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ABSTRACT

Importance Sampling is a potentially powerful variance
reduction technique to speed up simulations where the ob-
jective depends on the occurrence of rare events. However,
it is crucial to find a change of the underlying probabil-
ity measure yielding estimators with significantly reduced
variance compared to direct estimators. In this paper, we
present a new dynamic and adaptive method for this pur-
pose. The method is inspired by ant-based systems that
are in widespread use for solving optimization problems.
No intimate knowledge of the model under consideration
is necessary. Instead, the method adapts to it. Different
commonly used modeling paradigms such as queueing and
reliability models, amongst many others, are supported by
describing the new method in terms of a transition class
formalism. Simulation results demonstrate the accuracy of
the obtained estimates, and details of the adapted change
of measure are investigated to gain insights into the inner
workings of the method.

1 INTRODUCTION

System performance and reliability are important topics in
a variety of different domains. Both performance and re-
liability of many systems are heavily influenced by rare
events, which occur with very small probabilities but may
have serious consequences. Several examples elucidate the
necessity to analyze such rare events, ruins in insurance risk
or finance, breakdowns of manufacturing systems, technical
defects, false alarms in radar or security systems, to mention
but a few. In particular in the area of computer and commu-
nication systems there are a lot of examples for the impact
of rare events to system performance, such as packet losses
in switched networks, bit errors in digital communications,
or system failures in highly reliable systems.

Analytically, asymptotic analyses of exponentially rare
events can sometimes be done using large deviations theory
(Dembo and Zeitouni 1998, Shwartz and Weiss 1995) which
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is an elaborate, advanced and extremely technical mathe-
matical theory but unfortunately in its applicability limited
to relatively small models. Hence, analytical performance
evaluation of complex systems is usually not possible at all,
a fortiori in the presence of rare events. Likewise, numerical
methods are typically not suitable for rare event analysis.
Hence, simulation techniques are highly desirable. Unfortu-
nately, direct simulation of rare events is not effective, since
rare events occur too infrequently in simulations to compute
reliable statistical estimates in reasonable time. Simulation
speed-up is necessary in the sense that simulation time
to get estimates with desired accuracy, for example confi-
dence interval relative half width, must be reduced. Since
the accuracy depends on the variance of the simulation esti-
mators, such a simulation speed-up corresponds to variance
reduction, and it turns out that Importance Sampling is well
suited for this purpose. The basic idea of is to provoke more
of the rare events of interest by changing the underlying
probability measure. The systematically biased results are
then appropriately weighted to provide unbiased estimates.
Although theoretically an optimal zero-variance estimator
always exists, it cannot be used in simulations since it ex-
plicitly depends on the unknown quantity to be estimated.
Therefore, the crucial point in a successful application is to
find a probability measure which leads to estimators with
much smaller variance than the direct simulation estimators.
Consequently, the main part of the literature is concerned
with the change of measure and verifying the efficiency
and the robustness of the resulting estimators. Typically,
efficiency criteria and robustness properties are focused on
the asymptotic behavior of estimators as the probability of
the rare event approaches zero. The most prominent of
such asymptotic properties are asymptotic efficiency and
bounded relative error but many others are reasonable; see,
e.g., Sandmann (2007), Blanchet et al. (2007) for re-
cent investigations on estimators’ asymptotics. However, in
practice there are at least two drawbacks with asymptotic
properties. Proving them is extremely difficult and turns
out to be only possible for rather small or restricted models.
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Besides, in practice one is usually not really interested in
asymptotically small probabilities such as 10−100 or less but
in probabilities in the range of say 10−9 to 10−12. Hence,
investigating asymptotic properties is of course useful and
important from a theoretical point of view to get insights to
the method but in practice we may be satisfied by estimators
with significantly reduced variance meaning great simula-
tion speed-up even without provable asymptotic properties.
From the practitioners point of view it is more important to
come up with an effective simulation speed-up for realistic
models than to prove certain mathematical properties. It is
required to have methods that can be used not only by the
very experts in rare event simulation but by a broad range
of users without intimate knowledge of the system and the
analysis method.

In this paper we describe a new method for the change
of measure in Importance Sampling that adapts to the given
model. The method is inspired by ant-based systems that are
in widespread use for optimization problems as for exam-
ple network routing, resource allocation, and logistics. In
Section 2 the considered type of models is described and a
flexible transition class formalism is introduced which cov-
ers different model classes and domains such as queueing
networks, highly reliable fault-tolerant systems, resource al-
location models and many more. The Importance Sampling
fundamentals are given in Section 3 which also includes
the details of the new ant-based method. Simulation results
are presented and discussed in Section 4. Finally, Section 5
concludes the paper and outlines further research directions.

2 MODEL DESCRIPTION

Let us start with the description of the structure of models
we consider in this paper. As for the state space definition,
in general we allow d-dimensional discrete-state models,
that is the state space S is a subset of Nd which may be
finite or infinite. More specifically, the state space is S =
{0, . . . ,ν1}×·· ·×{0, . . . ,νd} where ν1, . . . ,νd ∈N may or
may not be finite. Any transition may affect at most two of
the components i, j ∈ {1, . . . ,d} of the state x = (x1, . . . ,xd)
in such a way that the according component values xi and x j
are either decreased or increased by one. Although this may
appear quite limited at a first glance, in fact a wide range
of models is covered such as queueing networks, reliability
models, resource allocation models, amongst many others.
As we are concerned with Markovian models it would
be possible to describe each specific model via an initial
probability distribution and a generator matrix. However, in
addition to the problem of rare events, models usually tend to
be very large. The size of the state space typically increases
exponentially with the number of system components or, in
other words, the model dimensionality. This effect is known
as state space explosion and makes the model intractable
by means of numerical solution approaches. One major
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advantage of simulation is that it does not suffer from state
space explosion since the state space need not be explicitly
enumerated. Thus, a model description that better reflects
the event system character of the model is well suited, in
particular for simulation purposes. Diverse specifications
of such event systems can be found in the literature. Here,
we adopt the transition class formalism as it previously
appeared in Sandmann (2004).

2.1 Transition Class Formalism

In order to construct an appropriate Markovian event system
we have to define its state space and to specify all events
that are possible where events correspond to transitions
from one to another state. To provide a formal description,
it is necessary to define under which conditions a certain
transition may occur, how it affects the system state and
at which rate it occurs. We do this by classifying the
possible transitions according to their effects which yields
what we call transition classes. A transition class is a
triplet τ = (U ,u,α) where U ⊆ Nd is the source state
space containing all states in which the according transition
is possible, u : U → Nd is the destination state function
giving the state u(x)∈Nd that is entered when the according
transition occurs in state x ∈ U , and α : U → R is the
transition rate function giving the rate α(x) ∈ R at which
the according transition occurs in state x∈U . A set of such
transition classes then completely describes a model.

To define the general model class under consideration in
terms of transition classes in a unified way without requiring
excessive case differentiations we additionally introduce a
pseudo-component 0 with according component entry x0
that does not belong to the system state x = (x1, . . . ,xd)
but can be interpreted as the outside of a system. As will
soon become clear, for ease of the unified definition it is
convenient to set x0 < ∞ and ν0 = ∞. Now, we are prepared
to express our previously described general model class in
a very concise formal manner using transition classes.

Obviously, since we allow two state components to be
changed by one transition, given a d-dimensional state space
and our additional pseudo-component, we need d · (d +1)
transition classes. Let i, j ∈ {0, . . . ,d}, i 6= j. That means
all possible combinations of two different state components
including the pseudo-component are covered by accord-
ing choices of i and j and uniquely define the transition
classes τ(i, j) = (U(i, j),u(i, j),α(i, j)). The source state spaces
are U(i, j) = {(x1, . . . ,xd) : xi > 0 ∧ x j < ν j} and the des-
tination state functions are defined by u(i, j)(x1, . . . ,xd) =
(x1, . . . ,xd)−1i · χ(xi > 0)+ 1 j · χ(x j < ν j) where for any
n ∈ N, 1n denotes the d-dimensional vector with entry 1
at component n and zero-entries at all other components,
and χ(·) is the characteristic function, i.e. it equals one if
the logical expression in its argument is true and it equals
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zero otherwise. Finally, any function α(i, j) : U(i, j) → R is
allowed as transition rate function.

2.2 Covered Model Classes

To give an impression of the generality of our model de-
scription we briefly outline how to model queueing networks
and highly reliable systems. Many more model classes can
be expressed in a similar fashion.

First consider a d-node queueing network. The state
component entries then correspond to the number of cus-
tomers in the according network node, and within the in-
troduced formalism customers may arrive at any network
node, may move from any node to any other node and
may leave the system from any node. More precisely, if
a customer moves from node i to node j then transition
class τ(i, j) applies. External arrivals as well as departures
from the system are modeled via the pseudo-component
where transition class τ(0, j) models external arrivals to net-
work node j and transition class τ(i,0) models departures
from node i. In case of bounded buffer capacities these
are covered by finite values of the νi. Since no restrictions
are made for the transition rate functions, all arrival and
service rates may be state dependent. In the special case
of state independent arrival or service rates the according
state transition functions are constant.

Highly reliable systems with d types of system com-
ponents that are subject to failures and repairs can be also
conveniently modeled. In this case any state component
entry corresponds to the number of failed components of
the according type, a failure of component i is modeled by
transition class τ(0,i) and a repair of component i by transi-
tion class τ(i,0). One may equivalently consider the number
of operating (non-failed) system components as the state
component entries but this is just a matter of taste. In any
case, finite values of νi mean that exactly νi components
(operating or failed) of type i are present in the system.
Again, both failure rates and repair rates may depend on
the system state and state independent rates are covered by
constant transition rate functions.

2.3 Example Model

As mentioned in the previous section the model description
is quite general. Consider as an example a single queue
fed with d different user types (customer classes) as
illustrated in Figure 1. There may be either finite or
infinite populations of each user type i, that is the sources
Mi feeding the system with users of type i may be finite
or infinite. Arrival rates λi(x) as well as service times
1/µi(x) can depend on the system state x, and there might
be multiple servers. The system capacity N is the sum of
the number of servers and queueing positions. Formally,
this is embedded in the general model description in terms
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of the transition class formalism where the transition rate
functions are α(i, j)(x) = 0 for i > 0 ∧ j > 0. With regard to
the notation for the queueing system example, we then get
for the remaining transition rate functions α(0,i)(x) = λi(x)
and α(i,0)(x) = µi(x).

1

S

M1

Md

N

Figure 1: Example system

In this paper we will focus on the rare event analysis of
two-dimensional models where transitions may occur only
in horizontal and vertical direction as depicted in Figure 2.
Obviously, the previously described queueing example (now
with d = 2 customer classes) fits to this type of models.
For such a model we then only need four transition classes,
namely exactly those where either i or j equals zero. That
is the source state spaces and the according destination state
functions are

U(0,1) = {(x1,x2) : x1 < ν1},u(0,1)(x1,x2) = (x1 +1,x2),
U(0,2) = {(x1,x2) : x2 < ν2},u(0,2)(x1,x2) = (x1,x2 +1),
U(1,0) = {(x1,x2) : x1 > 0},u(1,0)(x1,x2) = (x1−1,x2),
U(2,0) = {(x1,x2) : x2 > 0},u(2,0)(x1,x2) = (x1,x2−1).

X1

X2

Figure 2: Example model structure

Of course, neither the transition class formalism nor
our new ant-based method for determining the change of
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measure in Importance Sampling are limited to two dimen-
sions. Rather, the choice of two-dimensional models renders
possible to illustratively visualize the way our method works.

3 ANT-BASED IMPORTANCE SAMPLING

In this section a dynamic adaptive Importance Sampling
method is introduced. A major novelty is the distributed
search algorithm that is applied to obtain the weighting of
the transition rate functions and thus the change of measure
for the Importance Sampling simulation. The weights are
obtained by an ant-based system that provides a gradual
change in the rate functions of the transitions that are in the
sampled paths. This change in the rate functions yields the
change of measure required for the Importance Sampling
method used for speeding up the simulation of rare events.

In the following we describe the Importance Sampling
principles and briefly review other adaptive and dynamic
approaches for obtaining the change of measure, before the
ant-based approach is described.

3.1 Importance Sampling

Importance Sampling is a variance reduction technique that
makes use of a change of measure. The original system
is simulated under a different probability measure, and the
systematically biased results are weighted by a correcting
factor, the likelihood ratio, to yield unbiased estimates.

Importance Sampling is already known for a long time,
originally developed in the early 1940s in the context of
static multi-dimensional Monte Carlo integration arising in
problems in nuclear physics, see Hammersley and Hand-
scomb (1964) for early applications. Since more than two
decades it has been recognized that it is also a potentially
powerful technique for rare event simulation in stochastic
models of dynamic systems. The link between Importance
Sampling and large deviations theory and thus the con-
nection between Importance Sampling and rare events was
first established in Cottrell, Fort, and Malgouyres (1983).
In Glynn and Iglehart (1989) the framework for stochastic
processes including generalized semi-Markov processes and
Markov processes has been given which thus constitutes the
particular formal basis for the types of models we consider
in this paper. Since then a variety of applications in sys-
tems performance evaluation such as reliability models and
queueing networks have appeared; see, e.g., Heidelberger
(1995), Juneja and Shahabuddin (2006) for surveys.

3.1.1 Formal Basis

In a general measure theoretic setting, Importance Sampling
is based on the Radon-Nikodym theorem, and all applica-
tions of Importance Sampling to specific model types and
domains can be derived from this setting. Consider two prob-
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ability measures P and P∗ on a measurable space (Ω,A ),
where P is absolutely continuous with respect to P∗, which
means that for all A ∈A , P∗(A) = 0 ⇒ P(A) = 0. Then,
the Radon-Nikodym theorem guarantees that the Radon-
Nikodym derivative L = dP/dP∗ exists and that

∀A ∈A : P(A) =
∫

A
L(ω)dP∗.

In the context of Importance Sampling the probability mea-
sure P∗ is called the Importance Sampling measure, and L
is referred to as the likelihood ratio. The basic property
exploited by Importance Sampling is that expectations with
respect to P are identical to expectations with respect to P∗

when weighting by the likelihood ratio. Let L be a version
of the likelihood ratio and Y a random variable on (Ω,A ).
Then

EP[Y ] =
∫

Y (ω)dP =
∫

Y (ω)L(ω)dP∗ = EP∗ [Y L]

where EP and EP∗ denote expectations with respect to the
probability measures P and P∗, respectively. Hence, when a
simulation is performed under P∗ and then weighted by L the
result is unbiased. Using a different density or probability
distribution/measure is called a change of measure, and it
is the essential part and the art of Importance Sampling
to perform this change of measure such that estimators
can be achieved that have significantly reduced variances
compared to direct simulation estimators. In fact, it is
by no means guaranteed that Importance Sampling always
results in reduced variances but it may even yield an infinite
variance increase. Hence, to speak of on art in choosing the
change of measure seems reasonable. However, to be useful
for a broad range of applications and to be used by non-
expert users it is necessary to come up with methods that
yield Importance Sampling simulations with significantly
reduced variance.

In Markovian models the probability measures P and P∗

correspond to path probabilities or densities. These are given
by the product of transition probabilities in the discrete-time
case or transition rates and according exponential holding
times in the continuous-time case; see, e.g., Glynn and Igle-
hart (1989), Heidelberger (1995), Sandmann (2005), Juneja
and Shahabuddin (2006) for full formal descriptions in these
settings and Sandmann (2004) for according descriptions in
terms of the transition class formalism. In the latter case,
rates are expressed in terms of rate functions (similarly
transition probability functions can be introduced in the
discrete-time case) which thus determine the path densities.
The condition of absolute continuity corresponds to the con-
dition that all paths that are possible in the original model
must remain possible under Importance Sampling (which
can be restricted to paths that include the rare event of in-
terest). This can be obviously achieved by the requirement
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that all originally positive rates remain positive after the
change of measure. To state it concisely, the essential point
is to assign new rates to any transition which in terms of the
transition class formalism means to determine appropriate
transition rate functions α∗

(i, j) for Importance Sampling. Of
course, these may (and usually do) depend on the system
state meaning that they are not constant.

3.1.2 Adaptive Approaches

Adaptive approaches aim at learning a good change of mea-
sure and are thus potentially well suited for use without
intimate knowledge of the model at hand. The general strat-
egy of adaptive Importance Sampling is to start with some
initial change of measure, perform a couple of independent
simulation runs using this change of measure, and update the
change of measure according to some rules that depend on
and hence characterize the specific adaptive method. Then
the simulation is continued by making multiple indepen-
dent simulation runs with the updated Importance Sampling
measure and so on until finally the method converges to
an Importance Sampling measure with which the actual
simulation is performed.

Several adaptive schemes have been proposed in the
context of estimating small bit error rates in digital commu-
nications; see Stadler and Roy (1993), Srinivasan (2002).
Queueing models were addressed in a series of papers where
the common idea was to utilize stochastic optimization tech-
niques to adaptively minimize the sample variance of the
estimator. For simulating buffer overflows in single server
queues a random search method and mean field anneal-
ing in combination with a dynamic regenerative simulation
were applied in Devetsikiotis and Townsend (1993a) and
Devetsikiotis and Townsend (1993b), respectively. Another
approach uses stochastic gradient methods and was applied
to single server queues in Devetsikiotis et al. (1993) and
extended to tandem queues in Freebersyser et al. (1996).
However, all these methods require quite large computational
efforts and therefore only apply to rather limited models.
While the aforementioned approaches aim at directly min-
imizing the (estimated) variance, the cross entropy method
(Rubinstein 1997, Rubinstein and Kroese 2004) aims at
minimizing the cross entropy between the currently used
measure and the (unknown) optimal measure. Unfortunately,
applied to Markovian models as first done in de Boer (2000)
in the context of queueing networks, due to huge storage
requirements the method is limited to quite small mod-
els when considering general change of measure strategies.
Larger models can be simulated by restriction to state in-
dependent change of measure but it appears that this works
quite well for some systems but not for others. It is shown
in de Boer (2006) that state independent rates cannot yield
asymptotically optimal estimators even in the simple case
of the two-node tandem queue. For more general models, it
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is not clear if such an application of Importance Sampling
can provide variance reduction at all.

Other promising approaches to adaptive Importance
Sampling are dynamic. In the approaches described above
the change of measure is improved from one iteration to the
next where each iteration step consists of possibly multiple
simulation runs. In dynamic approaches the Importance
Sampling measure can also be changed within any simula-
tion run. In the mentioned dynamic regenerative simulations
this change only occurs when the set of rare states of interest
has been visited some times whereas other approaches allow
for such a change after any simulated transition. In Carrasco
(1992) the notion of failure distances was introduced in the
context of Markovian fault-tolerant systems where the fail-
ure distance is a metric for the distance from any state to a
target set of rare states. All transition rates or probabilities
are then changed after each simulated transition. The major
drawback of this method is that the simulation speed-up
strongly depends on an accurate computation of the failure
distances which involves the computation of minimum cut
sets, in general an NP-hard problem. Hence, the applica-
bility of this approach is quite limited. The basic idea of
the dynamic change of measure introduced in Heegaard
(1998a), Heegaard (1998b) is to change the transition rate
functions in accordance to the importance of a path with
this transition as the first step. The target importance is de-
termined by a “lookahead” approach inspired by the failure
distance measures in Carrasco (1992). The path likelihood
is estimated by determining the most likely path from the
current state to any state in the set of rare states of interest.

3.2 Ant-Based Adaptive Approach

Although a purely analytical approach to rare event analy-
sis is usually impossible for realistic models of complex
systems, large deviations theory gives valuable insights and
guidelines. Rare events typically occur on certain most
likely paths and for Importance Sampling it is known that
the change of measure should mainly emphasize these paths.
While it is difficult to analytically determine the most likely
paths via large deviations theory they can be estimated by
e.g. the lookahead approach applied in Heegaard (1998b).
However, the computational demand of the lookahead ap-
proach increases as the dimensionality of the state space
increases.

In our new approach the target importance is instead
determined by an ant-based search and update procedure. In
Dorigo, Maniezzo, and Colorni (1996) a multi-agent system
(Ant Colony Optimization) inspired by the behavior of ants
was introduced to solve combinatorial optimization prob-
lems. In Schoonderwoerd et al. (1997) a similar system is
designed to solve problems in telecommunication networks.
The ants search iteratively for paths in a connected graph
(a network) between source nodes and destination nodes.
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The path quality is evaluated on arrival to a destination
node and then each ant backtracks over the links along the
reverse path back to the source node leaving pheromones
to guide future ants in their search for the same destination.
The better the path, the stronger the pheromone updates.
We apply a similar approach here to gradually let the Im-
portance Sampling change of measure adapt to the current
model. The nodes are now states, and the links are state
transitions, the source nodes are the origin or regenerative
states, and the destination nodes are given as the set R of
rare events of interest.

Let x = (x1, · · · ,xd) be the state vector and π(x,y) a
path between state x and y. The path between state x and
a state in the rare event set is denoted π(x,R) and the r-th
sampled path is π(r). The probability of a path π is p(π).
The maximum normalised probability of a path from state
x to a state in R, given that a transition according to τ(i, j)
occurred in state x is

pmax(π(x,R) | τ(i, j)) =
maxr{p(π(r)(x,R) | τ(i, j))}

∑
d
k=1 maxr{p(π(r)(x,R) | τ(i,k))}

(1)
where for any path π(x,R) from x to the set of rare states,
p(π(x,R) | τ(i, j)) denotes the probability of that path given
that a transition according to τ(i, j) occurred in state x. Note
that we only sample over and update the visited paths, and
not over all possible paths, which is a significant saving both
in terms of computation and storage demands. An alternative
to the max-function in (1) is the sum of all visited paths
that end up in R. The max-function is expected to give a
quicker convergence but not necessary to the most likely
of the rare events. The sum is a viable alternative that will
be explored in further work when investigating the method
on a broader set of examples. The ant-based procedure is
described in Algorithm 1.

Algorithm 1 Simulation procedure
repeat

Sample a path π(r) from x towards a target state in R
if hitting the origin states; then

STOP
else if π(r) contains states of the set R then

for each state y ∈ π(r) update the maximum path
probability pmax(π(y,R) | τ(i, j)) according to (1);

end if
until end of simulation condition

The random search of the ants in every state is governed
by a random proportional rule that is incrementally updated
for every new path found by the ants. This proportional
rule is determined by the normalized Importance Sampling
transition rate functions α∗

(i, j)(x) in each state. Each sampled
path that includes visits to R invokes a recalculation of the
maximum path likelihood for all states in the path. Then
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the transition rate functions are changed for all transitions
in the path according to the following updating rule for the
change of measure:

α
∗
(0, j)(x) = α(0, j)(x)+ pmax(π(x,R) | τ(0, j)) ·∆(0, j)(x)

α
∗
( j,0)(u(0, j)(x)) = α( j,0)(u(0, j)(x))

−pmax(π(x,R) | τ(0, j)) ·∆(0, j)(x)
where

∆(0, j)(x) = α( j,0)(u(0, j)(x))−α(0, j)(x)

provided that α( j,0)(u(0, j)(x)) > α(0, j)(x). Otherwise
∆(0, j)(x) = 0, which means that the transition rate func-
tions are not changed. Note from Section 2.3 that in this
paper we consider α(i, j)(x) = 0 and hence α∗

(i, j)(x) = 0 for
i > 0 ∧ j > 0. This will be generalised in further work.

Furthermore, note that only transition rate functions
along the sampled path are updated. This strongly reduces
the computational and storage demands compared to other
approaches. All transitions in the path need only to store the
(changed) transition rate, α∗ (in direct simulation we need
to store or retrieve the original rate for each transition), and
one pmax for each target state space R, typically one in a rare
event simulation setup. The values accumulated and stored
in π(r) for one sample r are deleted when the transition rates
have been updated. Initially, when no information of the
target likelihood exists, the ants search the state space by a
guided random walk, i.e. all the α∗ in one node are equal
and the next transition is chosen according to a uniform
distribution. We call it guided because we will not allow
transitions back to the state where we came from and use
the same transition twice. After the initial phase the ants
switch to the updating rule in (2).

4 NUMERICAL EXAMPLES

In this section we present numerical results for estimated
means and their accuracy, as obtained by the ant-based
Importance Sampling simulation applied to different variants
of the system example from Section 2.3. The (statistical)
accuracy will be given in terms of relative errors of the
estimates and checked by comparison to exact values that
are available for our example model. Furthermore, we
illustrate the change of measure adapted by our method. As
mentioned before, one major reason that we have chosen
a two-dimensional model is that in this case the change of
measure can be nicely visualized as done in Section 4.2.

4.1 Estimated Mean and Accuracy

We performed excessive simulation studies for many dif-
ferent models. To demonstrate and illustrate the behavior
and efficiency of the method we present results for several
parameters settings of the two-dimensional example model
as introduced in Section 2.3. Each simulation experiment
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Table 1: Parameter and rare event state space

Case α(0,1)(x) α(0,2)(x) α(1,0)(x) α(2,0)(x) R

I 0.1 0.1 0.9 0.9 x1 + x2 = 10

II 0.1 0.08 0.9 0.92 x1 + x2 = 10

III 0.1 0.01 0.9 0.99 x1 + x2 = 10

IV 0.1 0.1 0.9 0.9 x1 = 5,x2 = 5

V 0.1 0.1 0.9 0.9 x1 = 7,x2 = 3

VI 0.1 0.08 0.9 0.92 x1 = 7,x2 = 3

VII 0.1 0.01(10− x2) 0.9 0.9 x1 = 7,x2 = 3

VIII 0.1 0.01(10− x2) 0.9 0.9 x1 + x2 = 10

IX 0.01(10− x1) 0.01(10− x2) 0.9 0.9 x1 + x2 = 10

X 0.05(10− x1) 0.05(10− x2) 0.99min(10,x1) 0.99min(10,x2) x1 + x2 = 10

XI 0.02(20− x1) 0.02(20− x2) 0.8 0.8 x1 + x2 = 20
consists of 50000 samples from independent regenerative
cycles. The transition rate functions α(i, j)(x) and the rare
event state space, R, for each simulation case are listed
in Table 1. The simulated cases include models with state
independent transition rates, with mixtures of state depen-
dent and state independent rates, and cases with equal and
different rates in the two dimensions. The objective in all
cases is to estimate the steady state probabilities of the states
in the rare event state set R which was chosen to include
either all combinations where x1 + x2 = N for N = 10 and
20, or a specific single state chosen as (x1,x2) = (5,5) or
(x1,x2) = (7,3), respectively.

The results of all simulation cases are shown in Table 2.
The table includes exact values obtained by a numerical
method described in Iversen (1987) as well as the estimated
means and the relative errors of the sample means from
the simulation experiments. The results show good per-
formance. All estimates are extremely accurate with very
small relative errors.

4.2 Inner Workings of Ant-Based Change of Measure

In order to enhance the understanding of how the transition
rate functions are updated, we have studied the change
of measure obtained by our method in more detail. In
Figure 3 the change of the rates for the transitions that
increase the number of items in the system, i.e. either x1 or
x2, is visualized. The thicker the lines, the more the rates
are increased (five levels). In Figure 4 the change of the
rates for the transitions that decrease the number of items
in the system, i.e. either x1 or x2 is visualized similarly.
The thicker the lines, the more the rates are decreased.
The figures show the change of measure for simulation
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Table 2: Simulation results

Case exact X̄ SX̄/X̄

I 2.49×10−09 2.52×10−09 0.025

II 9.98×10−10 9.97×10−10 0.024

III 2.77×10−10 2.81×10−10 0.008

IV 2.27×10−10 2.13×10−10 0.052

V 2.27×10−10 2.24×10−10 0.045

VI 1.12×10−10 1.10×10−10 0.050

VII 1.24×10−10 1.17×10−10 0.045

VIII 8.84×10−10 8.76×10−10 0.044

IX 8.45×10−11 8.80×10−11 0.054

X 7.45×10−09 7.41×10−09 0.067

XI 6.31×10−09 6.79×10−09 0.062

case IX in Table 1. This case has state dependent rate
functions for transitions that increase the population, and
state independent rate functions otherwise. This implies
that the most likely of the rare events are in the center
of the rare event state space as indicated by the marginal
distribution P({(x1,x2)} : x1 + x2 = N) in Figure 3 and 4.

It can be observed from Figure 3 that the change of the
rates for the transition class that increases the population
in the system tends to be stronger for states closer to the
resource boundary than in states further away from the
boundary for the same transition class. At the same time
we observe from Figure 4 that the change of the rates for the
transition class that decreases the population in the system



Heegaard and Sandmann
X1

X2

forcing dimension 1

fo
rc

in
g 

di
m

en
sio

n 
2 P({(x1,x2)} : x1+x2=N ) 

Figure 3: Change of measure with state dependent rate
function - the relative increase in the rate functions for the
transitions that increase the system population

tends to be slightly stronger in states far away from the
resource boundary than in states close to the boundary for
the same transition class. For the interior states we observe
that the change of measure is less dependent on the state.

5 CONCLUSION AND FURTHER RESEARCH

We have presented a new ant-based method for adaptively
obtaining the change of measure in Importance Sampling for
rare event simulation. Numerical results for several variants
of a two-dimensional example model show that the Impor-
tance Sampling simulations yield very accurate estimates.
The inner workings of the method have been illustrated by
means of visualizing the state dependent relative increases
and decreases in rate functions. Preliminary tests indicate
that the method also works well for models of higher di-
mensionality. Of course, visualization of the change of
measure in a similar fashion as for the two-dimensional
case is hardly possible.

It should be noted that the applicability of the method is
not restricted to exponentially distributed times. It is easy
to incorporate phase-type distributions into the transition
class formalism and then to apply the ant-based method
similarly as it is done in the present paper. This will
be one topic of future investigations. Further research
also includes systematic studies of the properties of the
Importance Sampling estimators obtained via the ant-based
approach. Although a main motivation is the applicability
to rare events with probabilities in orders of magnitudes of
practical interest, it is of course also interesting and useful
to examine asymptotic properties.
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Figure 4: Change of measure with state dependent rate
function - the relative decrease in the rate functions for the
transitions that decrease the system population
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