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ABSTRACT

We assume the existence of a parameterized family of con-

trol variates that could be used in a regenerative steady-state

simulation. We show how such controls can be generated in

the Markov-process setting, discuss the optimization prob-

lem of searching for a good choice of parameterization,

and develop a strong law and central limit theorem for the

resulting estimator.

1 INTRODUCTION

In this paper we describe a variance reduction scheme, based

on the method of control variates, for estimating a steady-

state mean. We introduce the method by first recalling the

key ideas behind the method of linear control variates for

finite-horizon simulations.

The variance-reduction method of linear control variates

for finite-horizon simulations (see, e.g., Law 2007, Chapter

11) works as follows. We wish to compute EX , where

X is observable from some finite-horizon simulation. The

simulation also produces a random (column) vector C with

mean 0. We can therefore estimate EX by a sample mean of

random variables of the form X +θ TC. (Here, θ T denotes

the transpose of the column vector of constants θ .) The

parameter vector θ is chosen to minimize the variance of

the estimator. This is straightforward, since the variance is

a quadratic function of θ , and the optimizing choice of θ
is easily estimated from the simulated data.

The situation is more complicated, even in the finite-

horizon setting, when one estimates EX by X +C(θ), where

C(·) is some complicated nonlinear function of the parameter

vector θ and random variables that has the property that

for all choices of θ , EC(θ) = 0. (Such functions arise

naturally when one is simulating Markov chains; see Kim

and Henderson 2007, Henderson and Glynn 2002. Also,

it is worth noting that this setup is fundamentally different

from control variates that are given as a nonlinear function

of means, as studied in Glynn and Whitt 1989.) Kim and
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Henderson (2007) studied this setting in detail. The main

issue is that the variance function is not as tractable as a

quadratic, even when one sets up the parameterization in

such a way as to yield a differentiable variance function,

so it is unclear how to select the parameter θ . One would

like to select a θ that minimizes the variance, but the main

goal is the estimation of EX , and these 2 goals need to be

balanced in some appropriate way.

Kim and Henderson (2007) described 2 main approaches

to this finite-horizon problem. The first approach is a

stochastic-approximation scheme whereby an estimate of

the variance-minimizing θ is updated with each simula-

tion iteration. The second approach involves the use of the

“sample-average approximation” framework where a choice

of θ , θ̂ say, is made and fixed in a first stage, and then

the estimation of EX proceeds in a second stage by averag-

ing conditionally independent replicates of X +C(θ̂). The

stochastic-approximation approach has low computational

requirements in each iteration, but requires many iterations

to converge, and its success depends strongly on identifying

good values of certain tuning parameters, which is difficult.

The sample-average approximation approach requires more

computation, but its performance is much more robust.

Given the success of the sample-average approximation

approach in this early work, and given the high variances

associated with certain steady-state estimation problems

such as those that arise in simulations of queueing systems

in heavy traffic (Whitt 1989, Asmussen 1992), we would like

to extend these ideas to steady-state performance measures.

This paper represents a first attempt at such an extension.

We extend the finite-horizon case explored in Kim

and Henderson (2007) to the regenerative steady-state case.

We focus on regenerative steady-state simulation primarily

because the regenerative case enjoys many of the advantages

of the finite-horizon case. However, the analysis is still

technically challenging.

We recognize that, at least currently, the restriction to

the regenerative setting represents a significant restriction in

practice. Ultimately we would like to extend this analysis
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to other variance estimators that are more easily imple-

mented and widely used in practice. These include batch

means methods (adjusted to provide consistent estimates of

the variance constant), and spectral methods. The primary

technical challenge in those contexts appears to be estab-

lishing a uniform (in the parameters) convergence theory

for variance estimators and their derivatives.

In related work, Newton (1994) described a number of

variance reduction techniques for simulated diffusions. One

of the techniques proposed there, but not explored in any

depth, is essentially the stochastic approximation method

for finite-horizon simulations studied in Kim and Hender-

son (2007). Henderson, Meyn, and Tadić (2003) developed

a stochastic-approximation scheme for minimizing an ap-

proximation of the steady-state variance constant. They did

not assume a regenerative structure. Tadić and Meyn (2004)

have also made some initial steps on this problem, again

using a stochastic-approximation scheme. These papers all

use martingales as control variables; see Henderson and

Glynn (2002) for a detailed treatment of how to get control

variates from martingales. There are a number of papers

that involve adaptive importance sampling. See Juneja and

Shahabuddin (2006) for an entry point to that literature.

The remainder of this paper is organized as follows.

In Section 2 we define the steady-state estimation problem,

recall the main theory of regenerative simulation and give an

expression for the appropriate variance constant as a function

of the parameters. Then, in Section 3 we impose conditions

on the parameterization that ensure differentiability of the

variance function. This then sets the stage for laying out

our estimation methodology, which includes an optimization

step, in Section 4. Section 5 discusses how to obtain a

parameterized source of control variates when simulating

a general-state-space Markov chain, and Section 6 gives

numerical results for a simple example. Section 7 contains

some concluding remarks.

2 THE VARIANCE FUNCTION

Let X = (Xk : k ≥ 0) be a discrete-time stochastic process

on the state space S. Let f : S → R be a cost function on

the state space. Suppose that there exists a constant α such

that

1

n

n−1

∑
k=0

f (Xk) → α (1)

as n → ∞ almost surely (a.s.). We call α the steady-state

mean, and our goal is to estimate it. A natural estimator of

α is the time average

αn =
1

n

n−1

∑
k=0

f (Xk).
431
Suppose further that for each θ = (θ(1), . . . ,θ(p)) ∈
Θ ⊆R

p, h(·;θ) : S → R is a real-valued non-linear function

of x ∈ S with steady-state mean 0, i.e.,

1

n

n−1

∑
k=0

h(Xk;θ) → 0,

as n → ∞ a.s. (We will see below that such functions can

be constructed in interesting application settings.) Then we

obtain a family of consistent estimators of α , (αn(θ) : θ ∈
Θ), where

αn(θ) =
1

n

n−1

∑
k=0

[ f (Xk)+h(Xk;θ)].

Here n−1 ∑n−1
k=0 h(Xk;θ) serves as a control variate. But how

should we select amongst this family of control variates?

A natural approach is to select the estimator with mini-

mal “steady-state variance.” To define this notion precisely,

we impose a very general regenerative structure. Suppose

that X is a 1-dependent regenerative process with regenera-

tion times T (0) = 0 < T (1) < · · · . Denote the cycle lengths

by τi = T (i)−T (i−1), i ≥ 1. Define the cost accumulated

over the ith cycle by

Fi =
T (i)−1

∑
k=T (i−1)

f (Xk), i ≥ 1.

Under appropriate moment conditions, we can rigorously

define, and obtain expressions for, the steady state mean and

variance for the above estimators. We first state a familiar

result for αn.

Theorem 1. Suppose that E(|F1|+ τ1) < ∞.

(i) The strong law

αn → α =
EF1

Eτ1
(2)

holds as n → ∞ a.s.

(ii) Define Zk = Fk −ατk for k ≥ 1, and let ⇒ de-

note convergence in distribution. If, in addition to

the conditions already stated, EZ2
1 < ∞, then the

central limit theorem (CLT)

n1/2(αn −α) ⇒ σN(0,1) (3)

holds as n → ∞, in which case

σ2 =
EZ2

1 +2EZ1Z2

Eτ1
.
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The proof is nearly identical to the classically regen-

erative case given in Glynn and Iglehart (1993), and so we

omit it here. The constant σ2 is known as the time-average

variance constant, and Theorem 1 immediately suggests

that we can estimate it using the estimator

σ2
n =

1

n

l(n)−1

∑
k=1

[Z2
k (n)+2Zk(n)Zk+1(n)],

where Zk(n) = Fk −αnτk and l(n) = sup{k ≥ 0 : T (k) ≤ n}
is the number of completed regenerative cycles by time n.

The next result affirms that σ2
n is a consistent estimator for

σ2 under appropriate conditions.

Theorem 2. Assume that the conditions in Part (ii) of

Theorem 1 hold. Then

σ2
n ⇒ σ2

as n → ∞. Furthermore, if E(F2
1 + τ2

1 ) < ∞, then σ̂2
n is

strongly consistent, i.e., σ2
n → σ2 as n → ∞ a.s.

The proof follows as in Glynn and Iglehart (1993), and

so is omitted.

We can apply Theorems 1 and 2 to the family of

estimators (αn(θ) : θ ∈ Θ) as follows. For any fixed θ ∈ Θ,

define

Hk(θ) =
T (k)−1

∑
i=T (k−1)

h(Xi;θ),

Zk(θ) = Fk +Hk(θ)−ατk, and

σ2(θ) =
EZ2

1(θ)+2EZ1(θ)Z2(θ)

Eτ1
.

If the corresponding moment conditions hold, then

for each θ ∈ Θ, αn(θ) → α a.s., and n1/2(αn(θ) −
α) ⇒ σ(θ)N(0,1) as n → ∞. Furthermore, the variance

estimator

σ2
n (θ) =

1

n

l(n)−1

∑
k=1

[Z2
k (n;θ)+2Zk(n;θ)Zk+1(n;θ)] (4)

is consistent for σ2(θ) as n → ∞, where Zk(n;θ) = Fk +
Hk(θ)−αn(θ)τk.

The variance constants σ2(θ) determine the rate of

convergence of the estimators αn(θ), as quantified by the

CLT just mentioned. Therefore, a reasonable goal is to

select the parameter value, θ ∗ say, that minimizes the time-

average variance constant σ2(·). We are therefore interested

in the (simulation) optimization problem

P : min
θ∈Θ

σ2(θ).
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This optimization problem is easier to solve if the function

σ2(·) possesses structure. For example, if h(x;θ) is linear in

θ , then P reduces to the setting of internal linear control

variates in the regenerative setting, the theory of which

is essentially a straight-forward extension of linear control

variates for finite-horizon simulation; see Iglehart and Lewis

(1979). If h(x;θ) is nonlinear in θ , then the problem is not

as straightforward.

3 DERIVATIVES AND ESTIMATION

In this section we impose conditions that ensure that the

variance function σ2(·) is differentiable, and provide an

estimator of its gradient, thereby aiding a numerical search

for parameter values that yield low variance.

Assumption A1 The parameter set Θ is compact, and

for all x ∈ S the function h(x, ·) is C 1 on U , where

U is a bounded open set containing Θ. Moreover,

EH1(θ) = 0 for any θ ∈ U .

Assumption A2 Define Wk(θ) = ∑
T (k)−1

i=T (k−1)
|h(Xi;θ)|.

The moment conditions E(τ2
1 + F2

1 ) < ∞ and

EW 2
1 (θ0) < ∞ for some fixed θ0 ∈ U hold.

Assumption A3 For all x ∈ S, h(x; ·) is Lipschitz on U ,

i.e., ∃c(x) > 0 such that for all θ1,θ2 ∈ U ,

|h(x;θ1)−h(x;θ2)| ≤ c(x)‖θ1 −θ2‖,

where ‖ · ‖ is a metric on R
p. Therefore,

sup
θ∈U

∣

∣

∣

∣

∂h(x;θ)

∂θ( j)

∣

∣

∣

∣

≤ c(x)

for all x ∈ S and j = 1, . . . , p. For k ≥ 1, define

Ck = ∑
T (k)−1

i=T (k−1)
c(Xi) to be the sum of the Lip-

schitz constants over the jth regenerative cycle,

and assume that EC2
1 < ∞.

Remark 1. Suppose that U(θ) is a random variable for

each θ ∈U . We say that U(·) is dominated by an integrable

random variable Ũ if |U(θ)| ≤ Ũ a.s. for every θ ∈ U ,

and EŨ < ∞. Under A1-A3, H1(·)2 is dominated by an

integrable random variable, and hence so is Z2
1(·). To see

why, note that for any θ ∈ U ,

H2
1 (θ) = [H1(θ0)+(H1(θ)−H1(θ0))]

2

≤ 2H2
1 (θ0)+2(H1(θ)−H1(θ0))

2

≤ 2W 2
1 (θ0)+2C2

1‖θ −θ0‖2.

But U is bounded, and hence ‖θ −θ0‖2 is bounded.

Our next result gives conditions under which the vari-

ance function is differentiable, and gives an expression for
2
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its gradient that also suggests an estimator for the gradient

of the variance function.

Proposition 3. Assume that A1-A3 hold. Then σ2(·) is C 1

on U and

∇θ σ2(θ) =
E∇θ Z2

1(θ)+2E∇θ (Z1(θ)Z2(θ))

Eτ1
.

Proof. It suffices to show that EZ1(·) and EZ1(·)Z2(·)
are C 1 on U and the gradient and expectation can be ex-

changed. We apply Proposition 1 in L’Ecuyer (1995) to

Z1(θ) and Z1(θ)Z2(θ) component by component. Consider

the jth component, for some j ∈ {1, . . . , p}. The only condi-

tion that requires explicit verification is that ∂Z1(θ)/∂θ( j)
and ∂Z1(θ)Z2(θ)/∂θ( j) are dominated by an integrable

function of X . With probability 1,

∂Zk(θ)

∂θ( j)
= − ∂

∂θ( j)

(

T (k)−1

∑
i=T (k−1)

h(Xi;θ)

)

= −
T (k)−1

∑
i=T (k−1)

∂h(Xi;θ)

∂θ( j)

for k ≥ 1. Hence,

∣

∣

∣

∣

∂Z2
1(θ)

∂θ( j)

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∂

∂θ( j)

(

T (1)−1

∑
i=0

h(Xi;θ)

)

Z1(θ)

∣

∣

∣

∣

∣

≤ 2C1|Z1(θ)|, (5)

and

∣

∣

∣

∣

∂ (Z1(θ)Z2(θ))

∂θ( j)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∂

∂θ( j)

(

T (1)−1

∑
i=0

h(Xi;θ)

)

Z2(θ)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∂

∂θ( j)

(

T (2)−1

∑
i=T (1)

h(Xi;θ)

)

Z1(θ)

∣

∣

∣

∣

∣

≤ C1|Z2(θ)|+C2|Z1(θ)|. (6)

By A3 and Remark 1, the right-hand sides of equations (5)

and (6) are dominated by an integrable function.

4 OPTIMIZATION AND ESTIMATION

Solving the problem P above is really an intermediate step

on the way to estimating the steady-state mean α , which

is our true goal. Accordingly, we propose a two-phase

approach. In the first phase we generate and fix a sample

path X̃0, X̃1, . . . , X̃m, and then identify θm as the solution of

the optimization problem

Pm : min
θ∈Θ

σ2
m(θ),
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where σ2
m(θ) is the estimator (4) of σ2(θ) constructed from

X̃0, X̃1, . . . , X̃m. (We refer to Pm as the sample-average

approximation (SAA) problem corresponding to P .) We

then use the solution θm to Pm in a second phase, where

α is estimated using

αn(θm) =
1

n

n−1

∑
i=0

[ f (Xi)+h(Xi;θm)],

and the sample path X0,X1, . . . ,Xn−1 is independent of

X̃0, X̃1, . . . , X̃m.

In this section we look at the asymptotics of this esti-

mator as m and n become large. We begin with a uniform

law of large numbers that we will then use to prove a strong

law for αn(θm) as n → ∞.

Proposition 4. Suppose that {Uk(θ) : k ≥ 1} is a κ-

dependent stationary sequence of random variables for

any θ ∈ Θ, where Θ is a compact parameter set. Let

{l(n) : n ≥ 1} be a family of random indices such that

l(n)/n → λ a.s as n → ∞ for some constant λ ∈ (0,∞).
Suppose that Ui(·) is continuous on Θ w.p.1 and dominated

by an integrable random variable for all i ≥ 1. Then

sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

l(n)

∑
i=1

Ui(θ)−λEU1(θ)

∣

∣

∣

∣

∣

→ 0 (7)

as n → ∞ a.s.

Sketch of Proof. First write (7) as

l(n)

n
sup
θ∈Θ

∣

∣

∣

∣

∣

1

l(n)

l(n)

∑
i=1

[Ui(θ)−EU1(θ)]

∣

∣

∣

∣

∣

plus a remainder term that converges to 0 a.s., uniformly

in θ . Then we extend Proposition 7 in Shapiro (2004) for

i.i.d. random variables to the κ-dependent case to obtain

that

sup
θ∈Θ

∣

∣

∣

∣

∣

1

m

m

∑
k=1

Uk(θ)−EU1(θ)

∣

∣

∣

∣

∣

→ 0

almost surely, as m → ∞. The result then follows since

l(n) → ∞ as n → ∞ a.s.

We can now state a version of the strong law and central

limit theorem for αn(θ̂), where θ̂ is random.

Theorem 5. Suppose that A1-A3 hold, and that θ̂ is in-

dependent of the path X0, . . . ,Xn−1 used to compute αn(θ̂)
for every n. Then αn(θ̂) → α as n → ∞ a.s., and

√
n(αn(θ̂)−α) ⇒ σ(θ̂)N(0,1)
3
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as n → ∞, where N(0,1) is a standard normal random

variable that is independent of θ̂ .

Sketch of Proof. For the strong law note that

|αn(θ̂)−α| ≤ |αn −α|+
∣

∣

∣

∣

∣

1

n

n−1

∑
i=0

h(Xi, θ̂)

∣

∣

∣

∣

∣

≤ |αn −α|+ sup
θ∈Θ

∣

∣

∣

∣

∣

1

n

n−1

∑
i=0

h(Xi,θ)

∣

∣

∣

∣

∣

. (8)

The first term in (8) converges to 0 a.s. as n → ∞ by (2).

For the second term, we write it as the sum of 2 terms,

the first of which is a remainder term that converges to 0

as n → ∞ a.s., uniformly in θ . The second term is of the

form given in Proposition 4 and therefore also converges to

0 as n → ∞ a.s., uniformly in θ . The CLT can be proved

by conditioning on θ̂ , invoking the regenerative CLT, and

then unconditioning, and is very similar to the proof of a

similar result in Kim and Henderson (2007).

Theorem 5 identifies the asymptotic behavior of the

estimator αn(θm) when m is held fixed and n→∞. However,

as the computational budget increases, one would probably

devote an increasing amount of effort to estimating the true

minimizer of Problem P . Suppose that m = m(n) is a

function of n such that m(n)→ ∞ as n → ∞. Our next result

shows that if θm(n) converges in probability to a (potentially

random) parameter setting θ ∗ as n → ∞, then αn(θm(n)) has

the same SLLN and CLT behavior as αn(θ
∗).

Theorem 6. Suppose that θm(n) → θ ∗ as n → ∞ in proba-

bility, for some random variable θ ∗. Suppose further that

A1 - A3 hold and that θm(n) is independent of the path

X0, . . . ,Xn−1 used to compute αn(θm(n)) for every n. Then

αn(θm(n)) → α as n → ∞ a.s., and

√
n(αn(θm(n))−α) ⇒ σ(θ ∗)N(0,1)

as n → ∞, where N(0,1) is independent of θ ∗.

Sketch of Proof. The strong law can be proved exactly as

in Theorem 5. For the central limit theorem, note that

√
n(αn(θm(n))−α)

=
√

n(αn(θ
∗)−α)+

√
n(αn(θm(n))−αn(θ

∗))

= D1,n +D2,n, say.

Now, θ ∗ is independent of the samples used to com-

pute αn for every n, so Theorem 5 establishes that

D1,n ⇒ σ(θ ∗)N(0,1) as n → ∞. Thus, it suffices to show
43
that

D2,n =
1√
n

n−1

∑
i=0

[h(Xi,θm(n))−h(Xi,θ
∗)] ⇒ 0

as n → ∞. One can show that this difference is essentially a

sum of regenerative cycle quantities and a remainder term

that converges to 0 in probability. The analysis of the sum

borrows techniques from Janson (1983) and Henderson and

Glynn (2001), and is omitted.

Theorem 6 shows that it is a good idea to try to select θm

to solve the Problem Pm. The best that we can hope for from

a computational point of view though, is that θm is a first-

order critical point of Problem Pm. Hence, it is important

that the set of first-order critical points of Problem Pm

converge to those of Problem P as m → ∞. Theorem 7

below shows that if we can uniformly approximate the

gradient of a function, then the first-order critical points

will converge. This is only a slight modification of a result

due to Bastin, Cirillo, and Toint (2007) and so the proof

is omitted. For a point x and set A define the distance

d(x,A) = inf{‖x− y‖ : y ∈ A}.

Theorem 7. Suppose that

(i) Θ is convex and compact,

(ii) g : Θ → R is C 1 on an open set containing Θ,

(ii) the random functions gm(·) : Θ → R are C 1 on an

open set containing Θ w.p.1, for all m ≥ 1, and

(iv) supθ∈Θ ||∇θ gm(θ)−∇θ g(θ)|| → 0 a.s. as n → ∞.

Let θm be a first-order critical point of gm(·) on Θ and

S(g(·),Θ) be the set of first order critical points of g(·) on

Θ. Then d(θm,S(g,Θ)) → 0 as m → ∞ a.s.

Now, the estimate σ2
m of the variance function is essen-

tially a nonlinear function of means. This observation can

be exploited, together with Theorem 7 above, to show that

the distance between θm and the set of first-order critical

points of σ2(·) converges to 0 as m grows. The proof is

somewhat mechanical, and omitted.

Corollary 8. Suppose that A1-A3 hold and Θ is convex.

Then d(θm,S(σ2,Θ)) → 0 as m → ∞ a.s.

Corollary 8 shows that our methodology is sound, in

the sense that numerically minimizing an estimate of the

variance function, will give parameter settings that are close

to local minimizers of the true variance function, so long as

the estimate of the variance function is reasonably accurate,

i.e., so long as m is large enough. Since the variance

function is continuous, this then implies that we get a

close-to-locally-optimal variance.
4
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5 A SOURCE OF CONTROLS

The previous sections have explored the asymptotic theory

of a parameterized control variate. But where can one obtain

such controls? In this section we explain how to obtain a

source of parameterized controls when simulating a Markov

chain on a general state space, essentially reviewing ideas

from Henderson and Glynn (2002) and Kim and Henderson

(2007). This is a very general context that includes the

special case of Markov chains on a countable state space. It

also includes a (very) large class of discrete-event systems,

via the Markov chain that arises by observing the system and

event clocks just after each event occurs. (See Henderson

and Glynn 2001 for more details on this well-known point.)

We now assume that X = (Xk : k ≥ 0) is a Markov

chain on the general state space S. To ensure that the

steady-state mean α defined in (1) is well defined, we

assume that X is positive Harris recurrent with stationary

distribution π , and that π| f | = Eπ | f (X0)| < ∞, where Eπ

denotes expectation when X0 is distributed according to π .

The positive recurrence assumption ensures that the chain

has a unique steady-state distribution, and the law of large

numbers then holds under moment conditions (Meyn and

Tweedie 1993). The moment condition π| f | < ∞ ensures

that the law of large numbers holds for αn, so that αn → α
as n → ∞ a.s.

We can now develop the controls. Let u : S → R be

a real-valued function on the state space of the chain, and

let Pu(x) = E[u(X1)|X0 = x] be the expected value of u(X1)
when we start in state x. (This notation suggests that in

the finite state space case, Pu is a matrix-vector product,

which is correct.) Now, for i ≥ 1, consider

u(Xi)−Pu(Xi−1) = u(Xi)−E[u(Xi)|Xi−1],

which has mean 0 under any initial distribution for which

the appropriate expectations exist. A sum of such terms

also has mean 0, suggesting that such a sum can serve as

a control variate. In particular, define

Mn =
n

∑
i=1

[u(Xi)−Pu(Xi−1)]

= u(Xn)−u(X0)−
n−1

∑
i=0

[Pu(Xi)−u(Xi)]

where the second line is obtained by rearranging terms. Let

h(·) = Pu(·)−u(·), so that Mn = u(Xn)−u(X0)−∑n−1
i=0 h(Xi).

If we divide by n, then the terms u(Xn)/n and u(X0)/n are

asymptotically negligible, so that one might expect

Cn
△
=

1

n

n−1

∑
i=0

h(Xi)
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to be a good candidate for a control variate. Indeed, if

π|u| < ∞, so that u is π-integrable, then

π|h| = π|Pu−u|
≤ π(P|u|)+π|u|
= (πP)|u|+π|u|
= π|u|+π|u|
< ∞,

where we have used Fubini’s theorem and the fact that

πP = π . Hence h is π-integrable, so the strong law applies

and then

Cn → πh

= π(Pu−u)

= (πP)u−πu

= πu−πu

= 0

as n → ∞ a.s. So Cn could serve as a control variate, so

long as u is π-integrable.

Now, if u is parameterized by θ , say u(·;θ), and we

let h(·;θ) = Pu(·;θ)−u(·;θ) then, provided that u(·;θ) is

π-integrable, we can use

Cn(θ) =
1

n

n−1

∑
i=0

h(Xi;θ)

as a control variate in conjunction with αn, giving an esti-

mator

αn(θ) =
1

n

n−1

∑
i=0

[ f (Xi)+h(Xi;θ)].

But how should one choose the parameterized set of

functions u(·;θ)? The key issues are that we need to be able

to compute the one-step expectations Pu(·;θ) efficiently (so

that we can compute h(·;θ) efficiently), and that we get

good variance reductions, in the sense that there should be

some θ for which

h(·;θ) = Pu(·;θ)−u(·;θ) ≈− f (·)+α (9)

since, if this approximation holds as an equality, the estimator

αn(θ) has zero variance. The equality version of (9) is

known as Poisson’s equation, and it plays a key role in

Markov chain theory. So essentially, we want a “good”

approximation to the solution to Poisson’s equation within

our parameterized class of functions (h(·;θ) : θ ∈ Θ).



Kim and Henderson
6 AN EXAMPLE

In this section we examine the performance of the adaptive

control variate method discussed in Section 4 based on a

stationary first-order autoregressive process. Let {εk : k =
1,2, . . .} be a sequence of independent normally distributed

random variables with mean 0 and variance η2. A first-

order autoregressive (AR(1)) process satisfies the following

difference equation:

Xi = µ +φXi−1 + εi for i ≥ 1,

where µ and φ are any constants. To ensure that X has a

stationary version, we assume that |φ |< 1. Then the process

X = (Xk : k ≥ 0) is a positive Harris recurrent Markov chain

with stationary distribution π ∼N(µ/(1−φ),η2/(1−φ 2)).
To identify the regeneration times, we use the “splitting

Markov chain method” (Athreya and Ney 1978, Nummelin

1978). At each transition, an auxiliary coin-flip is generated,

and a regeneration occurs if the coin-flip results in success.

For a discussion of the method in a simulation setting,

see Glynn and Iglehart (1993) and Henderson and Glynn

(2001). To construct parameterized controls, we use the

idea presented in Section 5. Let u(·,θ),θ ∈ Θ be given and

h(·;θ) = Pu(·;θ)−u(·;θ). One can show that A1-A3 and

the conditions in Theorem 7 are satisfied in the following

examples, so that all of our previous results apply.

For the simulation experiment, we take µ = 0, η = 1

and X0 = 1. We wish to estimate the steady-state mean with

cost functions f (x) = x and x2. Note that the true steady

state means are zero and η2/(1−φ)2, respectively. We take

u(x;θ) = xeθ(1)(x−θ(2))2+θ(3),

so that

θ = (θ(1),θ(2),θ(3)) ∈ Θ, and

Θ = {x ∈ R
3 : a( j) ≤ x( j) ≤ b( j), j = 1,2,3}.

In the second case, we take

u(x;θ) = θ(1)x2 + xeθ(2)(x−θ(3))2+θ(4),

where

θ = (θ(1), . . . ,θ(4)) ∈ Θ, and

Θ = {x ∈ R
4 : a( j) ≤ x( j) ≤ b( j), j = 1, . . . ,4}.

(It turns out that in both cases, the control variate that leads

to zero variance is contained within the set of parameterized

controls.)

We examine the performance of the adaptive estimators

relative to the standard Monte Carlo technique. In the
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adaptive method, we take m = 100 samples and obtain θm

by applying a quasi-Newton method with a linesearch using

the gradients discussed in Section 4 to solve the sample

average approximation problem. As an estimator of α , we

use the time average αn(θm) over n = 10,000 replicates,

where θm is viewed as fixed, in the sense of Theorem 5.

To ensure a fair comparison, we allocate equal amounts of

CPU time to both methods.

Table 1: Estimated variance reduction ratio with cost func-

tion f (x) = x.

φ αNaive σ2
Naive αACV σ2

ACV σ2
Naive/σ2

ACV

0.2 -2.5E-4 1.6 -1.5E-6 6.8E-8 2.3E+7

0.4 7.9E-3 2.8 -3.1E-7 2.6E-9 1.1E+9

0.6 6.7E-3 6.3 -1.0E-4 8.2E-4 7.6E+3

0.8 0.037 24 3.4E-6 2.5E-7 9.5E+7

0.9 6.4E-3 101 -3.1E-8 8.3E-9 1.2E+10

0.99 2.3 2.0E+4 -0.073 1.1E+3 18

Table 2: Estimated variance reduction ratio with cost func-

tion f (x) = x2.

φ αNaive σ2
Naive αACV σ2

ACV σ2
Naive/σ2

ACV

0.2 1.04 2.4 1.04 3.2E-16 7.4E+15

0.4 1.20 3.8 1.19 2.2E-16 1.7E+16

0.6 1.55 10 1.56 3.4E-11 2.9E+11

0.8 2.78 82 2.78 4.3E-15 1.9E+16

0.9 5.28 616 5.26 1.6 397

0.99 53.7 4.0E+5 50.2 10 3.90E+4

Tables 1 and 2 show the simulation results for varying

values of φ . We use the terms “Naive” and “ACV” to rep-

resent the estimators obtained through naı̈ve Monte Carlo

estimation and the adaptive control variate method, respec-

tively. The values αNaive and αACV denote, respectively, the

estimated steady-state means obtained from the naı̈ve and

adaptive estimators. Similarly, σ2
Naive and σ2

ACV are the esti-

mated time average variance constants. The sixth columns

in both tables show that our adaptive estimators significantly

outperform the naı̈ve estimators, yielding smaller variances

for every value of φ .

We see that the naı̈ve variance σ2
Naive steadily increases

with φ . In fact, we expect this to happen, because larger

values of φ increase both the autocorrelation in, and scale

of, the process X . However, the adaptive variance σ2
ACV does

not behave in the same way. This is because the performance

of our adaptive estimator depends on our parameterization

for u(·,θ) as well as on our solution for the optimization

problem Pm. In particular, our technique for solving Pm

is only guaranteed to find a locally optimal point. As a

result, the upward trend in the variance is not clear from

σ2
ACV .
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7 CONCLUSIONS

We have extended adaptive control variates to the regen-

erative steady-state simulation context. Limited numerical

experiments show that the method is usable and can signifi-

cantly outperform standard Monte Carlo. The performance

depends on the parameterization used for the control variate

as well as the quality of the optimization algorithm used.

In terms of future research, there is the matter of how

to divide the total computational budget between estimating

the optimal parameter value θ ∗ and estimating the steady-

state mean α . This allocation is expressed in the choice of

sample sizes m and n. Kim and Henderson (2007) argue

that, in finite-horizon simulation, the optimal choice of m

in the optimization stage is of the order of the square root

of the total budget. We expect a similar result to hold in the

regenerative setting. Also, we used a regenerative estimator

of the time-average variance constant. It can be difficult to

identify the regeneration times of the underlying process,

so we plan to consider other variance estimators based on

methods related to batch means.
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Tadić, V. B., and S. P. Meyn. 2004. Adaptive Monte Carlo

algorithms using control variates. Unpublished manu-

script.

Whitt, W. 1989. Planning queueing simulations. Manage-

ment Science 35:1341–1366.

AUTHOR BIOGRAPHIES

SUJIN KIM received her Ph.D. degree in Operations Re-

search from Cornell University. She is currently Visiting

Assistant Professor in the Department of Industrial Engi-

neering at Purdue University. Her research interests include

simulation methodology, simulation optimization, and ap-

plications in electric power and health service systems. Her

e-mail address is 〈sujin@purdue.edu〉.

SHANE G. HENDERSON is an associate professor in

the School of Operations Research and Information Engi-

neering at Cornell University. He is the simulation area

editor at Operations Research, and an associate editor for

the ACM Transactions on Modeling and Computer Simu-

lation and Operations Research Letters. He co-edited the

mailto:sujin@purdue.edu


Kim and Henderson
handbook Simulation as part of Elsevier’s series of Hand-

books in Operations Research and Management Science,

and also co-edited the Proceedings of the 2007 Winter Sim-

ulation Conference. He likes cats but is allergic to them.

His research interests include discrete-event simulation and

simulation optimization, and he has worked for some time

with emergency services. His web page can be found via

〈http://www.orie.cornell.edu〉.
438

http://www.orie.cornell.edu

	INTRODUCTION
	THE VARIANCE FUNCTION
	DERIVATIVES AND ESTIMATION
	OPTIMIZATION AND ESTIMATION
	A SOURCE OF CONTROLS
	AN EXAMPLE
	CONCLUSIONS

