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ABSTRACT

We consider the problem of efficient estimation of first pas-
sage time probabilities for a multidimensional random walk
with t distributed increments, via simulation. In addition
of being a natural generalization of the problem of com-
puting ruin probabilities in insurance – in which the focus
is a one dimensional random walk – this problem captures
important features of large deviations for multidimensional
heavy-tailed processes (such as the role played by the mean
of the random walk in connection to the spatial location
of the target set). We develop a state-dependent impor-
tance sampling estimator for this class of multidimensional
problems. Then, we argue – using techniques based on
Lyapunov type inequalities – that our estimator is strongly
efficient.

1 INTRODUCTION

Estimation of large deviations probabilities for heavy-tailed
processes is a known challenging problem. The focus in
the literature has been dominated by the analysis of one
dimensional random walks. Undoubtedly, however, a gen-
eral theory of rare-event analysis for heavy-tailed processes
should also deal with random walks in several dimensions.
Indeed, one does not need to go far to see why is this the case
– just note that a large class of queueing models and sto-
chastic networks can be related to multidimensional random
walks with constrained boundaries. In several dimensions,
however, even a convenient definition of a heavy-tailed ran-
dom variable, that is both rich enough to capture stylized
features observed in applied models and that allows the de-
velopment of a theory that parallels that of one dimensional
random walks seems to be difficult to put forward. Recent
advances in large deviations theory for regularly varying
processes, see for instance Hult et al (2005), suggest that
a promising development of general theory for large devi-
ations in an important heavy-tailed environment, namely,
that of regularly varying distributions. Nevertheless, despite
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the new possibilities that this development has opened up,
such theory does not seem to be naturally coupled with
efficient rare-event simulation algorithms (as is the case of
the well-developed large deviations theory for light-tailed
systems, in which often exponential changes-of-measure
suggest efficient importance sampling schemes).

Motivated by the need of exploring the connections
between efficient importance sampling algorithms and the
development of large deviations results for heavy-tailed sys-
tems in several dimensions, we study a stylized rare-event
simulation problem for a multidimensional process. In par-
ticular, we consider a multidimensional random walk with
t distributed increments and address the question of effi-
cient estimation of first-passage time probabilities to reach
a polyhedron, via simulation. This problem is the natural
generalization of the classical problem of estimating the
tail of the maximum of a one dimensional random walk
– a quantity that yields the ruin probability of an insur-
ance company that follows a renewal risk process. The
one dimensional case has been substantially studied in the
literature; see, for instance, the text of Asmussen (2003)
and references therein for a detailed account problem and its
connections to insurance and queueing. Hult and Lindskog
(2006) argue that calculating first-passage time probabilities
for multidimensional random walks correspond to comput-
ing ruin probabilities for insurance companies with several
lines of business. In order to simplify the technical aspects
of the discussion, in this paper we decided to deal with the
case of t distributed increments and polyhedra. However,
basically all of the ideas extend to multidimensional regu-
larly varying increments and more general sets (that do not
even need to be connected). Such extensions are given in
Blanchet and Liu (2007).

In this paper, we illustrate a strategy that can be used
both in the design of efficient rare-event simulation algo-
rithms for heavy-tailed systems and also in the development
of asymptotic upper bounds for large deviations. In order
to achieve this, we propose using a parametric family of
importance samplers based on mixtures – the precise form
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of the mixture is given in Section 4. The mixture idea
has also been used in the rare-event simulation literature
for light-tailed systems (see, for instance, Sadowsky and
Bucklew (1990) and, more recently, Glasserman and Juneja
(2007)). In the heavy-tailed case, this idea was introduced by
Dupuis, Leder and Wang (2006) for a geometric sum of one
dimensional iid regularly varying variables. More recently,
Blanchet, Glynn and Liu (2007a, 2007b) have exploited this
idea more systematically and in more general environments
in which rare events are caused by several heavy-tailed
jumps in sequence (rather than just one). Now, a remark-
able feature to be emphasized in the current work (and also
in the cited work related to heavy-tailed case) is that the
mixture parameters are state-dependent. As a consequence,
since the suggested change-of-measure is state-dependent,
the efficiency analysis of the algorithm is not completely
direct. Fortunately, recently developed techniques based
on Lyapunov inequalities for Markov processes (see, for
instance, Blanchet and Glynn (2007) or Blanchet, Liu and
Glynn (2007a)) come into play, allowing us to bound the
second moment of the estimator and conclude the strong
efficiency of our algorithm. As we shall see, solving a
Lyapunov inequality involves finding a function (that we
refer to as Lyapunov function) which satisfies a system of
linear inequalities. The use of Lyapunov inequalities in the
analysis of state-dependent rare-event simulation algorithms
was introduced by Blanchet and Glynn (2007) in the con-
text of a one dimensional first-passage time problem for
heavy-tailed random walks (not necessarily regularly vary-
ing, but also including more general tails such as Weibull
and lognormal among many other types). Blanchet and
Glynn (2007) proposed the use of a well-known approxi-
mation for such first-passage time probability and develop
the algorithm using such approximation directly in order
to construct their importance sampling estimator. An im-
portant difference between Blanchet and Glynn’s approach
and our development here is that we do not make direct
use of the approximations for the construction of our es-
timator, but instead propose a specific parametric family
based on mixtures. In fact, only an asymptotic lower bound
for the probability of interest is required because verifying
strong efficiency in our procedure automatically yields the
asymptotic upper bound.

Our strategy consists of proposing a family of changes-
of-measure that captures, at an intuitive level, the qualitative
behavior induced by the zero-variance importance sampler.
Such changes-of-measure are parameterized by few con-
stants. In particular, at each step, we consider a mixture
between a large increment that makes the random walk
hit the target set with relatively high probability and an
increment that follows the nominal (original) distribution.
The mixture probability must be chosen depending on the
current position of the random walk. In order to properly
choose the mixture probability, one needs to make sure that
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the Lyapunov inequality is satisfied. Now, such inequal-
ity requires the choice of a convenient Lyapunov function
(i.e. the solution to a system of linear equations), which is
obtained using heuristics based on a so-called fluid analy-
sis – a standard technique in heavy-tailed approximations.
The heuristics then are made rigorous by going through
the verification of the Lyapunov inequality, which involves
tuning parameters such as the mixture probabilities. Once
the inequality is rigorously verified, we are able to find
an upper bound that controls the behavior of the second
moment of the estimator and therefore conclude strong ef-
ficiency. Now, on the side of the asymptotics, the bound on
the second moment of the importance sampling estimator
can be translated, by means of Jensen’s inequality, to an as-
ymptotic upper bound on the first-passage time probability
of interest. Since, upper bounds in large deviations analysis
are often difficult to obtain, the techniques explained in
Section 4 are of interest in asymptotic analysis in general.

The rest of the paper is organized as follows. In Section
2 we discuss basic concepts involving state-dependent im-
portance sampling and efficiency in rare-event simulation.
Section 3 describes the specific problem formulation and
discussed basic results on large deviations. The analysis
of the algorithm and numerical experiments are given in
Section 4.

2 STATE-DEPENDENT IMPORTANCE SAMPLING
AND STRONG EFFICIENCY

We shall design our estimator using state-dependent impor-
tance sampling (see, for instance, Glynn and Iglehart (1989)
for more on importance sampling for Markov processes).
Let W = (Wn : n≥ 0) be a Markov chain, living in a space
X endowed with a σ -field FX , and with transition kernel
(K (x,A) : x ∈X , A ∈FX ). A state-dependent importance
sampler is described by a probability transition kernel Kq (·)
of the form

Kq (x,dy) = r (x,y)−1 K (x,dy) ,

where r (·) is normalized so that Kq (·) is a well defined
Markov transition kernel. In the particular setting that is
the focus of this paper, W is a random walk and

K (x,dy) = f (x− y)dy, Kq (x,dy) = r (x,y)−1 f (x− y)dy,

where f (·) is the density of a multivariate t distribution
and r (·) shall be picked in the next section involving a
mixture. In particular, we will choose r(·)−1 to be the sum
of two indicator functions. In addition, we use the symbols
PQ

w (EQ
w ) to denote the probability measure (expectation

operator) induced by Kq (·) on the path space of W given
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that W0 = w. Similarly, for the probability induced by K (·)
we use Pw (and Ew).

Throughout the rest of the paper we shall write TAb to
denote the first-passage time of the underlying chain (in this
case W ) to the set Ab. More precisely, TAb = inf{n > 0 : Wn ∈
Ab} – the subscript b is the so-called rarity parameter which
eventually will be sent to infinity. Consider the problem of
estimating efficiently via simulation

ub (w) = Pw
(
TAb < ∞

)
,

where we assume that ub (w)↘ 0 as b↗ ∞. An unbiased
estimator of ub (w) is given by

Z (b) = I
(
TAb < ∞

)TAb−1

∏
i=0

r (Wi,Wi+1) ,

where W in the previous expression follows the law PQ
w –

which in particular yields, EQ
w Z(b) = ub (w).

Ultimately, we are interested in selecting r (·) in order
to achieve good complexity properties. In particular, we
shall select r (·) in order to achieve strong efficiency, which
means that

sup
b≥1

EQ
w

(
Z (b)2

)
ub (w)2 ≤ λ

For some λ ∈ (0,∞). The number of replications required
to achieve a good relative precision for a strongly efficient
estimator is unsensitive to how small is ub (w). In particular,
if we generate n iid copies (Z j (b) : 1≤ j ≤ n) of Z (b) and
consider

Yn (b) =
1
n

n

∑
j=1

Z j (b) ,

then, using Chebyshev’s inequality we obtain (for all b≥ 1)

P(|Yn (b)−ub (w)| ≥ εub (w))≤ λ

ε2n
.

This implies, as we indicated, that in order to achieve
relative precision ε with probability at least 1− δ , we
require O

(
ε−2δ−1

)
replications uniformly as ub (w)↘ 0.

Now, strong efficiency is not enough to characterize the
complexity of an algorithm. In particular, we need also
to consider the computational cost per replication of the
Z (b). This is particularly important in our context because
variate generation of multidimensional increments is not in
general straightforward. As we shall see, in our current
situation r (·) can be chosen so that the variate generation
of the increments under the importance sampler can be done
easily.
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The following proposition, proved in Blanchet and
Glynn (2007) provides means to evaluate the second moment
of state-dependent importance sampling estimators.

Proposition 1 Suppose that there exists a non-
negative function (gb (w) : w ∈X ) such that

EQ
w r (w,W1)

2 gb (W1) = Ewr (w,W1)gb (W1)≤ gb (w) (1)

for w ∈ Ac
b and gb (w)≥ ε for w ∈ Ab. Then,

EQ
w

(
Z (b)2

)
≤ ε

−1gb (w)

if w ∈ Ac
b.

Remark 1 The bound (1) is called a Lyapunov inequality
and gb (·) is the corresponding Lyapunov function. Ulti-
mately, the design and performance analysis of the proposed
estimator boils down to finding a solution (gb (w) : w ∈X )
to the Lyapunov inequality. It is not difficult to see that
if one chooses the zero-variance importance sampler, then
(ub (w)2 : w ∈X ) is a feasible Lyapunov function. Since
we expect to select r (·) in order to mimic the behavior of
the zero-variance importance sampler, then it is natural to
use a guess for ub (·)2 as guidance for constructing gb (·).
Such approach is pursued in Section 4.

3 PROBLEM SETTING AND INTUITION BEHIND
LARGE DEVIATIONS IDEAS

Let us start by describing our problem setting in pre-
cise terms. Consider a d-dimensional random walk
with increment density proportional to (1+(x− η̃)T Σ(x−
η̃))−(υ+d)/2,where υ > 2, Σ is a symmetric positive definite
matrix and η̃ is a non-zero vector – such density is a general
multivariate t density. We are interested in estimating via
simulation the probability that the corresponding random
walk hits a rare set say Ã that we parameterize as a convex
polyhedron (i.e. the intersection of finitely many hyper-
planes). Note that by applying G (with GGT = Σ) both
to the random walk and to the rare set, we can focus on
standard t distributed random vectors. More precisely, it
suffices to consider a sequence of iid d-dimensional random
vectors (Xk : k ≥ 1) with density

fX1 (x1, ...,xd) =
κd(

1+ 1
υ

(x−η)T (x−η)
)(υ+d)/2 ,

where η 6= 0 and

κd =
Γ((υ +1)/2)

Γ(υ/2)υd/2πd/2

Let Sn = X1 + ...+Xn.
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Our objective is to estimate via simulation.

ub (0) = P0 (TbA < ∞)

as b↗ ∞, where A = {x ∈ Rd : Cx ≤ β} for some matrix
C and bA = {y : y = bx, x ∈ A}. In order to make sure
that ub (0)↘ 0 as b↗ ∞, we shall impose some regularly
conditions to the set A.

The conditions under which ub (0)↘ 0 as b↗∞ and the
rate at which this occurs are delicate questions – specially in
the context of general regularly varying multivariate random
vectors. Sufficient conditions have been developed in the
work of Hult et al (2005) and Hult and Lindskog (2006).
We shall adopt those conditions in our development here. In
order to describe our assumptions, we first need to compute
the associated limiting regularly varying measure for the
Xk’s. Such measure, which we denote by µ (·), is defined
on the Borel sets that do not contain zero and it satisfies

µ (A) = lim
t−→∞

t−υ P(X1 ∈ tA) =
∫

A

κd

(yT y)(υ+d)/2 dy.

µ is not necessarily a probability measure and has the prop-
erty that µ(tA) = t−υ µ(A). Also, note that P(‖X1‖2 > t) =
ct−υ (1+o(1)) as t↗∞ for some c > 0. The measure µ (·)
plays an important role in the large deviations behavior of
S = (Sn : n≥ 0). For instance, if the increments of the
random walk had d independent coordinates, the measure
µ (·) would have been concentrated along the axis, which
would imply that extreme behavior is caused by individual
jumps given by single coordinates (i.e. the possibility of
simultaneous joint large jumps is relatively small). The fact
that µ (·) has a density with respect to the Lebesgue mea-
sure in Rd\{0}, in particular implies that when a coordinate
exhibits a large jump, then the rest of the coordinates will
also tend to be large. Such feature is one of the reasons for
which t-copulas are often applied when modeling extreme
dependence, see for instance, in credit risk (see, Embrechts
et al (2001)).

Now, given that the random walk has drift EXk = η , it is
not difficult to see geometrically that some conditions must
be imposed to A in order to have a meaningful rare-event
situation. In order to rule out non rare-event situations, we
should assume at least that the set A does not intersect the
ray Rη = {tη : t > 0}. However, little thought reveals that
this condition is not strong enough to rule out degenerate
situations. In particular, two situations can occur, in one
hand, it could be the case that A lives in a lower dimensional
manifold (like a line in Rd for d > 1), in which case the
random walk will never A. The second situation arises, for
instance, when one of the faces of the polyhedron is parallel
to the η , in which case, Central Limit Theorem fluctuations
would eventually make the random walk hit the target set.
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Figure 1: Diagram illustrating Assumption A for a two
dimensional random walk.

In order to rule out these two cases we impose the following
assumption.

A) Assume that µ (A) > 0 and, in addition, suppose that
there exists v∗ ∈ Rd , δ > 0 such that ‖v∗‖2 = 1, ηT v∗ <−δ

and zT v∗ > δ for all z ∈ A. See Figure 1.
Now, we are ready to provide some estimates on the rate

of convergence to zero of ub (0). Since µ (A) > 0 then the
large deviations behavior of the system will be governed by
a single large jump that makes the random walk eventually
reach the target set. Let us borrow some of the intuition
from the one dimensional case. In such case, we know that
the random walk evolves according to its nominal (original)
dynamics for O(b) steps until a large jump occurs that
causes the random walk to reach a large threshold b. See
Hult et al (2005) for a large deviation result. Using this
intuition, we propose the following lower bound for our
multidimensional problem.

Proposition 2 There exists a constant c > 0 such
that

ub (0)≥ P0
(
Sbbc ∈ bA

)
≥ cbP(‖X‖2 > b)

as b↗ ∞

Proof. The first inequality from left to right is im-
mediate. Now, it follows using regular variation and the
definition of v∗ that there exists β1 ∈ (0,1) and β2 > 0

P0
(
Sbbc ∈ bA

)
≥ β1P0

(
v∗T Sbbc > β2b

)
.

Therefore, the result follows from properties of one dimen-
sional regularly varying random variables (see, Rozovskii
(1989)).

The most interesting portion of the large deviation es-
timate for ub (0) involves developing an upper bound. The
strategy that we shall pursue in the next section allows to
obtain the desired upper bound by showing that the second
moment of a suitable importance sampling estimator is of
order O

(
b2P(X1 ∈ bA)2

)
as b↗ ∞. This will imply both

strong efficiency and also that ub (0) = O(bP(X1 ∈ bA)) as
b↗∞. It should be noted that the constant multiplying the
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previous “big-O” asymptotic for ub (0) can be computed
explicitly (see Hult et al (2005)). However, such informa-
tion is not necessary for showing strong efficiency of the
estimator.

4 ALGORITHM AND ANALYSIS

As we discussed in the Introduction, our strategy involves
the use of a parametric family of changes-of-measure that
mimics the behavior of the zero-variance importance sampler
– which corresponds to the conditional distribution of the
random walk given that the rare-event occurs. Now, as we
indicated before, in this case the rare-event is caused at some
time by a single large jump while keeping – roughly speaking
– all the increments prior to that time evolving according
to the nominal dynamics. This suggests using as a family
of importance sampling distributions for the increments a
mixture of two components: one that induces a large jump
that reaches the target set with relatively high probability
and another one that basically involves the corresponding
nominal dynamics. More precisely, given that the current
position of the walk is s and that we have not reached
the target set bA, we propose sampling the next increment
according to a mixture density of the form

qX |s (x) = p(s)
fX (x) I

(
x ∈ Bs,bA

)
P
(
X ∈ Bs,bA

) (2)

+ (1− p(s))
fX (x) I

(
x ∈ Bc

s,bA

)
P
(

X ∈ Bc
s,bA

) ,

where the mixture probability p(s) is allowed to depend
on the current state and the set Bs,bA is closely related (in
a precise way to be described later) to the translated set
bA−s. Now, we also know from the literature on rare-event
simulation for heavy-tailed systems that in order to control
the variance of the estimator is important to recognize the
contribution of such sample paths that achieve the rare-event
due to more than one large jump. Therefore, to account
for the contribution of such sample paths, we allow the set
Bs,bA to contain bA− s in a suitable way. The construction
of the set Bs,bA pays attention not only to the contribution
of such sample paths that take more than one large jump to
reach the target set but also to the ability of the simulator
to implement the path generation under the importance
sampling distribution. As a consequence, we define the set
Bs,bA as follows. First let δ ∗ = sup{δ > 0 : zT v∗ > δ for
all z ∈ A} (where v∗ is defined in Assumption A) and put
A∗ = {x∈ Rd : xT v∗ ≥ δ ∗}. Then, pick a∈ (0,1) and finally
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define

Bs,bA =
{

x ∈ Rd : ‖x‖2 > a inf
y∈A∗
‖by− s‖2 , xT v∗ ≥ 0

}
.

(3)
The likelihood ratio corresponding to (2) takes the form

(using the notation of Proposition 1)

q X |s (x)
fX (x)

≡ r (s,x+ s) (4)

=
P
(
X1 ∈ Bs,bA

)
p(s)

I
(
x ∈ Bs,bA

)
+

P
(

X1 ∈ Bc
a,s,bA

)
1− p(s)

I
(
x ∈ Bc

a,s,bA
)
.

Finally, the corresponding (unbiased) estimator for ub (0) is

Zb =
Tb·A−1

∏
k=0

r (Sk,Sk+1) I (Tb·A < ∞)

(that Zb is unbiased is verified in Blanchet and Glynn
(2007)). Once we have proposed a suitable parametric
family of importance sampling distributions, we need to
tune the mixture parameter in order to satisfy the Lyapunov
inequality. For this matter, we also need to propose a
parametric expression for the candidate Lyapunov function.
As we discussed in the remark following Proposition 1, if the
proposed importance sampler is close enough to the zero-
variance change-of-measure, then we expect the Lyapunov
inequality to be satisfied by a function that behaves like (or
is an upper bound for) (P2

s (TbA < ∞) : s∈ Rd). Therefore, a
natural strategy is to obtain a heuristic guess Ps (TbA < ∞) and
use this guess to propose an explicit form for the Lyapunov
function which then will be tested rigorously. Note that
Ps (TbA < ∞)≤ Ps (TbA∗ < ∞), so trying to test a Lyapunov
function that approximates

(
P2

s (TbA∗ < ∞) : s ∈ Rd
)

seems
adequate for obtaining an upper bound. Now, a rough
analysis suggests

Ps (TbA∗ < ∞)≈
∫

∞

0
P(X1 + s+ηt ∈ bA∗)dt.

This type of heuristic development is often called a “fluid
analysis”. The idea is to replace the dynamics of the
random walk by the motion suggested using the Law of
Large Numbers and also recognize that the rare event is
caused by a single large jump. We then define

hb (s)≡
∫

∞

0
P(X1 + s+ηt ∈ bA∗)dt.
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Note that

hb (s) =
∫

∞

0
P
(
XT

1 v∗+ sT v∗+η
T v∗t ≥ δ

∗b
)

dt

=
1

−ηT v∗

∫
∞

0
P
(
XT

1 v∗ ≥ δ
∗b− sT v∗−η

T v∗t
)

d(−η
T v∗t)

=
1

−ηT v∗

∫
∞

δ ∗b−sT v∗
P
(
XT

1 v∗ ≥ u
)

du

= O(P(‖X‖2 > b)b)

as b↗ ∞. The last equality can be justified by that fact
that XT

1 v∗ is distributed as t distribution with degree of
freedom υ and P(XT

1 v∗ > u)∼ P(‖X1‖> u). Our candidate
for Lyapunov function then takes the form

gb (s) = min
(

cg ·hb (s)2 ,1
)

(5)

for some constant cg > 0 (to be determined over the course
of the verification of the Lyapunov inequality).

Verifying the Lyapunov inequality involves checking,
for all s ∈ R,

1 ≥ Eq
(

gb (s+X)
gb (s)

r (s,s+X)2
)

= E
(

gb (s+X)
gb (s)

r (s,s+X)
)

(6)

=
1

p(s)
E
(

gb (s+X)
gb (s)

;X ∈ Bs,bA

)
+

1
1− p(s)

E
(

gb (s+X)
gb (s)

;X ∈ Bc
s,bA

)
,

(where Eq (·) represents the expectation induced by the
density q X |s (·)). Let us define

J1 = E
(

gb (s+X)
gb (s)

;X ∈ Bs,bA

)
P
(
X ∈ Bs,bA

)
p(s)

,

J2 = E
(

gb (s+X)
gb (s)

;X ∈ Bc
s,bA

) P
(

X ∈ Bc
s,bA

)
1− p(s)

.

Assume that gb (s) < 1 (note that if gb (s)≥ 1 we can just
not apply importance sampling at all and the Lyapunov
inequality will be automatically satisfied). An immediate
upper bound is obtained for J1, namely,

J1 ≤ E(
1

gb(s)
|X ∈ Bs,bA)

P2
(
X ∈ Bs,bA

)
p(s)

≤
P2
(
X ∈ Bs,bA

)
cghb (s)2 p(s)

.

(7)
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Figure 2: Two dimensional diagram illustrating the region
where Lemma 1 is satisfied.

For J2 we obtain

J2 ≤
1

1− p(s)
E
(

gb (s+X)
gb (s)

;X ∈ Bc
s,bA

)
. (8)

The idea is then to take advantage of Taylor expansion.
Since

η
T

∇hb (s) =
−1

ηT v∗
P
(
XT v∗ > δb∗− sT v∗

)
η

T v∗

=−P
(
XT v∗ > δb∗− sT v∗

)
=−P(X + s ∈ bA∗) ,

then (if gb (s) < 1)

ηT ∇gb (s)
gb (s)

=−2
P(X + s ∈ bA∗)

hb (s)
.

The previous expression can then be used to handle the
contribution of the expectation in the right hand side of
inequality (8). The complete details are given in Blanchet
and Liu (2007), where the following result is proved.

Lemma 1 Define DbA∗ (z) = {y : infy∈bA∗ ‖s− y‖2≥
z}. Then, there exist computable constants γ1 ∈ (0,1) and
b0 > 0 such that

E
(

XT ∇gb (s+UX)
gb (s)

;X ∈ Ba,bA

)
≤ γ1

2
ηT ∇gb (s)

gb (s)

=−γ1
P(X + s ∈ bA∗)

hb (s)

for all s ∈ DbA∗ (b0)

Remark 2 The gray area in Figure 2 shows the
form of the region where the previous inequality holds.
The constant cg eventually is selected large enough so that
g(s) = 1 on the complement of the gray area (so that finally,
the Lyapunov inequality is satisfied throughout the whole
space).
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The previous lemma combined with (7) and

gb(s+X)
gb(s)

=
gb(s)+

∫ 1
0 XT ∇gb(s+uX)du

gb(s)

yields

J1 + J2 ≤
1

1− p(s)
+

P
(
X ∈ Bs,bA

)2

cghb (s)2 p(s)
− γ1

P(X + s ∈ bA∗)
hb (s)

.

Therefore, if we select (for some ρ2 > 0)

p(s) = min

(
ρ2

P
(
X ∈ Bs,bA

)
hb (s)

,1/2

)
, (9)

we conclude that

J1 + J2 ≤ 1+2ρ2
P
(
X ∈ Bs,bA

)
hb (s)

+
P
(
X ∈ Bs,bA

)
cgρ2hb (s)

− γ1
P(X + s ∈ bA∗)

hb (s)
. (10)

Now, our job is to appropriately select ρ2 and cg in order
to make the right hand side of the previous inequality less
than 1. The next technical result allows to conclude that
ρ2 and cg can indeed be appropriately selected (the proof
is an application of standard regularly varying properties,
the details are given in Blanchet and Liu (2007)).

Lemma 2 One can compute γ2 ∈ (0,∞) such that

P
(
X ∈ Bs,bA

)
≤ γ2P(X + s ∈ bA∗)

for all s ∈ Rd .

Applying the previous result to (10) we conclude that

J1 + J2 ≤ 1+2ρ2γ2
P(X + s ∈ bA∗)

hb (s)

+ γ2
P(X + s ∈ bA∗)

cgρ2hb (s)
− γ1

P(X + s ∈ bA∗)
hb (s)

. (11)

Therefore, the Lyapunov inequality is satisfied if we select
ρ2 and cg such that

2ρ2γ2 +
γ2

cgρ2
− γ1 ≤ 0. (12)

This inequality can be achieved by first selecting ρ2 small
(say ρ2 ≤ γ1/(4γ2)) and then cg large enough (say cg ≥
4γ2

2 /γ1). As indicated in Remark 2, in addition to this
constraint, cg is selected large enough so that the region
{s : g(s) = 1} contains the white area displayed in Figure
2.
401
We conclude with a summary of the proposed algorithm
(for the generation of a single replication of Zb).

Algorithm
Set b > 0 and fix a∈ (0,1). Initialize w = 0, REACH = 0

and Z = 1. Assume that cg and ρ2 have been selected in
order to satisfy (12) and set gb (w) according to (5).

STEP 1

• If gb (s) = 1 then sample X according to the nominal
distribution.

Else set p←−min
(

ρ2
P(X∈Bs,bA)

hb(s) ,1/2
)

and sample

X as follows. With probability p generate X with
distribution (X |X ∈ Bs,bA), with probability 1− p
sample X with distribution (X |X ∈ Bc

s,bA). Then,
update

Z←− Z · [p−1P
(
X ∈ Bs,bA

)
I
(
X ∈ Bs,bA

)
+(1− p)−1 P

(
X ∈ Bc

s,bA
)

I
(
X ∈ Bc

s,bA
)
].

Endif.
Update s←− s+X ,

• If w ∈ bA then REACH←− 1. Endif.
• Repeat STEP 1 until REACH = 1.

STEP 2 RETURN Z.

Before summarizing the efficiency properties of the
estimator proposed by the previous algorithm, let us provide
a graphical explanation of how the algorithm evolves. Figure
3 contains, in addition to the elements illustrated in Figure
1, the construction of the set A∗. In the diagram, we show
the evolution of a typical path of the algorithm in fluid
scale right before a big jump (coming from the mixture
component with probability p(s)) occurs. The next step of
the random walk will be selected according to a conditional
density that is supported in the gray area. Note that it is
possible for the increment to jump outside the set A, in
which case, the path continues following its fluid dynamics
(roughly a line with gradient η) until another jump occurs
and so forth.

The next result summarizes the complexity of the al-
gorithm.

Theorem 1 If Assumption A is in force, then the
previous algorithm takes on average O(b) variates to ter-
minate. In addition, the estimator, Z, obtained at Step 2 is
strongly efficient.

Proof. From inequality (11) and Proposition 1 we
conclude

gb (0)≥ E

[
Tb·A−1

∏
k=0

r (Sk,Sk+1)
2 I (TbA < ∞)

]
.
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Figure 3: The evolution of a typical sample path generated
by the algorithm, right before obtaining a large jump.

On the other hand, combining the lower bound obtained
in Proposition 2 together with the fact that gb (0) =
O(P(‖X‖2 > b)2b2) as b↗ ∞, we conclude that

sup
b≥1

Eq
(
Z2
)

P(Tb·A < ∞)2 ≤ sup
b≥1

gb (0)
cP(‖X‖2 > b)2b2 < ∞.

The fact that the expected number of increments required
to reach bA is O(b) follows again using a Lyapunov-type
argument as in Blanchet and Glynn (2007). The details are
given in Blanchet and Liu (2007).

We close this section with some numerical exper-
iments. We assume that d = 2, υ = 3, Σ = I and
η = (0,−1)ᵀ. We consider target sets of the form bA,
where A = {(x,y) ;x > 1,y > 1} and b = 10, 20, and 50.
Note that Assumption A is satisfied with v∗ =−η . We se-
lect A∗= {(x,y) ;y≤ 1} (i.e. δ ∗= 1), ρ2 = 1/3, cg = 12 and
a = 0.9 (recall that a was defined in (3)). In order to verify
the validity of our implementation we used crude Monte
Carlo to estimate the probability for the case b = 10 based
on 200,000 replications and obtained an estimate equal to
1.74e−03 with standard deviation 9.32e−05. The imple-
mentation of our algorithm yields an estimated coefficient
of variation that remains very stable as b increases (around
6). In Table 1, “Est” is the average of 20000 estimates;
“SD” is the standard deviation of a single run.

Table 1: Simulation results

b Est SD Sample size
10 1.83e−03 1.31e−02 20000
20 4.28e−04 2.54e−03 20000
50 8.80e−05 4.74e−04 20000
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