001) and
we use ΦB(T ) as our estimate of Φ(T ). (We consider B =
5000 as a large enough number for our bootstrap analysis.)

The Bootstrapping Process is
For j = 1 to B

For i = 1 to n
Draw x∗ j

i from Z (with replacement)
Next i
For i = 1 to m

Draw y∗ j
i from Z (with replacement)

Next i
Calculate T ∗ j by comparing X∗ j with Y ∗ j

Next j
Form the EDF of T ∗, ΦB(T ).
The p-value describing the fit of data from machine

Mi to data from machine M j is then obtained from ΦB(T ).
This procedure is carried out for all pairs of machines to
form the similarity matrix. The whole process is illustrated
in Figure 1.

For classification purposes we shall use a specific thresh-
old, p0 say. If a p-value is less than p0 we consider the
data from the two machines are significantly different. If
the p-value is greater than p0 we may accept the perfor-
mance of the two machines as being the same. Thus, for
example, if we set p0 = 0.10, then, Figure 2 shows that
the p-value corresponding to T is smaller than 0.10, which
means that the data from the two machines being compared
are significantly different and have not been drawn from
the same distribution. In contrast, Figure 3 shows that the
p-value of T is over 0.90, which means that the data from
the two machines being compared can be assumed to have

48
Figure 1: (a) The bootstrapping process used to determine
the null distribution of T , Φ(T ), and (b) the evaluation
of the Cramér-von-Mises statistic for the original samples,
which is compared with Φ(T ) to determine the p-value for
the similarity of the two machines.

been drawn from the same distribution, with a probability
of more than 0.90.

Figure 2: M1 vs. M2, p12 < 0.10.

2.2 Classification

We consider the p-value introduced in Section 2.1 as a
measure of the similarity of the breakdown data of any two
machines. Therefore, the matrix of p-values is denoted the
similarity matrix and forms the basis of the classification
process.

The Arrows classification method that we describe in
Section 2.2.1 has similarities with complete-linkage hier-
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Figure 3: M1 vs. M2, p12 > 0.90.

archical cluster analysis (Anderberg 1973). The cluster
analysis algorithm proceeds iteratively, combining the two
most similar machines or groups of machines at each itera-
tion, where the distance between any two groups is defined
to be the greatest distance (in this case, the smallest p-
value) from any member of one group to any member of
the other group. By selecting a threshold distance it is
therefore possible to ensure that all of the machines in a
group have significant similarities. The use of a threshold
distance or similarity is also a characteristic of the Arrows
method. Where the two methods differ is that the clustering
method searches the whole matrix to find the most similar
groups to merge while the Arrows method aims to keep
together machines, which have what we term a one-arrow
connection. Two machines have a one-arrow connection
if the data from one machine is most similar to the data
from the second machine, i.e. machine i and machine j
have a one-arrow connection if pi j, the p-value comparing
machine Mi with machine M j, is the biggest in only one
of row i or row j, but not both. The Arrows classification
method allows us to more easily control the similarity level
in the resultant groups than cluster analysis and is described
further in the following section.

2.2.1 Arrows Classification Method

We currently use p0 = 0.10 as a threshold p-value for
assuming that two sets of data are similar enough to be
grouped together. If the p-value for the fit between the
breakdown data of a pair of machines is greater than 0.10
then they can be put in the same group; otherwise, the data
are assumed to be significantly different. Increasing the p0
to, e.g. 0.20, may increase the average similarities within
groups but may also increase the number of groups.

We follow the process below to determine the groups.

1. Search the similarity matrix,
48
(a) If pi j, the p-value comparing machine Mi with
machine M j, is the biggest in both row i and
row j, we say Mi and M j have a double-arrow
connection and put machine i and machine j
into one group.

(b) If pi j, is the biggest in only one of row i or
row j, we say Mi and M j have a one-arrow
connection, and put machine i and machine j
into one group.

Search the similarity matrix, until no more new
machine groupings can be made.

2. Process the p-values of the remaining pairs of
machines in each group, e.g. for group Ca; if the
values are all bigger than p0, the threshold, keep
Ca; for pairs with p-values less than 0.10, use
the following decision process to determine which
machine in the pair to keep.

(a) If pi j is the biggest in column j or column j
or both, keep Mi and M j in Ca

(b) Take out the machine(s) with the weakest con-
nection with the others until there is no pair of
machine with p-value under 0.10 in Ca, where
the strength of a connection of a machine is
measured by the average of all of the p-values
of this machine compared with the rest of the
machines in Ca.

(c) Thus, we have one group Ca.

3. Try to combine some of the primary groups. If all
pairs of machines in primary group Ca and primary
group Cb have p-values bigger than 0.10, combine
these two groups. If we can combine Ca and Cb
or combine Ca and Cd , compare the average of the
sum of the pik, where Mi is in Ca and Mk is in Cb,
with the average of the sum of the pil , where Mi
is in Ca and Ml is in Cd . Combine the two groups
with stronger connections. Search until all of the
primary groups are processed.

The above classification procedure has been imple-
mented in Visual Basic for Applications. Although this
method has been devised to classify machines, it could be
used to classify other data. It has already proved to be very
useful in grouping hospital length of stay data by specialty.

2.3 Example

We illustrate the classification method using an example
of 20 machines involved in one of Ford’s assembly lines.
The similarity matrix of the breakdown data from the 20
machines is given in Table 1.

For these 20 machines the classification process pro-
ceeds as follows (machines are denoted by their ID):
3
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Table 1: Actual Similarity Matrix of the breakdown data from the 20 machines.

M01 M02 M03 M04 M05 M06 M07 M08 M09 M10 M11 M12 M13 M14 M15 M16 M17 M18 M19 M20
M01 − 0.02 0.00 0.00 0.09 0.00 0.02 0.00 0.09 0.12 0.55 0.52 0.08 0.00 0.02 0.00 0.06 0.01 0.16 0.12
M02 0.02 − 0.62 0.00 0.02 0.00 0.00 0.00 0.11 0.07 0.02 0.03 0.01 0.00 0.17 0.00 0.00 0.01 0.02 0.08
M03 0.00 0.62 − 0.00 0.02 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.00 0.00 0.15 0.00 0.00 0.00 0.04 0.06
M04 0.00 0.00 0.00 − 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
M05 0.09 0.02 0.02 0.00 − 0.00 0.04 0.01 0.01 0.23 0.15 0.20 0.58 0.00 0.18 0.00 0.16 0.01 0.82 0.90
M06 0.00 0.00 0.00 0.00 0.00 − 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00
M07 0.02 0.00 0.00 0.00 0.04 0.00 − 0.17 0.00 0.32 0.00 0.00 0.32 0.01 0.00 0.00 0.80 0.00 0.19 0.03
M08 0.00 0.00 0.00 0.00 0.01 0.00 0.17 − 0.00 0.32 0.00 0.00 0.22 0.00 0.00 0.00 0.59 0.00 0.33 0.01
M09 0.09 0.11 0.02 0.00 0.01 0.00 0.00 0.00 − 0.03 0.06 0.06 0.01 0.00 0.01 0.00 0.00 0.00 0.02 0.00
M10 0.12 0.07 0.05 0.00 0.23 0.01 0.32 0.32 0.03 − 0.28 0.25 0.85 0.05 0.15 0.03 0.25 0.08 0.55 0.39
M11 0.55 0.02 0.00 0.00 0.15 0.00 0.00 0.00 0.06 0.28 − 0.36 0.25 0.00 0.03 0.00 0.04 0.00 0.38 0.23
M12 0.52 0.03 0.00 0.00 0.20 0.00 0.00 0.00 0.06 0.25 0.36 − 0.19 0.00 0.09 0.00 0.01 0.00 0.33 0.32
M13 0.08 0.01 0.00 0.00 0.58 0.00 0.32 0.22 0.01 0.85 0.25 0.19 − 0.02 0.04 0.00 0.57 0.02 0.55 0.46
M14 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.05 0.00 0.00 0.02 − 0.00 0.00 0.37 0.00 0.05 0.00
M15 0.02 0.17 0.15 0.00 0.18 0.00 0.00 0.00 0.01 0.15 0.03 0.09 0.04 0.00 − 0.00 0.00 0.08 0.37 0.41
M16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 − 0.09 0.00 0.01 0.00
M17 0.06 0.00 0.00 0.00 0.16 0.00 0.80 0.59 0.00 0.25 0.04 0.01 0.57 0.37 0.00 0.09 − 0.00 0.35 0.09
M18 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.02 0.00 0.08 0.00 0.00 − 0.45 0.10
M19 0.16 0.02 0.04 0.00 0.82 0.02 0.19 0.33 0.02 0.55 0.38 0.33 0.55 0.05 0.37 0.01 0.35 0.45 − 0.73
M20 0.12 0.08 0.06 0.00 0.90 0.00 0.03 0.01 0.00 0.39 0.23 0.32 0.46 0.00 0.41 0.00 0.09 0.10 0.73 −
1. Step 1 (see Figure 4)
Form 8 groups based on identifying the single and
double arrow connections.

2. Step 2 (see Figure 4)
Identify 6 pairs of machines initially grouped to-
gether that have significantly different breakdown
data (M09, M03; M18, M05; M18, M20; M18,
M15; M07, M14; M08, M14).
Therefore, machines M09, M03, M18, M05, M20,
M15, M07, M14, M08 may be taken out of the ex-
isting groups. In order to decide which machine or
machines should be removed to make sure there are
no red curves, the following steps are considered.

(a) As the priority is to keep pairs of machines that
have double-arrow connections (see Section
2.2.1), M03, M05, M20 and M07 should be
kept in their groups. As a result, we can decide
to remove M09 to make sure there is no red
curve in the second group as shown in Figure
4.

(b) M18 and M14 have the weakest connection
with the others in the third and fourth group
respectively as shown in Figure 4, thus M18
and M14 should be taken out of their groups.

(c) The resultant groups have no red curves, i.e.
no pairs of machines with p-values less than
p0.

3. Step 3 (see Figure 5)
Combine the fourth and fifth group as no pair of
members are significantly different.

Finally 10 groups are obtained. With the complete
clustering method, the same 10 groups are found if merging
is not allowed for p-values < 0.10.
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3 EVALUATION OF THE
CLASSIFICATION METHOD

3.1 Breakdown Input for Simulation Model

We carry out a simulation to evaluate the classification
of the machines by analyzing the simulation output of an
assembly line made up of the 20 machines described in the
example above, using three different methods for generating
breakdown times. We use WITNESS (Lanner Group) to
simulate the assembly line, and use their “BUSY TIME”
mode to describe the occurrence of breakdowns. This only
allows machines to breakdown when they are working. A
Negative Exponentional distribution is used to simulate the
Time Between Failure (Ladbrook 1998), where we calculate
the Mean Time Between Failure (MTBF) for a machine to
be

MT BF =
T T −T T R

No. of Failures
, (11)

where TT is the time period over which our raw breakdown
times data are collected, and T T R is the total time a machine
is broken down for during the data collection period. To
calculated T T R, we split the data into n bins, with thresholds
b1,b2, . . . ,bn, and so

T T R =
n−1

∑
i=1

(bi+1−bi)
2

Fi, (12)

where Fi, i = 1, . . . ,n is the number of observations in bin i.
The three methods we consider for sampling break-

down times are: (1) sampling from raw historical data; (2)
sampling from a different mixture model distribution for
each machine; (3) sampling from the fitted mixture models
for the groups of machines found in Section 2.3, where
the group fitted mixture models is obtained by fitting finite
mixture distributions to the breakdown data of all of the
machines in the group.
4
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Figure 4: Steps 1 and 2 from the Example, showing groups
with double-arrow and one-arrow connections and the
strength of the connections within each group. Red curve
(— - - — -): p-value of the two connected machines is
not significant; Yellow curve (————–): p-value of the
two connected machines is on the borderline; Green curve
(- - - - - - - -): p-value of the two connected machines is
significant.

3.2 Output Evaluation

We set the warm up period to be 1440 minutes using the
Time-Series Inspection method (Robinson 2004) and run
100 replications for each of the three different models, with
a results collection period of 55 days. In order to evaluate
the whole line’s behavior, we take the simulation output
to be the number of parts being shipped in those 55 days.
Figure 6 shows the number of parts shipped for each of the
three methods used for sampling breakdown times.

As we can see from the plot, the inter-quartile ranges
for the three methods overlap, showing a degree of similarity
between the methods. However, at the 95% significance
level we find that the outputs are different. Figure 7 shows
the histogram of the raw breakdown time data and the
48
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Figure 5: Step 3 of the Example in which we try to combine
the primary groups without Red curve connections.

Figure 6: Boxplot of the number of parts shipped per 55
days using the three methods for sampling breakdown times.
The central line shows the medium number and the box
describes the inter-quartile range.

fitted mixture model for machine M01. The histogram has
some high value outliers for which the breakdown time is
extremely long, resulting in the whole assembly line being
5
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down for a long period. The fitted mixture model is much
smoother. Moreover, the two models are using the same
distribution to simulate time between failures, so the fact
that the model using the raw data as its input has a lower
efficiency is quite reasonable. This could also explain the
differences between the models using individual machine
input and using group input. Ongoing work is being carried
out to improve the modeling of the times between failures.
A data set coming from a group of machines will also have
more data points than those from individual machines, and
so the model fitted to the whole group’s breakdown data may
provide a better description of the relatively large breakdown
times than the individual fitted models. As shown in the
boxplot, the model using raw data is more similar to the
model using group inputs than to the model using individual
machine inputs.

4 CONCLUSIONS AND FUTURE WORK

The classification process described in this paper could be
applied to grouping data from a wide range of applications,
in addition to manufacturing. For example, we have already
used it to classify hospital procedures by their length-of-stay
data. The proposed Arrows classification method, which
forms part of this process, produces similar results to cluster
analysis, while making it much easier to control the similarity
level in each resultant group. We currently use 0.10 as the
threshold p-value for assuming two sets of data are similar
enough to be grouped together. Increasing the threshold
may increase the number of groups but also would increase
the average similarities within resultant groups. The choice
of threshold will be investigated further for this example
by running the simulation model with groups generated by
the different thresholds.

Grouping like procedures serves to increase the data
available for fitting input distributions as well as simplifying
the inputs required for the simulation model. We have tested
the grouping method using a simulation model with three
methods of sampling breakdown times: raw historical data;
individual fitted finite mixture models and group fitted finite
mixture models. The results show that the model output
is similar for each of these three methods, justifying the
use of the classification method. The current method of
modeling the time between failures may be influencing the
model output and improving this will be an area of future
work.

We do not include the time required for setting up
machines in the model nor any modeling of labor. These
are likely to produce some small changes to the output of the
model but should not affect the results of the comparisons we
have made between the methods used to model breakdowns.
Testing a more detailed assembly line model should confirm
this.
4
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Figure 7: Histogram of raw breakdown data and the fitted finite model’s Probability Distribution Function for the first group
of machines in the example.
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