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ABSTRACT

Much of the rare-event simulation literature is concerned
with the development of asymptotically optimal algorithms.
Because of the difficulties associated with applying these
ideas to complex models, this paper focuses on sub-optimal
procedures that can be shown to be much more efficient
than conventional crude Monte Carlo. We provide two such
examples, one based on “repeated acceptance/rejection” as a
mean of computing tail probabilities for hitting time random
variables and the other based on filtered conditional Monte
Carlo.

1 INTRODUCTION

The rare-event simulation problem is concerned with using
simulation to compute α = P(A), where A is a “rare-event”
(and hence has probability P(A) close to zero). It is well
known that if α is computed via crude Monte Carlo (i.e., by
estimating α via the proportion of independent simulations
on which the event A occurs), the number of trials n required
to estimate α to a given relative precision scales is in pro-
portion to 1/P(A). As a consequence, crude Monte Carlo
(CMC) is a highly inefficient algorithm for computing α

when P(A) is small. Much of the rare-event simulation liter-
ature is concerned with the development of asymptotically
optimal algorithms. Because of the difficulties associated
with applying these ideas to complex models, this paper
focuses on sub-optimal procedures that can be shown to be
much more efficient than conventional crude Monte Carlo.
We provide two such examples, one based on “repeated
acceptance/rejection” as a mean of computing tail probabil-
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ities for hitting time random variables and the other based
on filtered conditional Monte Carlo.

It follows that for very rare events (say, of order 10−4

or smaller), there is great interest (both practically speaking
and academically) in using modified simulation algorithms
capable of computing α more efficiently (i.e., using a so-
called “efficiency improvement technique”). Accordingly,
there is now a substantial literature on such efficient rare-
event simulation algorithms; see, for example, Bucklew
(2004) and Juneja and Shahabuddin (2007).

Given a family of problem instances (P(Aθ ) : θ ∈ Λ),
let Z(θ) be a random variable having mean equal to P(Aθ )
for each θ ∈ Λ. The family of r.v.’s (Z(θ) : θ ∈ Λ) is said
to have bounded relative variance (BRV) if

sup
θ∈Λ

varZ(θ)
P(Aθ )2 < ∞.

Bounded relative variance implies, via Chebyshev’s
inequality, that the number of observations n required to
compute P(Aθ ) to a given relative precision is bounded
in θ ∈ Λ. In particular, this implies that if P(Aθ ) ↓ 0 as
θ → θ0, then EZ2(θ) = O(P(Aθ )2) as θ → θ0. Because the
Cauchy-Schwarz inequality implies that EZ2(θ)≥ P(Aθ )2, it
follows that EZ2(θ) is within a constant multiple, uniformly
in θ ∈ Λ, of the smallest possible second moment. Hence,
the family (EZ2(θ) : θ ∈ Λ) is within a constant multiple
of optimality.

An extensive theory of asymptotic optimality based
on the concept of BRV (and a weaker notion known as
“logarithmic optimality”) has developed in response to rare-
event simulation problems in several applications domains.
In order to guarantee asymptotic optimality, one clearly
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needs an upper bound on EZ2(θ). Many different methods
are available for computing such bounds, varying from ad
hoc ideas to the systematic use of Lyapunov bounds; see
Blanchet and Glynn (2007a). But it is equally evident that
one needs lower bounds on P(Aθ )2; we provide a new
Lyapunov based lower bound in Section 4 of this paper.
Note, however, that the square of such a lower bound must
be within a constant multiple of the upper bound, in order
that the family (Z(θ) : θ ∈ Λ) possesses the BRV property.
In fact, both bounds, must be with a constant multiple of the
actual P(Aθ )2. Hence, asymptotic optimality can typically
be verified only in settings in which the actual probability
P(Aθ ) can be calculated (without simulation) to within a
constant multiple.

Given the difficulties associated with analytically cal-
culating P(Aθ ) to such a precision in many applied domains,
this suggests focusing on computational strategies that, while
not necessarily optimal, are at least demonstrably better than
crude Monte Carlo. Our focus in this paper is on describ-
ing a couple of such methods that, while more efficient
than CMC, are rarely optimal procedures (in the sense of
possessing BRV). In addition to describing these methods,
it is our hope that this paper will stimulate additional re-
search on identifying rare-event simulation algorithms that
are provably efficient (even if suboptimal). The first such
method is “repeated acceptance/rejection”, in which step-
by-step conditioning is used to compute the tail probability
for a “first hitting time” random variable. This method has
been previously introduced and studied by Glasserman and
Staum (2001) in the setting of barrier options. Our discus-
sion, in Section 2, notes that this method is an example
of an efficient suboptimal rare-event simulation algorithm.
We also provide a new (simpler) proof of this method’s
efficiency, and provide a new analytical characterization of
its efficiency in the above tail probability computational
setting by appealing to Perron-Frobenius theory.

2 REPEATED ACCEPTANCE / REJECTION

Let X = (Xm : m≥ 0) be a finite state irreducible discrete-
time Markov chain living on state space S. We will
describe a variance reduction technique for computing
rare-event probabilities of the form αn = Px(T > n) when
n is large. Here, T = inf{m ≥ 0 : Xm ∈Cc}. is the hitting
time of some non-empty subset Cc ⊆ S. We assume that
for each y ∈C, r(y) = Py(X1 ∈C) can be computed.

Algorithm 1

1. m← 0,Xm← x,L← 1.
2. L← Lr(Xm).
3. Generate Z from the probability distribution

P(Xm+1 ∈ ·|Xm).
4. If Z ∈Cc, go to 3.

Else, m← m+1, Xm← Z.
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5. If m < n, go to 2.
Else, return L.

Note that Steps 2 and 3 can be viewed as an accep-
tance/rejection algorithm in which the target distribution
is P(Xm+1 ∈ ·|Xm,Xm+1 ∈C). Thus, if one can efficiently
generate transitions from the transition matrix Q = (Q(y,z) :
y,z ∈C) with entries

Q(y,z) =
P(y,z)
r(y)

using an alternative (more efficient) method, this alternative
variate generation scheme can (and should) be used instead.

In the form specified by Algorithm 1, paths of length
n are generated via an acceptance/rejection step at each of
the n transitions, leading to our terminology “repeated ac-
ceptance/rejection”. To analyze this algorithm, let P̃y(·) and
Ẽy(·) denote, respectively, the probability and expectation
operators, conditional on X0 = y, associated with generating
paths of X under the Markovian dynamics corresponding
to the transition matrix Q. The probability αn can then be
represented as

αn = ẼxLn

where

Ln =
n−1

∏
i=0

r(Xi).

We now proceed to analyze the variance of the random
variable Ln under P̃x. Note that if ṽary(·) is the variance
under P̃y, then

ṽarxLn = ẼxL2
n−α

2
n

= ExLnI(τ > n)−α
2
n .

Since Ln ≤ 1, it follows that

ṽarxLn ≤ ExI(τ > n)−α
2
n

= αn(1−αn)
= varxI(τ > n).

So, repeated acceptance/rejection clearly beats crude Monte
Carlo.

But given the fact that Ln is a product of n terms,
each of which is less than or equal to 1, the expectation
ẼxL2

n is actually smaller than ExI(τ > n) by a factor that is
geometric in the time horizon n.

The degree of variance reduction can be quantified
more precisely by appealing to Perron-Frobenius theory.
Let B = (B(y,z) : y,z ∈ C) be the restriction of P to C
(so that B(y,z) = P(y,z)). If B is irreducible, the Perron-
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Frobenius theorem guarantees existence of a positive column
eigenvector v = (v(z) : z ∈C) and a positive eigenvalue λ

such that Bv = λv. Note that

Bn(y,z) = Py(Γ > n,Xn = z).

Because Bnv = λ nv with v strictly positive, we may conclude
that ExI(Γ > n) = θ(λ n) as n→∞ (where an = θ(bn) means
that there exist positive finite constants c1 and c2 such that
c1 ≤ an/bn ≤ c2 for n≥ 1.)

Similarly, let G = (G(y,z) : y,z ∈C) be the matrix in
which G(y,z) = r(y)P(y,z). Again, if G is irreducible, the
Perron-Frobenius theory guarantees that ẼxL2

n = θ(γn) as
n→ ∞, where γ is the Perron-Frobenius eigenvalue of G.
Because ẼxL2

n ≥ Px(Γ > n)2, we conclude that γ ≥ λ 2, while
the inequality γ ≤ λ follows from the fact that CMC has
higher variance than repeated acceptance/rejection.

We expect repeated acceptance/rejection to be most
efficient in settings in which the r(Xi)’s tend to be small
over most of the time horizon [0,n]. For example, in
simulating a stable queue, the method is likely to provide
large variance reductions when computing (for example)
the probability that the duration of the busy period exceeds
n. On the other hand, the degree of variance reduction is
likely to be smaller when computing the probability that no
buffer overflow has occurred by time n. In the latter case,
the stability of the queue tends to move the system rapidly
away from those regions in which r(·) tends to be small,
whereas for busy period computations, the tendency of the
natural dynamics is to push the system towards regions in
which r(·) is small.

It is worth noting that variants of this algorithm can also
be applied when r(·) is unknown. In particular, r(x) can
be estimated by drawing a Bernoulli (Px(X1 ∈C)) indicator
random variable I(x). A simple inductive argument estab-
lishes that ∏

n−1
j=0 I j(X j) has expectation αn, where I j(X j) has

distribution, conditional on X0,X1, . . . ,X j, equal to I(X j).

But ∏
n−1
j=0 I j(X j)

D= I(T > n) (where D= denotes “equality
in distribution”), so that CMC is recovered and no vari-
ance reduction is achieved. However, we can also choose
to estimate r(x) via a binomial (k(x),Px(X1 ∈C)) random
variable. This leads to an estimator of αn based on a product
of such binomial random variables. Another estimator of
αn based on products of negative binomial random variables
can also be derived; see Glasserman and Staum (2001) for
a discussion and related numerical results.

We close this section with a brief discussion of computa-
tional efficiency for repeated acceptance/rejection. It should
be noted that while var Ln ≤ var I(T > n), the computational
effort per observation for repeated acceptance/rejection is
greater. Any comprehensive discussion of computational
efficiency should reflect this additional work. It is well
known (see, for example, Glynn and Whitt 1992) that the
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appropriate figure of merit for comparing computational
efficiency of two competing Monte Carlo algorithms is

(average computer time per observation)
× (variance per observation);

the most efficient algorithm is the one with the smaller
figure of merit. We have already computed the variances. A
rough measure of the average computer time per observation
I(T > n) is Ex min(T,n).

On the other hand, the total number of accep-
tance/rejection steps required to generate Ln is, on aver-
age, Ex ∑

n−1
j=0 1/r(X j). Because the ratio of variances decays

geometrically in n, whereas, the ratio of average time per
observation will often increase additively, it follows that
repeated acceptance/rejection will generally be more com-
putational efficient than CMC when the time horizon n is
large.

3 FILTERED CONDITIONAL MONTE CARLO

We discuss here, in the rare-event simulation setting, a
variance reduction technique known variously as extended
conditional Monte Carlo (see Section 2.6 of Bratley, Fox,
and Schrage 1987) or filtered (conditional) Monte Carlo (see
Glasserman 1993). To illustrate the idea, we consider its
application in the setting of the (stable) single-server GI/G/1
queue under a first-in-first-out (FIFO) queue discipline. In
particular, let αw be the probability that some customer
experiences a delay greater than w within a busy cycle. To
be more precise, let Wn be the waiting time (exclusive of
service) of the i’th customer, and suppose W0 = 0. Note that
W = (Wn : n ≥ 0) is a Markov chain living on state space
[0,∞); see, for example, Asmussen (2003). Let τ = inf{n≥
1 : Wn = 0} be the index of the customer that initiates the
second busy cycle. We are interested in computing

αw = P0(Tw < τ),

where Tw = inf{n≥ 1 : Wn > w} is the first hitting time for
level w. To applying filtered conditional Monte Carlo here,
note that

αw =
∞

∑
n=1

P0(Tw = n,Tw < τ)

=
∞

∑
n=1

E0P0(Tw = n,Tw < τ|W0, . . . ,Wn−1)

=
∞

∑
n=1

E0I(min(Tw,τ) > n−1)P0(Wn > w|Wn)

=
∞

∑
n=0

E0I(min(Tw,τ) > n)F̄(w−Wn)
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= E0

min(Tw,τ)−1

∑
n=0

F̄(w−Wn),

where F̄(x) = P(V −χ > x) and V,χ are independent real-
ization of a typical service time and interarrival time for
the queue.

Set X = V − χ . If X is a random variable bounded
above by some constant c, then

min(Tw,τ)−1

∑
n=0

F̄(w−Wn) =
min(Tw,τ)−1

∑
n=0

F̄(w−Wn)I(Tw−c < τ),

(1)
since the F̄(w−Wn)’s vanish unless w−W −n≤ c. Hence,
the above estimator inherits many of the same inefficiencies
as associated with computing P0(Tw−c < τ)(= αw−c) via
CMC. Similarly, if the random variable X has a light right
tail (i.e., P(X > x) can be bounded above by some multiple
of a decaying exponential in x), we should not expect a
variance reduction (over CMC) that gets progressing larger
when w increases.

On the other hand, if the random variable X has a heavy
tail, the F̄(w−Wn)’s are (over a typical busy cycle) of the
same order of magnitude. To be specific, assume that X has
a Pareto-like right tail, go that P(X > x)∼ cx−α as x→ ∞

for some c∈ (0,∞) and α > 1. (Here, f (x)∼ g(x) as x→∞

means that f (x)/g(x)→ 1 as x→ ∞.) In this case,

∑
min(Tw,τ)−1
n=0 F̄(w−Wn)

F̄(w)
⇒ τ

as w→ ∞. Furthermore, under our tail assumptions, αw =
O(F̄(w)) as w→∞ (see, for instance, Blanchet, Glynn, and
Liu 2007). So, the estimator (1) is, with high probability,
of the same order of magnitude as αw, suggesting that the
coefficient of variance of the estimator, as a function of
w, should be better bounded than that of the crude Monte
Carlo estimator. This intuition is verified in Blanchet and
Glynn (2007b), where it is shown that

var

(
min(Tw,τ)−1

∑
n=0

F̄(w−Wn)

)
var I(Tw < τ)

= O
(

1
w

)
,

as w→ ∞.
In general, the application of filtered conditional Monte

Carlo in the rare-event setting leads to estimators in which
the one-step transition probabilities of entering the rare set
appear. For models in which the dynamics of the system,
conditional on the rare event, are largely determined by
a single unusual transition (rather than by a long series
of slightly unusual transitions), filtered conditional Monte
Carlo can lead to significant variance reduction relative
crude Monte Carlo. In particular, the one-step conditional
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probability integrates out the randomness that is present in
the single unusual transition, leading to substantial possible
variance reduction.

4 A LOWER BOUND FOR P(A)

We describe here a Lyapunov-based method for deriving
lower bounds on a certain class of rare-event probabilities.
In particular, we are concerned here with exit probabilities
of the form Px(XT ∈ A,T < ∞), where T = inf{n ≥ 0 :
Xn ∈ A∪ B} is the first exit time form Ac ∩ Bc. Here,
X = (Xn : n ≥ 0) is an S-valued Markov chain, where the
state space S can be either discrete or continuous. Many rare-
event simulation problems can be re-formulated as special
cases of exit problems; see, for example, Blanchet and
Glynn (2007a).

Theorem 1 Suppose there exist two non-negative
finite-valued functions g1 and g2 satisfying the pair of in-
equalities

Exg1(X1)I(X1 ∈Ac∩Bc)≥ g1(X1)−Px(X1 ∈A), x∈Ac∩Bc

and

Exg2(X1)I(X1 ∈ Ac∩Bc)≤ g2(x)−g1(x), x ∈ Ac∩Bc.

Then, Px(XT ∈ A,T < ∞)≥ g1(x) for x ∈ Ac∩Bc.

Proof. Set u∗(x) = Px(XT ∈ A,T < ∞). Then,

u∗(x) =
∞

∑
n=0

∫
Ac∩Bc

Px(Xn ∈ dy,T > n)Py(X1 ∈ A)

=
∞

∑
n=0

∫
Ac∩Bc

Kn(x,dy)b(y)

where K = (K(x,dy) : x,y ∈ Ac ∩Bc) is the non-negative
operator defined by

K(x,dy) = Px(X1 ∈ dy)

for x,y ∈ Ac∩Bc and b = (b(y) : y ∈ Ac∩Bc) is given by

b(y) = Py(X1 ∈ A)

for y ∈ Ac∩Bc. The operator Kn is then given (inductively)
by

Kn(x,dy) =
∫

Ac∩Bc

Px(X1 ∈ dy)Kn−1(y,dz)

for n≥ 1, with K0(x,dy) = δx(dy) (i.e., a unit point mass
measure at x).
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We therefore need a lower bound on

∞

∑
n=0

(Knb)(x).

Note that the second Lyapunov inequality asserts that

(Kg2)(x)≤ g2(x)−g1(x) (2)

for x ∈ Ac∩Bc. Applying the non-negative operator Kn−1

to both sides of (2) yields the inequality

(Kng2)(x)≤ (Kn−1g2)(x)

for n ≥ 1, and hence (Kng2)(·) is finite-valued for n ≥ 0.
The inequality (2) also implies that

(Kng1)(x)≤ (Kng2)(x)− (Kn+1g2)(x), (3)

where the right-hand side of (3) is now guaranteed to be
the difference of two finite-valued quantities. We may now
sum the inequalities (3) for n = 0,1, . . . ,m, yielding

m

∑
n=0

(Kng1)(x) ≤ g2(x)− (Km+1g2)(x)

≤ g2(x).

Sending m→ ∞, we obtain the upper bound

∞

∑
n=0

(Kng1)(x)≤ g2(x). (4)

It follows that (Kng1)(x)→ 0 as n→∞. On the other hand,
the first Lyapunov inequality asserts that

(Kg1)(x)≥ g1(x)−b(x),

so that

b(x)≥ g1(x)− (Kg1)(x).

Again, applying Kn to both sides of the above inequality,
we conclude that

(Knb)(x)≥ (Kng1)(x)− (Kn+1g1)(x). (5)

Note that (4) guarantees that (Kng1)(x) is finite-valued for
each n≥ 0, so that the right-hand side of (5) is the difference
of two finite-valued quantities. Summing the inequalities
(5) for n = 0, . . . ,m, we find that

m

∑
n=0

(Knb)(x)≥ g1(x)− (Km+1g1)(x). (6)
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Since (Kng1)(x)→ 0 as n→∞, we conclude, from (6), that
by sending m→ ∞,

u∗(x) =
∞

∑
n=0

(Knb)(x)≥ g1(x),

proving the lower bound.2
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