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ABSTRACT

We study an approximation for the zero-variance change

of measure to estimate the probability of a rare event in a

continuous-time Markov chain. The rare event occurs when

the chain reaches a given set of states before some fixed

time limit. The jump rates of the chain are expressed as

functions of a rarity parameter in a way that the probability

of the rare event goes to zero when the rarity parameter

goes to zero, and the behavior of our estimators is studied

in this asymptotic regime. After giving a general expression

for the zero-variance change of measure in this situation,

we develop an approximation of it via a power series and

show that this approximation provides a bounded relative

error when the rarity parameter goes to zero. We illustrate

the performance of our approximation on small numerical

examples of highly reliable Markovian systems. We compare

it to a previously proposed heuristic that combines forcing

with balanced failure biaising. We also exhibit the exact

zero-variance change of measure for these examples and

compare it with these two approximations.

1 INTRODUCTION

Rare-event simulation is concerned with estimating a per-

formance measure usually expressed as a mathematical ex-

pectation, and whose value is strongly affected by certain

events that occur rarely. A simple but commonly encoun-

tered special case is when the quantity to be estimated is

the probability of occurrence of some rare event. When

this probability is very small, we may have to simulate the

model an excessively large number of times to be able to
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estimate it with reasonable relative accuracy, because the

rare event occurs only very rarely, by definition.

The best-known way of handling this problem is impor-

tance sampling (IS): change the probability laws that drive

the system, to make the rare event occur more frequently,

and multiply the estimator by an appropriate likelihood ratio

to recover an unbiased estimator of the quantity of inter-

est. It is well-known that in the case where the estimator

is a nonnegative real-valued random variable, there is a

change of measure (change of probability law) that gives a

zero-variance estimator; that is, the IS estimator becomes

a constant (Hammersley and Handscomb 1964, Glynn and

Iglehart 1989, Juneja and Shahabuddin 2006). More gen-

erally, zero-variance estimators have also been defined for

Markov chain models where we want to estimate the prob-

ability that the chain reaches a given set of (rare) states

before reaching another set of states (Juneja and Shahabud-

din 2006), and for finite-state discrete-time chains with a

state-dependent cost, where we want to estimate the total

expected cost until the chain hits a given set of states (Booth

1987, Kollman et al. 1999).

However, implementing this zero-variance change of

measure requires the exact knowledge of the total expected

cost-to-go (future costs) from any state that can be visited

during the simulation. If we know this, there is no need

to perform a simulation in the first place! Nevertheless,

attempts to approximate the zero-variance change of measure

by various heuristics have been successful in some contexts

(Booth 1987, Booth 2001, Kuruganti and Strickland 1997,

Kollman et al. 1999, Bolia, Juneja, and Glasserman 2004,

Ahamed, Borkar, and Juneja 2006, Juneja and Shahabuddin

2006).
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In this article, we express the zero variance change of

measure, and develop approximations of the zero-variance

importance sampling in the setting of a continuous-time

Markov chain (CTMC), in which we want to estimate the

probability of reaching a given set of states before a given

time horizon (or time limit) t∗. Here we assume that t∗
is fixed, but our results could be generalized to the case

where it is a random stopping time with fixed distribution

(that does not depend on the rarity), under the additional

assumption that having reached the stopping time or not

can be determined by looking only at the current time and

the current state of the CTMC. One application of this

is in a reliability setting, where we want to estimate the

probability that the system fails before accomplishing its

mission (Nakayama and Shahabuddin 2004).

Following Shahabuddin (1994b), our model has a rarity

parameter ε and the jump rates are assumed to be polynomial

functions of ε . We are interested in the asymptotic behavior

when ε → 0. For some of the rates, the polynomial may

have degree 0, i.e., some rates can be constant as functions

of ε . The other rates converge to 0 when ε → 0. We assume

that over every sample path that leads to the rare event of

interest, at least one jump rate is not constant; then the

rare-event probability converges to 0 and the relative error

of its naive estimator increases to infinity, when ε → 0.

In our setting, the zero-variance change of measure can

be written in terms of the original jump rates of the chain

and the probability µ(x, t) of reaching the rare event before

the time limit if the CTMC is in state x and there remains t

units of time. We propose an approximation of the function

µ(x, t) by the first terms of its expansion in powers of ε . We

sketch a proof that an IS scheme that uses this approximation

gives a bounded relative error in general, and a relative error

that converges to 0 as O(
√

ε) if all the original jump rates are

O(ε). We report some numerical experiments with simple

models of highly reliable Markovian systems (HRMS). In

these experiments, the proposed scheme gives much smaller

variance, for small ε , than a combination of forcing and

balance failure biasing, recommended in Nakayama and

Shahabuddin (2004) for this type of situation.

In the next section, we define our CTMC model and

derive the zero-variance sampling scheme. In Section 3,

we introduce a rarity parameter for our model, develop

our approximation of the zero-variance sampling scheme,

discuss how it can be implemented in practice, and show

that the corresponding estimator has bounded relative error.

Numerical illustrations are given in Section 4. A conclusion

follows.
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2 CTMC MODEL AND ZERO-VARIANCE

SAMPLING

2.1 CTMC Model Over A Finite Time Horizon

Consider a continuous-time Markov chain (CTMC) {X j, j ≥
0} with denumerable state space X . When the chain is in

state x, the jump rate to state x′ is λx,x′ , the total jump rate

is λx = ∑x′∈X λx,x′ < ∞ (so the time until the next jump is

exponential with mean 1/λx), and the next state is x′ with

probability px,x′ = λx,x′/λx. Jumps to the same state (from

x to x) are allowed. We may also have absorbing states, for

which λx = 0.

We are interested in estimating the probability that the

chain hits a given set of states ∆ ⊂ X before some fixed

time limit t∗. Let Tj be the time remaining on the clock (t∗
minus the current time) at the jth jump of the CTMC, into

state X j. The process starts in state X0 ∈X with remaining

clock time T0. Our main interest is for T0 = t∗, but for

notational convenience we shall allow T0 to take any value

t ∈ R. Let

τ = inf{ j ≥ 0 : Tj ≤ 0 or X j ∈ ∆}.

To avoid fancy complications, we assume that P[τ < ∞] = 1.

Define

X = I[Xτ ∈ ∆ and Tτ > 0],

where I is the indicator function. That is, X = 1 if the chain

hits ∆ before the time limit, and X = 0 otherwise.

We consider the discrete-time Markov chain (DTMC)

{(X j,Tj), j ≥ 0}, for which the second component of the

state indicates the current time. When this DTMC is in

state (x, t), the density of the next state at (x′, t−δ ) is given

by

π(x′, t −δ | x, t) = px,x′λx exp[−λxδ ] (1)

for δ > 0, and 0 elsewhere. Note that this density is

partitioned into several pieces, one piece for each value of

x′, and its total integral over all pieces equals 1.

Let µ(x, t) be the probability of hitting ∆ before the

time limit when the DTMC is in state (x, t). Thus,

µ(x, t) =







1 if x ∈ ∆ and t > 0,
0 if t ≤ 0,
E[X | X0 = x, T0 = t] otherwise.

For the latter case (x 6∈ ∆ and t > 0), we have the recurrence

µ(x, t) = E[µ(X1,T1) | X0 = x, T0 = t]

=
∫ t

0
∑

x′∈X

µ(x′, t −δ )px,x′λx exp[−λxδ ]dδ . (2)
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Clearly, µ(x, t) is a nondecreasing function of t for each x.

An intuitive argument for this is that enlarging t can only

give more opportunity for hitting ∆; a proof can be made

via a path-by-path comparison.

2.2 A Zero-Variance Sampling Scheme

We consider replacing the conditional (transition) density

π in (1) by another density g such that g(x′, t −δ | x, t) > 0

whenever µ(x′, t − δ )π(x′, t − δ | x, t) > 0, until we reach

the stopping time τ . The estimator X is then replaced by

Xis = X
τ

∏
i=1

L(Xi−1,Ti−1,Xi,Ti), (3)

where

L(Xi−1,Ti−1,Xi,Ti) =
π(Xi,Ti | Xi−1,Ti−1)

g(Xi,Ti | Xi−1,Ti−1)

and an empty product is assumed to be 1. Thus, the original

estimator is weighted by the likelihood ratio that corresponds

to the change of densities.

Let Eg,x,t and Varg,x,t denote the expectation and variance

operators under the conditional densities g, from initial state

(X0,T0) = (x, t). We have

Eg,x,t [Xis] = µ(x, t),

i.e., Xis is an unbiased estimator of µ(x, t) under the new

densities g. Let v(x, t) be the variance of Xis under g, when

X0 = x and T0 = t. We have v(x, t) = 0 if x ∈ ∆ or t ≤ 0;

otherwise,

v(x, t)

def
= Varg,x,t [Xis]

= Varg,x,t [Eg,x,t [Xis | X1,T1]]+Eg,x,t [Varg,x,t [Xis | X1,T1]]

= Varg,x,t [µ(X1,T1)L(x, t,X1,T1)]

+Eg,x,t [L
2(x, t,X1,T1)v(X1,T1)]

= Eg,x,t [µ
2(X1,T1)L

2(x, t,X1,T1)]

−µ2(x, t)+Eg,x,t [L
2(x, t,X1,T1)v(X1,T1)]

= Eg,x,t [µ
2(X1,T1)+ v(X1,T1))L

2(x, t,X1,T1)]−µ2(x, t).

Suppose now that g is the density g0 defined by

g0(x
′, t −δ | x, t) =

µ(x′, t −δ )

µ(x, t)
π(x′, t −δ | x, t)

=
µ(x′, t −δ )

µ(x, t)
px,x′λx exp[−λxδ ]
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for x′ ∈ X and 0 < δ < t, and 0 elsewhere, if µ(x, t) > 0.

By integrating with respect to δ and summing over x′, we

easily see that these g0(· | x, t) are probability densities (they

integrate to 1). Under this density, the time until the next

jump is no longer exponential, so we no longer have a CTMC.

This time is nonzero only over the interval (0, t), and it is

not a truncated exponential either; in fact, since µ(x′, t−δ )
is decreasing in δ , the right “tail” of the new distribution of

the time to the next jump (before truncation) decreases faster

than for the exponential distribution. When µ(x, t) = 0, the

density is unchanged: g0(x
′, t −δ | x, t) = π(x′, t −δ | x, t).

With this choice of g, whenever g0(x
′, t −δ | x, t) > 0,

we have

L(x,t,x′, t −δ )

=

{

µ(x, t)/µ(x′, t −δ ) if µ(x, t) > 0,
1 if µ(x, t) = 0.

(4)

For state pairs (x, t,x′, t−δ ) for which g0(x
′, t−δ | x, t) = 0,

the definition of L(x, t,x′, t − δ ) does not matter, because

this quantity will then never occur in the estimator. Since

(4) holds for g0, we have

Eg0,x,t [µ
2(X1,T1)L

2(x, t,X1,T1)] = µ2(x, t)

and we have the simplification:

v(x, t) = Eg0,x,t [(µ2(X1,T1)

+v(X1,T1))L
2(x, t,X1,T1)]−µ2(x, t)

= Eg0,x,t [v(X1,T1)L
2(x, t,X1,T1)].

Applying induction, we obtain

v(x, t) = Eg0,x,t

[

v(Xτ ,Tτ)
τ

∏
i=1

L2(Xi−1,Ti−1,Xi,Ti)

]

= 0

because v(Xτ ,Tτ) = 0. Thus, a change of measure that

satisfies (4) gives a zero-variance estimator of µ(x, t) for

any (x, t) ∈ X × [0,∞).

3 ASYMPTOTIC ANALYSIS

3.1 Rarity Parameterization

We define an asymptotic rare-event setting by introducing

a parameter ε ≪ 1 that characterizes rarity. We shall inves-

tigate what happens when ε → 0. We assume that all jump

rates of our CTMC have the form

λx,x′ = νx,x′ε
kx,x′

for some nonnegative constants νx,x′ and kx,x′ which are

bounded uniformly in (x,x′).
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Observe that in our setting, dividing the time horizon

t∗ and all the times Tj by a factor κ , and multiplying all the

jump rates by the same factor, gives an equivalent model.

Therefore, without loss of generality, we can assume that

t∗ = 1. We do so for the remainder of this article.

A different way of doing the parameterization would

be to assume that the rates λx,x′ are fixed and that the time

horizon has the form t∗ = νεk for some positive constants

ν and k. This parameterization is equivalent to a special

case of our setting, with kx,x′ = k for all x,x′, so it offers

less flexibility. In the next subsection, we start our analysis

with this special case, with k = 1.

3.2 Simplest Case: All Rates Proportional to ε

We start with the simplified case where kx,x′ = 1 for all

x,x′ ∈ X , so λx,x′ = νx,x′ε . Note that the probability that

i or more transitions occur before the time limit is O(ε i).
Consider the states x for which νx,m > 0 for at least

one m ∈ ∆. For such states, the recurrence (2) implies that

µ(x, t) = ∑
{m∈∆:νx,m>0}

νx,mεt +O(ε2).

Next, consider the states x for which νx,m = 0 for all m ∈ ∆
but for which there is an x′ ∈ Y and m ∈ ∆ such that

νx,x′νx′,m > 0; for those, we find

µ(x, t) = ∑
{m∈∆,x′∈X :νx,x′νx′,m>0}

νx,x′νx′,mε2t2/2+O(ε3).

This can be easily generalized: for a state x which is exactly

ℓx transitions away from ∆, we have

µ(x, t) =
Axεℓxtℓx

ℓx!
+O(εℓx+1),

where Ax is the sum, over all ℓx-step paths from state x to

∆, of the products of the coefficients νx,x′ of the transitions

x → x′ on that path.

Using only the leading terms of the above expressions

for µ(x, t), we obtain the following approximation to the

zero-variance density:

g0(x
′, t −δ | x, t)

= νx,x′ε exp[−ενx,x′δ ]
Ax′ε

ℓx′ (t −δ )ℓx′/ℓx′!

Axεℓxtℓx/ℓx!
(1+O(ε))

= νx,x′ε
1+ℓx′−ℓx

Ax′ℓx!

Axℓx′!

(t −δ )ℓx′

tℓx
+O(ε2+ℓx′−ℓx).

We shall approximate the zero-variance density by con-

sidering only the (normalized) leading term of the above

expansion. For transitions that go toward ∆, we have that
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1 + ℓx′ − ℓx = 0 by construction. For all other transitions,

this exponent of ε is positive, so their densities vanish as

ε → 0.

Computing this approximation requires determining,

for each transition (x,x′), the values of Ax and ℓx for the

states on both sides of the transition. These values can be

computed efficiently using a variant of Dijkstra’s algorithm

to find all shortest paths of the chain from state x to the set

∆, where the length of a path is measured by the number of

steps. The Ax’s are then computed by adding up the relevant

products of coefficients. For very large state spaces, this

can become cumbersome and further heuristics could be

developed. In certain situations, e.g., for birth-and-death

processes, this computation is almost trivial.

Let ĝ denote the resulting approximating density. To

compute the normalization factor and generate random vari-

ates from ĝ, we can proceed as follows. We integrate the

leading term with respect to δ , over the interval [0, t], for

each x′ for which this term is nonzero. The sum of these

integrals gives the normalization factor. The relative con-

tribution of each integral to the sum gives the probability

that the next state X j is x′ under the new density, so we

can easily generate the next state first. Then, knowing that

(X j−1,Tj−1,X j) = (x, t,x′), we can generate Tj by inversion,

exploiting the fact that its conditional density at δ is a

monomial in δ . This conditional density is uniform over

the interval [0, t] when ℓx′ = 0 (i.e., for direct transitions to

∆), linearly decreasing over the same interval if ℓx′ = 1

(i.e., for transitions that bring us only one step away from

∆), and so on.

3.3 Generalizing to Mixed Powers of ε

We now generalize the preceding development to the case

where kx,x′ is allowed to differ from 1. For the moment,

we will assume that all kx,x′ > 0; later on, we will relax this

to allow some kx,x′ = 0. Define ℓx as the smallest sum of

exponents kz,z′ of transition rates, the minimum being taken

over all paths from x to ∆; all paths attaining this minimum

are henceforth referred to as dominant paths, because they

are the most probable paths for ε sufficiently small. Define

also Γx,τ as the set of paths (X0, . . . ,Xτ) going from X0 = x

to Xτ ∈ ∆ in exactly τ steps, and for which the sum of

exponents is ℓx. For i = 1,2, . . . , let

Ax,i = ∑
(x0,...,xi)∈Γx,i

i

∏
j=1

νx j−1,x j
.

Under appropriate conditions, it can be shown that for all

x /∈ ∆,

µ(x, t) = ∑
i≥1

Ax,iε
ℓxt i

i!
+o(εℓx), (5)
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that is, the probability of all non-dominant paths is negligible

with respect to dominant ones. For this to hold, we need

to make sure that the sum over all other paths, which have

exponent larger than ℓx, induces a probability with exponent

larger then ℓx too. This is not trivially satisfied because there

is generally an infinite number of such paths. Nakayama

and Shahabuddin (2004) provide a set of sufficient conditions

under which they prove a version of (5) for a specific model

of HRMS system. Their results could be generalized.

Our approximation µ̂(x, t) of µ(x, t) will be the domi-

nant terms (the sum of terms with the smallest power of ε)

in the expansion (5). There may be multiple such terms

with different powers of t, if there are distinct values of i

for which Γx,i 6= /0, i.e., if there are dominant paths from x

to ∆ with different numbers of transitions. In the following

calculations, we will include all such terms for complete-

ness. However, in the numerical illustrations of Section 4

we will only retain the term with the lowest power of t.

(This makes sense because we know that t never exceeds 1.)

This means that in the following expressions, summations

over i are replaced by a single term with the lowest i for

which the summand is non-zero. This simplifies the expres-

sions significantly, and makes sampling easier because the

resulting densities are monomial. For our examples, this

simplification hardly affected the results; the difference in

the density plots was almost invisible.

Computing the approximation µ̂(x, t) could be compli-

cated in general, but there are many nontrivial situations

where this is rather easy. For example, for HRMS models

where the component failure rates do no depend on the

current state (the most typical case), the computations can

be quite simple, depending on the general form of ∆.

Keeping only the leading powers of ε leads to the

following approximation for the zero-variance density:

g0(x
′, t −δ | x, t)

≈ νx,x′ε
kx,x′ exp[−λxδ ]

∑i≥1 Ax′,iε
ℓx′ (t −δ )i/i!

∑i≥1 Ax,iεℓxt i/i!
.

As a further approximation, we replace the exponential by

1, to obtain ĝ:

ĝ(x′, t −δ | x, t)

= νx,x′ε
kx,x′+ℓx′−ℓx

∑i≥1 Ax′,i(t −δ )i/i!

∑i≥1 Ax,it i/i!
(6)

= νx,x′ε
kx,x′+ℓx′−ℓx

µ̂(x′, t −δ )

µ̂(x, t)
. (7)

As in Section 3.2, this function must be multiplied by

a normalization constant ρ(x, t), which can be calculated
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straightforwardly:

1

ρ(x, t)
= ∑

x′∈X

∫ t

0
ĝ(x′, t −δ |x, t)dδ

= ∑
x′∈X

νx,x′ε
kx,x′+ℓx′−ℓx

∑i≥1 Ax′,it
i+1/(i+1)!

∑i≥1 Ax,it i/i!
.

Since the terms containing the lowest power of ε are already

normalized, ρ(x, t) is of order 1+O(ε).
So far, we have assumed that all kx,x′ > 0. This as-

sumption is needed for (5), and since λx = O(εminx′ kx,x′ ), it

also justifies replacing the exponential term by 1 in approx-

imation (6). In many practical problems however, kx,x′ = 0

for some transitions which are not on a dominant path; for

example, repair transitions in HRMS models. One may still

apply the change of measure (6) and (7) to this case, and in

fact the resulting simulation turns out to be asymptotically

efficient, as will be seen in the sequel.

3.4 Robustness of the Estimators as ε → 0

Using a change of measure with the density ĝ defined in (6),

for a sample path (X0,T0, . . . ,Xτ ,Tτ) with Xτ ∈ ∆ and Tτ > 0

(so µ(Xτ ,Tτ) = 1), the IS estimator Xis in (3) becomes

Xis =
τ

∏
i=1

π(Xi,Ti | Xi−1,Ti−1)

ĝ(Xi,Ti | Xi−1,Ti−1)

≈ µ̂(X0,T0)
τ

∏
i=1

e
−λXi−1

(Ti−Ti−1)(1+O(ε)),

where we have used (1) and (7). The fact that we have a

random variable even in the leading term of the expansion

in ε , instead of just a constant as expected for zero variance,

is due to the approximation (6), where the exponential term

was removed for ease of implementation. As we are going

to see, this results in a relative error that does not decrease

to zero when ε → 0, but remains bounded.

This estimator can be bounded as follows, for X0 = x

and T0 = t:

exp[−t max
x′∈X

λx′ ]µ̂(x, t) ≤ Xis ≤ µ̂(x, t).

With the proposed change of measure, we have

µ(Xτ ,Tτ) = 1 and Xis takes the above form with proba-

bility 1. Thus, the relative variance (or squared relative

error) of Xis when X0 = x and T0 = t can be bounded as

follows:

Varĝ,x,t [Xis]

µ2(x, t)
=

Eĝ,x,t [X
2
is]

E
2
ĝ,x,t [Xis]

−1 ≤ supX2
is

(infXis)2
−1

≤ exp[2t max
x′∈X

λx′ ]−1.



De Boer, L’Ecuyer, Rubino, and Tuffin
Thus, the estimator’s relative error remains bounded

when ε → 0. Moreover, in the case where all the rates

are O(ε) or smaller, i.e., if kx,x′ ≥ 1 for all x,x′, then

maxx′∈X λx′ = O(ε) and the relative error is then at most

O(
√

ε). Including the normalization factor 1 +O(ε) that

we have neglected here does not affect these conclusions.

As noted earlier, models with constant rates and a time

horizon of order ε can be studied by applying a simple

change of variables, which results in all rates being of

order ε; the previous result implies that in this case, the

relative error is bounded as O(
√

ε). Experimental results in

Section 4.1 show a relative error proportional to ε , indicating

that the bound may actually be pessimistic.

4 NUMERICAL ILLUSTRATION

We illustrate the use of our approximation of the zero-

variance estimator with two toy examples representing

HRMS models in 1 and 2 dimensions. The dimension

represents the number of component types in the system

and the state is the number of components of each type

that are down. Each transition represents the failure or the

repair of one component. For the one-dimensional example,

we consider two variants, one with all transition rates of

order ε and one having a transition rate (corresponding to a

repair) equal to 1. For both examples, ∆ is the set of states

where all components of any given type are down, and we

take t∗ = 1.

We compare three simulation approaches: standard

simulation (i.e., no importance sampling), forcing+BFB,

and our method which uses an approximation to the zero-

variance densities. Forcing+BFB (Balanced Failure Biasing)

is the classical importance sampling simulation method for

the types of HRMS examples we consider; see (Shahabuddin

1994a, Nakayama and Shahabuddin 2004). Briefly, forcing

means that the probability distribution for the time until the

first failure is replaced by the distribution conditional on

that failure happening before the time horizon; and balanced

failure biasing means that in any state, all failure transitions

are made equally likely and of order 1 rather than order ε .

We vary ε from 1 to 10−4. All our simulation results are

obtained using 105 independent replications.

4.1 Example 1: A Simple Model With a

One-Dimensional State Space

We consider a system with 2 components of a single type,

with ∆ containing the state where both components have

failed. Each component has failure rate ε . In variant (a),

we assume that the repair rate is also ε; this allows us to

look at the case where all transition rates are small and have

the same order, as in Section 3.2, or equivalently the case

where the rates are fixed and the time horizon gets small.

In variant (b), the repair rate is 1.
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Tables 1 and 2 present the simulation results for the three

methods, for variants (a) and (b), respectively. For variant

(a), the relative error for our method seems to decrease

proportionally to ε , which is better than the O(
√

ε) bound

obtained theoretically. For variant (a), comparing our

method with forcing+BFB might be unfair, because the latter

method was designed for models where the repair rates were

not small, as in variant (b). For this second variant, the results

agree very well with the bounded relative error property

for our method, as predicted theoretically in Section 3.4,

and also for forcing+BFB, as proved in (Nakayama and

Shahabuddin 2004). However, the relative error is about

10 times smaller with our method than with forcing+BFB.

Table 1: Simulation Results for Variant (a) of Example 1.

ε Method µ(0, t∗) Relative Error

1 Standard 0.3356 0.0045

1 Forcing+BFB 0.3348 0.0039

1 Our method 0.3356 0.0019

0.1 Standard 0.00851 0.034

0.1 Forcing+BFB 0.00871 0.014

0.1 Our method 0.0087754 0.0001527

0.01 Standard 1.1e-4 0.30

0.01 Forcing+BFB 1.04e-4 0.044

0.01 Our method 0.986779e-4 0.00001495

0.0001 Standard 0 N/A

0.0001 Forcing+BFB 1.2e-8 0.41

0.0001 Our method 0.999867e-8 0.0000001491

Table 2: Simulation Results for Variant (b) of Example 1.

ε Method µ(0, t∗) Relative Error

1 Standard 0.3356 0.0045

1 Forcing+BFB 0.3348 0.0039

1 Our method 0.3355 0.0019

0.1 Standard 0.0066 0.039

0.1 Forcing+BFB 0.00680 0.0062

0.1 Our method 0.006762 0.000707

0.01 Standard 1.0e-4 0.32

0.01 Forcing+BFB 0.734e-4 0.0066

0.01 Our method 0.7292e-4 0.000696

0.0001 Standard 0 N/A

0.0001 Forcing+BFB 7.40e-9 0.0066

0.0001 Our method 7.353e-9 0.000697

4.2 Example 2: An HRMS Model with Two-Dimensional

State Space

We consider now a system with 2 types of components and

2 components of each type. The different rates are shown in

Figure 1, where (absorbing) states where the system is failed

are in grey. Simulation results are given in Table 3. As in

the previous example, both forcing+BFB and our method
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Figure 1: Markov chain transition graph for Example 2.
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Figure 2: Transition probability densities in Example 2. The

solid line is for the zero-variance density, the dashed line

for our approximation, and the dotted line for forcing+BFB.
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Figure 3: Transition probability densities in Example 2.
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Figure 4: Transition probability densities in Example 2.
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Figure 5: Transition probability densities in Example 2.
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Figure 6: Transition probability densities in Example 2.
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turn out to have bounded relative error, in accordance with

theory, and our method wins by a factor of about 30 for

the small values of ε .

For this example, we also show graphs of the (partial)

probability densities. Figures 2 through 6 show (1) the

density g0 of the zero-variance change of measure (solid

line), (2) our approximate density ĝ (dashed line), and (3)

the density effectively being used by forcing+BFB (dotted

line), for some selected transition types (i.e., pairs x,x′); the

densities for the other transition types have a similar behavior.

Each density is shown as a function of δ for t = 1 and

ε = 0.1. The zero-variance densities have been calculated

by computing the time-dependent state probabilities directly

by numerical evaluation of the exponential of the transition

rate matrix, see (Kulkarni 1995, pages 266-269) or (de Souza

e Silva and Gail 2000): If A is the infinitesimal generator

of the CTMC {X j, j ≥ 0}, the transition probability matrix

P(t) = (Px,x′(t))x,x′∈X , with Px,x′(t) the probability of being

in x′ at time t given that we were in x at time 0, is such

that P(t) = eAt . If states in ∆ are absorbing states, µ(x, t)
can then be computed as µ(x, t) = ∑x′∈∆ Px,x′(t).

Figures 2, 3, and 4 show the (partial) densities of the

transition times on the path that dominates in the limit when

ε → 0. These figures clearly demonstrate the fact that the

densities in our approach (dashed) are monomial, with the

direct transition to the failure state having a uniform den-

sity, the one before that having a linear density, and the one

before that a quadratic density. With the exception of the

last (uniform) density, our approximate densities are reason-

ably similar to the zero-variance densities (solid), whereas

the forcing+BFB densities (dotted) are quite different, and

typically much lower. This means that forcing+BFB tends

to put too little probability mass on the dominant path.

Again, the larger difference for the density corresponding

to direct transitions to failures stems from the absence of

the exponential term in approximation (6).

Figure 5 shows the densities for a transition toward

failure but on a non-dominant path, and Figure 6 gives the

densities for a repair transition. One sees that forcing+BFB

tends to put too much probability on these transitions.

5 CONCLUSION

In this article, we have presented a framework for importance

sampling and calculation of the zero variance change of

measure in Markov chains, and shown how different HRMS

examples fit this framework. For this case, we have

shown that a first-order approximation to the zero-variance

distribution can easily be obtained and is effective.

This work needs to be pushed forward. First of all, we

need to relax as much as possible the conditions used in our

results. Second, the HRMS examples in the present paper

have very small state spaces for sake of illustrativeness, in

order to get the explicit value of the zero variance change of
410
Table 3: Simulation results for the two-dimensional example.

ε Method µ((0,0), t∗) Relative Error

1 Standard 0.1839 0.0067

1 Forcing+BFB 0.1835 0.0072

1 Our method 0.1845 0.0036

0.1 Standard 0.00012 0.29

0.1 Forcing+BFB 0.000111 0.028

0.1 Our method 0.0001123 0.0028

0.01 Standard 0 N/A

0.01 Forcing+BFB 8.7e-8 0.041

0.01 Our method 8.693e-8 0.00158

0.0001 Standard 0 N/A

0.0001 Forcing+BFB 8.4e-14 0.043

0.0001 Our method 8.402e-14 0.00121

measure. We plan look at practical problems with very large

state spaces, such as for instance that in (Nakayama and

Shahabuddin 2004). Other applications in insurance risk and

queuing networks are also of interest. Last but not least, we

plan to investigate the case where the exponential term is not

skipped in Equation (6). Sampling the approximate density

will then be a litttle more complicated, but significantly

better results can be expected.
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