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ABSTRACT

It is well known that trivariate reduction — a method to

generate two dependent random variables from three in-

dependent random variables — can be used to generate

Poisson random variables with specified marginal distribu-

tions and correlation structure. The method, however, works

only for positive correlations. Moreover, the proportion of

feasible positive correlations that can be generated through

trivariate reduction deteriorates rapidly as the discrepancy

between the means of the target marginal distributions in-

creases. We present a specialized algorithm for generating

Poisson random vectors, through appropriate modifications

to trivariate reduction. The proposed algorithm covers the

entire range of feasible correlations in two dimensions, and

preliminary tests have demonstrated very fast preprocessing

and generation times.

1 INTRODUCTION

Johnson, Kotz, and Balakrishnan (1997) define the bivari-

ate Poisson distribution as the joint distribution of the random

variables

X1 = Y1 +Y12 and X2 = Y2 +Y12, (1)

where Y1,Y2, and Y12 are mutually independent Poisson

random variables with means λ1,λ2, and λ12 respectively.

As shown in (Johnson, Kotz, and Balakrishnan 1997), the

resulting joint probability mass function of (X1,X2) is

Pr{X1 = x1,X2 = x2}

= e−(λ1+λ2+λ12)
min(x1,x2)

∑
i=0

λ x1−i
1 λ x2−i

2 λ i
12

(x1− i)!(x2− i)!i!
. (2)

It can also be easily shown that X1 and X2 have Poisson

distributions with means λ1 +λ12 and λ2 +λ12 respectively,
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and correlation Corr(X1,X2) given by

Var(Y12)
√

Var(X1)Var(X2)
=

λ12
√

(λ1 +λ12)(λ2 +λ12)
.

It is well-known amongst simulation researchers that

this definition of a bivariate Poisson distribution automat-

ically provides a method to generate correlated Poisson

random variates: to generate the random vector (X1,X2)
such that X1 and X2 have Poisson distributions with speci-

fied means λ and λ ′, and specified correlation ρ > 0, simply

generate three independent Poisson random variables Y1,Y2,

and Y12, with carefully chosen means λ1,λ2 and λ12, and ob-

tain (X1,X2) through the two operations in (1). Specifically,

the parameters λ1,λ2, and λ12 are obtained by solving the

following three equations corresponding to matching two

target means, and one target correlation:

λ = λ1 +λ12,

λ ′ = λ2 +λ12,

ρ =
λ12

√

(λ1 +λ12)(λ2 +λ12)
. (3)

Solving the system (3) gives us

λ12 = ρ
√

λλ ′,λ1 = λ −λ12,λ2 = λ ′−λ12. (4)

While elegant, the above trivariate reduction (TR)

method has two important drawbacks when used in the

context of generating correlated Poisson random vectors.

D.1. TR cannot be used when the target correlation ρ
is negative;

D.2. Even when the target correlation ρ is positive,

the vector (X1,X2) obtained through TR may not

be able to attain the target correlation, while also

achieving the specified marginal distributions.
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The disadvantage D.1 is fairly easy to internalize upon

noticing that the correlation between X1 and X2 is induced

through a common random variable Y12. The other two

random variables involved, Y1 and Y2, are independent.

Therefore, the resulting correlation between X1 and X2 ought

to be positive.

As a possible remedy to D.1, an alternate generation

scheme such as X1 =Y1 +Y12, X2 =Y2−Y12 can be arranged

to induce the desired negative correlation between X1 and

X2. This will not work, however, because the resulting X2

will not have a Poisson distribution.

The disadvantage D.2 is slightly more subtle. To ease

exposition, we first present the following definition intro-

duced by Ghosh and Henderson (2003).

Definition 1 A product-moment (rank) correlation

matrix Σ is feasible for a given set of marginal distributions

F1,F2, . . . ,Fd if there exists a random vector X with mar-

ginal distributions F1,F2, . . . ,Fd and product-moment (rank)

correlation matrix Σ.

To illustrate feasible correlation matrices, consider two

Poisson random variables X1 and X2 having respective means

λ = 0.5 and λ ′ = 0.5. It can be shown that the largest

achievable positive correlation between X1 and X2 is 1,

while the largest achievable negative correlation between

X1 and X2 is −0.5. Therefore, any correlation matrix

Σ =

(

1 r

r 1

)

,

with r values in the interval [−0.5,1] is a feasible correlation

matrix for the vector (X1,X2). The matrix Σ is a correlation

matrix, but not feasible, if r lies in the interval [−1,−0.5).
More generally, as shown in (Whitt 1976), if ran-

dom variables X1 and X2 have the cumulative distri-

bution function (cdf) F(x), and U is a random vari-

able that is uniformly distributed between 0 and 1,

then Corr
(

F−1(U),F−1(U)
)

is the maximum achievable,

and Corr
(

F−1(U),F−1(1−U)
)

the minimum achievable,

correlations between X1 and X2 respectively. There-

fore the feasible set of correlations between X1 and X2

is
[

Corr
(

F−1(U),F−1(1−U)
)

,Corr
(

F−1(U),F−1(U)
)]

.

Figure 1 depicts this feasible set when X1 and X2 are Poisson

random variables. The figure is plotted as a function of the

larger desired mean λ (assumed without loss of generality)

of X1 and X2, and the ratio k of the smaller to the larger

desired means of X1 and X2. So, for a given λ and k, a

vertical line between the corresponding upper and lower

curves depicts the range of feasible correlations.

Continuing our discussion of disadvantage D.2, recall

that we have denoted λ and λ ′ as the target means, and ρ
as the target correlation for the Poisson random variables

X1 and X2. The solution (4), to the system of equations in

(3), implies that λ ,λ ′ and ρ should satisfy λ ≥ ρ
√

λλ ′,
and λ ′ ≥ ρ

√
λλ ′. Otherwise, one of λ1 and λ2 will be
4

negative, implying that TR cannot be used to generate the

vector (X1,X2) with the desired marginal distributions and

correlation. We state this formally through Propositions 1

and 2.

Proposition 1 Let X1 and X2 be Poisson random

variables with means λ and λ ′. Assume, without loss in

generality, that λ ≥ λ ′. Denote the maximum and minimum

achievable correlation between X1 and X2 as ρ+(λ ,λ ′) and

ρ−(λ ,λ ′) respectively. Also, denote k = λ ′/λ . Then,

(i) for fixed k,

lim
λ→∞

ρ+(λ ,kλ ) = 1, lim
λ→∞

ρ−(λ ,kλ ) =−1;

(ii) for fixed k,

lim
λ→0

ρ+(λ ,kλ ) =
√

k, lim
λ→0

ρ−(λ ,kλ ) = 0.

Proposition 2 Following the notation of Proposi-

tion 1, the range of correlations that can be generated using

TR is [0,
√

k].
Propositions 1 and 2 point to a rather serious problem

in TR — as the discrepancy between the desired means

λ and λ ′ increases, assertions (i) and (ii) in Proposition

1 suggest that the range of feasible positive correlations

expands to the interval [0,1). By contrast, as Proposition

2 suggests, the range of correlations that can be generated

using TR is always [0,
√

k]. For example, for k = 0.01, as

λ → ∞, the feasible range of positive correlations tends to

[0,1), while the range of correlations that can be generated

by TR remains [0,0.1].
In this paper, we introduce an algorithm that re-

solves both of the issues D.1 and D.2, through an

appropriate modification of TR. The result is an al-

gorithm (Section 2) which can generate every feasi-

ble correlation ρ ∈ [ρ−(λ ,kλ ),ρ+(λ ,kλ )] , for given k

and λ . Like the “NORmal To Anything” (NORTA)

method (Cario, Nelson, Roberts, and Wilson 2002), the

proposed algorithm has a preprocessing step, which we

solve using a fast numerical procedure. We detail this

procedure in Section 3, and briefly report on numerical per-

formance in Section 4. We summarize and discuss ongoing

research in Section 5. A MATLAB implementation of the

proposed generation algorithm is available for download at

<https://filebox.vt.edu/users/pasupath/

pasupath.htm>.

2 ALGORITHM DESCRIPTION

Recall that the objective is to generate the random vec-

tor (X1,X2) such that X1 has a Poisson distribution with

mean λ , X2 has a Poisson distribution with mean λ ′, and

Corr(X1,X2) = ρ , where λ ,λ ′ > 0 and ρ ∈ (−1,0)∪ (0,1)
73
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Figure 1: Maximum and minimum achievable correlations between two Poisson random variables. In the figure, λ is the

larger of the two desired means, and k is the ratio of the smaller desired mean to the larger desired mean.
are given. We assume, without loss in generality, that λ ≥ λ ′

and denote k = λ ′/λ .

Our assumption about ρ ∈ (−1,0)∪ (0,1) creates the

possibility of the desired correlation being infeasible, i.e.,

ρ > ρ+(λ ,kλ ) or ρ < ρ−(λ ,kλ ). This problem of infea-

sibility is not a complication because it is automatically

detected at the end of the preprocessing step. In other

words, the proposed algorithm is such that nothing special

needs to be done to check for an infeasible problem.

Denote F−1
λ

(y) = inf{x : F(x) > y}, where Fλ (x) is the

Poisson cdf with mean λ . Let U be a random variable

that is uniformly distributed between 0 and 1. Then the

proposed algorithm takes the following form.

X1 = Y1 +F−1
λ ∗ (U), X2 = Y2 +F−1

kλ ∗(U) if ρ > 0;

X1 = Y1 +F−1
λ ∗ (U), X2 = Y2 +F−1

kλ ∗(1−U) if ρ < 0;

(5)

We draw attention to three aspects of the proposed

operations. First, when ρ > 0, i.e., when positive correlation

between X1 and X2 is sought, we use common random

numbers, as in TR. When ρ < 0, the operations suggest using

antithetic variates to induce negative correlation between

X1 and X2.

Second, we note that for both cases, ρ > 0 and ρ < 0, un-

like TR, there is no “common random variable.” Instead, the

random variables inducing correlation are obtained through

inversion of two different Poisson cdfs. The means of these
4

Poisson cdfs are in the same ratio as the target means λ
and λ ′.

Third, the value of λ ∗ needs to be determined as part of

the preprocessing step, so that the resulting random variables

X1, X2 attain the target means, and the target correlation.

2.1 Algorithm Listing

Generating a random vector (X1,X2) through the proposed

method is easy, at least in principle. For given λ > 0,λ ′ > 0,

and ρ ∈ (−1,0)∪ (0,1):

1. Solve for λ ∗ through the preprocessing step;

2. Generate U1 ∼U(0,1),U2 ∼U(0,1),U3 ∼U(0,1)
independently;

3. Y1← F−1
λ−λ ∗(U1), Y2← F−1

λ ′−kλ ∗(U2);

4. Y12← F−1
λ ∗ (U3);

5. If ρ > 0, then Y ′12← F−1
kλ ∗(U3);

if ρ < 0 then Y ′12← F−1
kλ ∗(1−U3);

6. X1← Y1 +Y12,X2← Y2 +Y ′12;

7. Deliver (X1,X2).

We discuss Step 1 in detail in Section 3. Invert-

ing a Poisson cdf, required in Steps 3, 4, and 5, can

be done very efficiently through existing, mature, Poisson

random variate generation routines (Kemp and Kemp 1991,

Schmeiser and Kachitvichyanukul 1981, Devroye 1986).
74
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2.2 Rationale

It is clear that the disadvantage D.1 is addressed through

the proposed algorithm. What is less intuitive is to what

extent the proposed algorithm addresses disadvantage D.2.

For given means λ ,λ ′, the proposed algorithm is capable

of generating any specified correlation in the feasible range

[ρ−(λ ,kλ ),ρ+(λ ,kλ )]. To see this, consider the ρ > 0

operation in (5). It is clear from construction that the random

variables Y1,Y2, F−1
λ ∗ (U), and F−1

kλ ∗(U) are each Poisson

distributed with respective means λ −λ ∗,λ ′−kλ ∗,λ ∗, and

kλ ∗. Therefore, the random variables X1 and X2 will have

the correct marginal distributions, provided the quantities

λ−λ ∗ and λ ′−kλ ∗ remain positive. This, however, can be

ensured by restricting λ ∗ to the interval [0,λ ], after recalling

that λ ≥ λ ∗ and k ≤ 1. A similar argument holds for the

ρ < 0 case as well.

What range of correlations are covered if we restrict

λ ∗ to the interval [0,λ ]? To answer this question, again

consider the ρ > 0 case in (5). As λ ∗ → 0, we have

Corr(X1,X2)→ 0, giving us the trivial uncorrelated case.

On the other extreme, as λ ∗ → λ , we have λ −λ ∗ → 0,

λ ′− kλ ∗ → 0, and kλ ∗ → λ ′. These three implications

together mean that Y1 and Y2 vanish, and Corr(X1,X2)→
Corr(F−1

λ
(U),F−1

kλ
(U)) = ρ+(λ ,kλ ). Furthermore, it can

be shown that Corr(X1,X2) is a continuous function of

λ ∗. These three facts — Corr(X1,X2)→ 0 as λ ∗ → 0,

Corr(X1,X2)→ ρ+(λ ,kλ ) as λ ∗ → λ , and the continuity

of Corr(X1,X2) as a function of λ ∗ — ensure that the entire

range of positive correlations [0,ρ+(λ ,kλ )] can be achieved

through the proposed algorithm. Similar arguments for the

ρ < 0 case imply that the entire range of negative correlations

[ρ−(λ ,kλ ),0] can also be achieved through the proposed

algorithm.

Before we state the above arguments formally through

Proposition 3, we also note in passing that we can achieve

a similar effect, i.e., obtaining the entire range of feasible

correlations, through

X1 = Y1 +F−1
λ ∗1

(U), X2 = Y2 +F−1
λ ∗2

(U) if ρ > 0;

X1 = Y1 +F−1
λ ∗1

(U), X2 = Y2 +F−1
λ ∗2

(1−U) if ρ < 0;

(6)

instead of (5). The operation (6), however, provides no

advantages over (5), at least in two dimensions. It does

have the disadvantage of making the preprocessing step a

two-dimensional search, as opposed to the monotone one-

dimensional search afforded by (5).

Proposition 3 Let Y1, Y2 be Poisson random vari-

ables with means λ −λ ∗ and λ ′− kλ ∗ respectively, where

k = λ ′/λ ≤ 1, and 0 < λ ∗ ≤ λ . Let U be a random variable

that is mutually independent with Y1 and Y2, and uniformly

distributed between 0 and 1. Also, denote X1 =Y1 +F−1
λ ∗ (U).

Then
4

(i) limλ ∗→λ Corr
(

X1,Y2 +F−1
kλ ∗(U)

)

= ρ+(λ ,kλ );

(ii) limλ ∗→λ Corr
(

X1,Y2 +F−1
kλ ∗(1−U)

)

= ρ−(λ ,kλ );
(iii) the two functions Corr

(

X1,Y2 +F−1
kλ ∗(U)

)

and

Corr
(

X1,Y2 +F−1
kλ ∗(1−U)

)

are continuous in λ ∗.

3 PREPROCESSING STEP (SOLVING FOR λ ∗)

We see from (5) that X1 and X2 have the correct marginal

distributions. The more challenging question is that of

identifying λ ∗ so that the target correlation ρ is attained.

In this section, we detail a fast numerical procedure that

can be used to identify λ ∗.
From (5), the correlation Corr(X1,X2) as a function of

λ , k, and λ ∗ is given by

Corr(X1,X2)

=







1

λ
√

k

(

E
[

F−1
λ ∗ (U)F−1

kλ ∗(U)
]

− kλ ∗2
)

if ρ > 0;

1

λ
√

k

(

E
[

F−1
λ ∗ (U)F−1

kλ ∗(1−U)
]

− kλ ∗2
)

if ρ < 0.

From the above expression for Corr(X1,X2), identify-

ing λ ∗ satisfying Corr(X1,X2) = ρ amounts to solving the

following generic root-finding problems: given λ , k, ρ ,

find x = λ ∗ satisfying h(x) = ρλ
√

k, (7)

where

h(x)

=

{

E
[

F−1
x (U)F−1

kx (U)
]

− kx2 if ρ > 0;

E
[

F−1
x (U)F−1

kx (1−U)
]

− kx2 if ρ < 0.

In this section, we detail a solution for the ρ < 0 case

of the root-finding problem (7). Details for the ρ > 0 case

are very similar to the ρ < 0 case.

3.1 Recursion, Function and Derivative Computation

For solving root-finding problem (7), we use the following

Newton recursion on h(x):

x = x+
1

h′(x)

(

ρλ
√

k−h(x)
)

. (8)

The efficiency of recursion (8) is immensely helped by two

aspects: (i) the function h(x) is monotone decreasing in

(0,∞), and its derivative h′(x) exists everywhere in (0,∞)
except for a countable set; and (ii) the function h(x), and

its derivative h′(x), can be computed efficiently. In what

follows, we elaborate on (ii). We do not provide a proof

for (i).
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Figure 2: Preprocessing through one-dimensional root-finding search on the covariance function h(x).
We first note that, corresponding to the linear portion

of the curves in Figure 1, E
[

F−1
x (U)F−1

kx (1−U)
]

= 0 if

Fx(0)+Fkx(0) = e−x + e−kx ≥ 1. (9)

In such a case, h(x) =−kx2 implying that λ ∗=
√

−ρλ/
√

k.

If (9) does not hold, we estimate h(x) =
∫ 1

0 F−1
x (u)F−1

kx (1− u)du− kx2 starting from the “middle

region” of the integral, and progressively summing out to

the upper and lower tails. Specifically, we first compute

m = Max{k ∈ Z+ : Fx(k− 1) ≤ 0.5}, and the cumulative

probability Fx(m), where Z+ = {0,1,2, . . .} denotes the

set of non-negative integers. One efficient way to com-

pute m (contrary to appearance, m as defined is not the

median) and Fx(m) is through J-fraction approximations

given in (Kemp and Kemp 1991). These approximations

are highly accurate analytic expressions for Fx(r), where r

is the “round-off” value of x, i.e., the integer that satisfies

r + α = x,−0.5 ≤ α < 0.5. For example, we have found

that for x > 15, the approximation for Fx(r) is generally

accurate to within 10−6.

In order to ease computation of h(x), we express

h(x) =
∫ 0.5

0
F−1

x (u)F−1
kx (1−u)du+

∫ 0.5

0
F−1

kx (u)F−1
x (1−u)du− kx2. (10)
47
The first of the integrals on the right-hand side of (10) can

be written as

∫ 0.5

0
F−1

x (u)F−1
kx (1−u)du =

1

∑
j=m

(

B j +C j +
u j

∑
i=l j

Tji

)

,

(11)

where

l j =















Min{n ∈ Z+ : 1−Fkx(n)≤ Fx( j)},
if j = 0,1,2, . . . ,m−1;

Min{n ∈ Z+ : 1−Fkx(n)≤ 0.5},
if j = m;

B j=















jl j (Fx( j)−Max(Fx( j−1),1−Fkx(l j))) ,
if j = 0,1,2, . . . ,m−1;

mlm (0.5−Max(1−Fkx(lm),Fx(m−1))) ,
if j = m;

C j=















jl j−1

(

Min(1−Fkx(l j−1−1),Fx( j))−Fx( j−1)
)

,
if j = 0,1,2, . . . ,m−1;

mlm−1 (Min(0.5,1−Fkx(lm−1−1))−Fx(m−1)) ,
if j = m;

Ti j= (i+1) j (Fkx(i+1)−Fkx(i)) .

The second of the integrals on the right-hand side of (10)

can be expressed similarly.

The terms B j, C j, and Tj appearing within (11) should

not be computed explicitly during actual implementation.

Instead, they can be computed on fly, once the cumulative
6
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probability Fx(m) and the quantity m are available. For

brevity, we do not go into these programming details.

The derivative h′(x) can be obtained through direct

differentiation of the summation expressions for h(x), and

noting that the probability mass Pkx(i) = Fkx(i)−Fkx(i−1),
and its derivative with respect to x,

P′kx(i) = k (Pkx(i−1)−Pkx(i)) .

3.2 Bounds on Truncation Error

Computing h(x) is based on a finite-sum, as described in

Section 3.1. However, the number of terms m− 1 within

the outside summation could become very large, when x is

large. Therefore, from a computational standpoint, it would

be useful to appropriately truncate this summation, making

sure that the terms excluded add to less than a prespecified

tolerance ε .

The following bounds are the basis of our proposed

truncation rules.

Proposition 4 If Px( j) and Fx( j) denote the prob-

ability mass function and cumulative distribution function

of the Poisson distribution with mean x, then

(i)
∞

∑
j=s

jPx( j) = x(1−Fx(s−2)) ,s≥ 2;

(ii)
∞

∑
j=s

j2Px( j) =

x2 (1−Fx(s−3))+ x(1−Fx(s−2)) ,s≥ 3.

From Proposition 4, we can show that

1

∑
j=sε+1

(

B j +C j +
u j

∑
i=l j

Tji

)

≤ sε kx(1−Fkx(rε −2)) , (12)

where rε = Max{n ∈ Z+ : 1−Fkx(n)≥ Fx(sε −1)}. There-

fore, if the integral
∫ 0.5

0 F−1
x (u)F−1

kx (1− u)du comprising

h(x) needs to be computed to within tolerance ε , stop the

outside summation in (11) when the right-hand side of (12)

falls below ε . A similar procedure can be adopted when

computing the other integral
∫ 0.5

0 F−1
kx (u)F−1

x (1−u)du that

comprises h(x).

3.3 Initial Guess

Motivated by Figure 2, the initial guess x0 for the recursion

(8) is obtained through a linear approximation l(x) to the

function h(x). As the following proposition asserts, the

“global slope” of h(x) is −
√

k. Therefore, the slope of the

linear approximation l(x) is assumed to be −
√

k.
47
Proposition 5 The function

h(x) = E
[

F−1
x (U)F−1

kx (1−U)
]

− kx2

satisfies

lim
x→∞

h(x)

x
=−
√

k.

The intercept c of the linear approximation l(x) is

estimated empirically, using a multi-regime regression line.

For a given problem instance, i.e., for given λ , k, and

ρ , the initial guess x0 for the recursion (8) is obtained by

solving for x from the equation

l(x) =−
√

k x+ c = ρλ
√

k,

to obtain x0 = (c−ρλ
√

k)/
√

k.

4 NUMERICAL PERFORMANCE

Recall that the proposed algorithm has two phases: (i) a

preprocessing step where Equation (7) is solved to identify

the parameter λ ∗ to prescribed tolerance; (ii) the identified

parameter is then used appropriately to generate the required

Poisson random variables. In this section, we report a portion

of our ongoing tests to assess the performance in (i) and

(ii).

In testing the preprocessing step, we systematically

varied the three problem parameters λ , k, and ρ . Specifically,

to generate Figure 3, we varied λ in the range (0,100) in

steps of 0.1, k in the range (0,1) in steps of 0.1, and

ρ in the range (−1,0) in steps of 0.01. The plots show

the 99th percentile of the CPU time in seconds, and the

number of steps in recursion (8), as a function of k. The

stipulated tolerance for recursion (8) was 10−4, and the tests

were performed through a MATLAB compiler on an Intel

1.67GHz processor.

As can be seen from Figure 3, an overwhelming majority

of the generated problems are solved to stipulated tolerance

within 4.1× 10−4 CPU seconds, and take 4 iterations or

less. The maximum CPU time, and the maximum number

of iterations, not depicted in Figure 3, were uniformly less

than 10−2 seconds, and 5 respectively. In addition to those

reported in Figure 3, our ongoing tests on a few million

problems, generated with λ values up to 1000, have revealed

no problems where the preprocessing time took more than

0.02 seconds, and greater than 8 Newton iterations.

Figure 4 depicts generation times for a sample problem

with λ = 100, ρ = −0.75 and across different k values.

By generation times, we mean the time taken to execute

Steps 2 through 7 in the algorithm listing shown in Section

2.1. Steps 3, 4, and 5 were executed using the Poisson cdf

inversion technique described in (Kemp and Kemp 1991),

but without incorporating the “squeeze” technique.
7
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Figure 3: Performance of the proposed numerical procedure for executing the preprocessing step. The reported CPU times

were obtained from execution through a MATLAB compiler on an Intel 1.67GHz processor.
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Figure 4: Estimated expected generation times of the proposed algorithm on a sample problem. The reported times were

obtained from execution through a MATLAB compiler on an Intel 1.67GHz processor.
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5 SUMMARY AND ONGOING RESEARCH

In this paper, we present a specialized method for gen-

erating correlated Poisson random vectors. The method,

like trivariate reduction, uses extra random variables to in-

duce the required correlation. Specifically, the extra random

variables use common random numbers to induce positive

correlation, antithetic variates to induce negative correlation,

and have appropriately-scaled means. This choice of means

is accomplished through a preprocessing step, involving a

fast one-dimensional recursive search.

Unlike trivariate reduction, and like NORTA, the pro-

posed method has complete coverage in two dimensions.

Furthermore, preliminary tests involving Poisson marginal

distributions with means in the interval (0,100), and correla-

tions in the interval (−1,0), suggest that, in an overwhelming

majority of the cases, the preprocessing step takes of the

order of 10−4 seconds, when executed through MATLAB

on an Intel 1.67GHz processor. The actual generation of the

Poisson random vectors is executed through well-established

Poisson cdf inversion techniques.

In ongoing research, we are investigating four important

issues.

(i) How does the method perform in higher dimen-

sions? We are specifically interested in under-

standing how the coverage area deteriorates as

the dimension increases. Given that the proposed

method is specialized for Poisson random vectors,

it is unsurprising that the preprocessing step is a

few orders of magnitude faster than in traditional

implementations of NORTA. What is more inter-

esting, however, is how the proposed method and

NORTA compare in terms of coverage area in high

dimensions.

(ii) To aid understanding within a modeling context,

we would like to know the properties of the re-

gression lines inherent to the bivariate distribution

induced by the proposed procedure, e.g., the func-

tions E [X1|X2 = x2], Var [X1|X2 = x2].
(iii) Johnson, Kotz, and Balakrishnan (1997) state that

“the negative binomial distribution has become

increasingly popular as a more flexible alternative

to the Poisson distribution.” One reason is that the

Poisson distribution is sometimes limiting due to

its implicit restriction of the equality of the mean

and variance.

A useful characterization of the negative binomial

distribution is as a “Poisson distribution whose

parameter λ is gamma distributed.” This close re-

lationship between the Poisson and the negative

binomial distributions leads to interesting ques-

tions about whether specialized methods can be

developed for fast generation of correlated negative
479
binomial random vectors, especially by exploiting

the developed methods.

(iv) We would like to further understand numerical

performance of the proposed algorithm through

more extensive testing. Specifically, we would

like to generate random problems within a much

larger range of λ values.
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