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ABSTRACT

State-dependent importance sampling (SDIS) has proved to
be particularly useful in simulation (specially in rare event
analysis of stochastic systems). One approach for designing
SDIS is to mimic the zero-variance change-of-measure by
using a likelihood ratio that is proportional to an asymptotic
approximation that may be available for the problem at hand.
Using such approximation poses the problem of computing
the corresponding normalizing constants at each step. In this
paper, we propose the use of path-sampling, which allows
to estimate such normalizing constants in terms of one
dimensional integrals. We apply path-sampling to estimate
the tail of the delay in a G/G/1 queue with regularly varying
input. We argue that such tail estimation can be performed
with good relative precision in quadratic complexity (in
terms of the tail parameter) - assuming that path-sampling is
combined with an appropriate change-of-measure proposed
by Blanchet and Glynn (2007a).

1 INTRODUCTION

Let Y = (Yn : n≥ 0) be a Markov chain living on a space
X with a σ -field B. Assume that Y has transition ker-
nel (K (y,A) : y ∈X , A ∈B) and consider, as a stylized
problem, estimating

u(y) = Py (TA < TB,TA < ∞) , (1)

where Py (·) is the law of the process Y given Y0 = y and
TA = inf{n > 0 : Yn ∈ A} (an analogous definition applies to
TB and we assume that A∩B = �). It is well known that
applying importance sampling with the kernel (K∗ (y,A) :
y ∈X , A ∈B) defined via

K∗ (y,A) =
∫

A
K (y,dz)

u(z)
u(y)

dz,
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yields an unbiased estimator with zero-variance for u(y)
(see, for instance, Blanchet and Glynn (2007a)). However,
since clearly applying K∗ (·) is not a feasible choice for
simulation, a natural alternative consists in using a kernel
Kv (·) of the form

Kv (y,A) =
∫

A
K (y,dy)

v(z)
w(y)

dz, (2)

where v(·) is (an integrable) non-negative function and
w(·) represents the normalization that makes Kv (·) a well
defined Markov transition kernel. The importance sampling
estimator for estimating u(y) takes the form (after simulating
transitions under Kv (·) with Y0 = y)

Z =
TA−1

∏
k=0

w(Yk)
v(Yk+1)

I (TA < TB,TA < ∞) . (3)

In some cases, the simulator has access to a function v(·)
that approximates u(·) – examples are given in Section 2.
Our focus on this paper is on developing a methodology for
estimating the normalizing function (w(y) : y ∈X ) using
a Monte Carlo strategy based on sample paths generated
under Kv (·). Our motivation steams from the fact that, in
some cases, there are known approximating functions that
are developed under meaningful asymptotic regimes. For
instance, in rare-event simulation, one often considers a
family of problem instances indexed by some parameter
that goes to infinity and that captures a situation of practical
interest – such as the fact that u(y) could be small because
y is closer to B than to A in some sense. An example of this
situation is given in Blanchet and Glynn (2007a), where an
approximation for the tail of the maximum of a random walk
(rw) was used to develop the first strongly efficient algorithm
for the delay of a heavy-tailed G/G/1 queue (a quantity that
admits the representation (1) for appropriate choices of Y ,
A and B). The paper of Blanchet and Glynn (2007a) shows
an important example in which asymptotic approximations
are enhanced by efficient simulation algorithms, enabling
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the possibility of obtaining fast and accurate estimates when
the asymptotics may not be accurate enough. The technique
developed in Blanchet and Glynn (2007a) has been subse-
quently applied to other situations, such as estimating large
deviation probabilities for heavy-tailed rw’s (Blanchet and
Liu (2006)), a strongly efficient algorithm for light-tailed
rw’s (Blanchet and Glynn (2007)) and to counting prob-
lems involving complex combinatorial structures (such as
graphs), see for instance Blanchet (2007).

As we indicated before, if an approximation v(·) to u(·)
is available, it is desirable to use state-dependent impor-
tance sampling based on Kv (·). Path generation according
to Kv (·) may introduce additional complications that vary
from one application to another. Hence, we consider that
such issue should be studied depending on the situation
at hand. In this paper, we assume that an algorithm for
generating paths according to Kv (·) is available but comput-
ing the corresponding normalizing function w(·) along the
generated trajectory could be more demanding. In Section
2 we discuss a couple of examples in the context of rare-
event simulation that illustrate this type of situation. Such
examples are taken from Blanchet and Glynn (2007a) and
Blanchet and Liu (2006) in the context of first passage time
probabilities for heavy-tailed random walks. In such exam-
ples, generating increments for the random walk according
to Kv (·) can be done efficiently using a well-constructed
acceptance / rejection scheme. In situations where exact
(unbiased) generation of transition steps according to Kv (·)
is not possible, then one could resort to the use of Markov
chain Monte Carlo (MCMC) (see, for instance Liu 2001).
However, it is important to keep in mind that the use of
MCMC introduces bias and in order to control the contribu-
tion of such bias one needs to develop rates of convergence
to stationarity for Markov chains.

As mentioned previously, we are interested in devel-
oping an algorithm that allows to evaluate the normalizing
function w(·) along a sample path generated under Kv (·)
(and output an estimator of the form of (3)). Such sample
paths often require the generation of many transitions under
Kv (·) and therefore, for each such path, one requires esti-
mating w(·) at many different points. Standard numerical
integration rules are available in low dimensions, however,
as is well known, the efficiency of such rules degrades
rapidly as the dimension of the integrand increases. An
alternative in those cases, is to use Monte Carlo methods
at each transition in order to estimate w(·). Such meth-
ods could be effective, but may require a properly designed
strategy – specially for problems that require good precision
(as in rare-event simulation). Our procedure here can be
seen as a refinement of the Monte Carlo alternative that is
well suited for rare-event simulation problems. In particu-
lar, we propose to take advantage of the samples generated
by the proposed importance sampler (which is designed
to mimic the zero-variance change-of-measure) in order to
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estimate the normalizing constants. Since the importance
sampler already incorporates the bias towards the regions
that are relevant, the potential use of the generated sample
paths to guide the estimation of the normalizing constants
is particularly appealing.

Let us summarize our strategy. Suppose that one can
accurately estimate w(y) (i.e. the normalizing function
at the initial condition of the chain only). We deal also
with this issue in Section 4. The more interesting part
involves estimating the remaining normalizing constants.
We use so-called path-sampling to estimate log(w(z)/w(y))
for values of z that correspond to the points visited by
the generated sample paths. The key fact behind path-
sampling is that the previous log-ratio can be expressed
as a line integral (an integral over a path that joins y
and z) and such integral in turn can be expressed as an
expectation. The log-ratio then can be estimated via Monte
Carlo and this estimation procedure is called path-sampling.
We have many degrees of freedom with regard to the path
selection, but a sensitive choice is naturally guided by the
proposed importance sampler (involving Kv (·)). The use
of path sampling seems to be particularly advantageous
in several dimensions because it allows to estimate the
log-ratios through one dimensional integrals (along path
trajectories). In addition, in many situations that arise
in the context of rare-event simulation, the paths tend to
be highly concentrated along deterministic trajectories that
correspond to “fluid limits” based on conditional Laws of
Large Numbers given that the rare event of interest occurs.
Since the proposed importance sampler is designed to mimic
the zero-variance change-of-measure (which corresponds to
the conditional law mentioned previously), the sample paths
will tend to be concentrated along such fluid trajectories,
which in turn will naturally guide the construction of the
path samplers.

The estimators for the log-ratios can be easily combined
to obtain an estimator of the form of (3). As an illustration of
our strategy, we apply our ideas to the problem of estimating
the tail of the maximum of a random walk with regularly
varying increments (a problem that was studied in Blanchet
and Glynn (2007a)) and argue that the computational cost
required to produce a path-sampling estimator that has a
good relative accuracy is quadratic in the tail parameter of
the maximum.

It is important to mention that path-sampling has been
proved to be useful in various settings in which Monte Carlo
methods are widely applied. A comprehensive reference
in the context of Statistical analysis is Gelman and Meng
(1998), who also discuss certain optimality properties of var-
ious path-sampling strategies. In the Chemistry and Physics
literature, path-sampling is known as thermodynamic inte-
gration or Ogata’s method (see Bennett (1976) and Ogata
(1989)). Johansen, Del Moral and Doucet (2006) also dis-
cuss applications of path-sampling to estimating normalizing
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constants in rare-event simulation. Their discussion on the
use of path-sampling, however, focuses only on a single
constant and not on all the constants required along the
generate trajectories.

The rest of the paper is organized as follows. In Section 2
we discuss few examples involving that illustrate the types of
problems that motivate our development. Section 3 discusses
basic notions on path-sampling. Section 4 describes how
to implement path-sampling through an example involving
a first-passage time problem for a random walk. Finally, in
Section 5 we provide error estimates for the path-sampling
procedure applied to the tail of the delay in a heavy-tailed
G/G/1 queue. Numerical experiments are also given at the
end of Section 5.

2 EXAMPLES OF APPROXIMATING
STATE-DEPENDENT SAMPLERS

We shall adopt the notation described at the beginning of
the Introduction. Our discussion throughout the rest of
the paper is applicable to importance sampling estimators
for a general class of expectations, such as the expected
accumulated reward up to the first hitting time to a set A,
namely,

ũ(y) = Ey

(
g(YTA)+

TA−1

∑
k=0

h(k,Yk) ;TA < ∞

)
.

Awad, Glynn and Rubinstein (2007) discuss properties of the
zero-variance change-of-measure these expectations assum-
ing that g(·) and h(·) are non-negative. Such zero-variance
change-of-measure can be expressed in terms of ũ(·). So,
as we explained in the Introduction, if one can find an ap-
proximation to ũ(·) (in some sense), a natural approach is to
build an importance sampler based on such approximation
– just as we suggested in equation (2) in the context of
first-passage time probabilities. Assuming that path gener-
ation under the proposed importance sampler can be done
efficiently, the problem then arises when trying to compute
the normalizing constants in order to output the estimator
(as the one displayed in (3)). Given the discussion in the
Introduction, the issues that motivate our current develop-
ment apply in substantial generality. However, to simplify
the exposition, we shall focus on the first-passage time
formulation proposed at the beginning of the paper.

In order to provide a more concrete idea of the types of
issues that we address let us discuss a couple of rare-event
simulation examples. In these examples, strongly efficient
estimators are constructed using a transition Kv (·) as in (2).
Recall that a strongly efficient (unbiased) estimator, Zb, for
a probability ub = P{Cb}, computed for a family of sets
382
{Cb : b≥ 1} such that ub ↘ 0 as b↗ ∞, satisfies

sup
b≥1

E (Zb)
2 /u2

b < ∞.

(It is important to emphasize – specially when using im-
portance sampling estimators – that the expectation EZ2

b is
computed under the law under which Zb is simulated).

Example 1 (Blanchet and Glynn 2007a) Suppose that

Yn+1 = Yn +Xn+1,

where the Xn’s are iid rv’s with EXn =−µ < 0. For sim-
plicity, let us assume that the Xk’s possess regularly varying
tails (the discussion that follows holds in greater generality,
basically under subexponential assumptions, which include
Weibull and lognormal rv’s). Regular variation means that
if P(X > ·) = F (·) = 1−F (·), then

F (t) = t−α L(t) ,

where L(·) is a slowly varying function (i.e. L(tλ )/L(t)−→
1 as t ↗ ∞ for each λ > 0). Now, set Ab = [b,∞) and put
B = {−∞}. Then, the Pakes-Veraberveke Theorem (see, for
instance, Asmussen (2003)) yields that (for each a ∈ R)

ub (y) = Py
(
TAb < ∞

)
∼ P(Z > b−w+a) (4)

as b↗ ∞, where Z is a rv with tail distribution given by

P(Z > t) = min
(

1
µ

∫
∞

t
P(X1 > s)ds,1

)
.

As a consequence, (4) suggests using, for some a ∈ R
(which can be selected by the simulator in order to further
reduce variance) the function vb (y) = P(Z > b− y+a) for
the construction of a good importance sampling transition
kernel Kv (·) of the form given by expression (2). Blanchet
and Glynn (2007a) proved that such sampling scheme gives
rise to a strongly efficient simulation procedure. It follows
that wb (y) = P(Z +X > b− y+a) and therefore we obtain

Kv (y,A) =
E (I (y+X ∈ A) ·P(Z +X > b− y+a|X))

P(Z +X > b− y+a)
.

Sampling an increment distribution, X , according to Kv (·)
given that the current position of the random walk is y
involves sampling from the conditional distribution law of X
given the event {X +Z > b−y+a}. So, for instance, if X has
density fX (·), generating transitions of the Y under Kv (y, ·)
(given current position y) involves sampling increments from
the conditional density (letting β = b−y+a∗) f X |X+Z>β (·)



Blanchet and Liu
defined via

f X |X+Z>β (x) =
fX (x)P(Z + x > β )

P(Z +X > β )
. (5)

Blanchet and Glynn (2007a) propose an acceptance / re-
jection procedure that allows to sample from the previous
conditional density with an acceptance probability that is
uniformly bounded away from zero for all values of β .
As a consequence, sampling transitions from Kv (·) can be
done efficiently as b ↗ ∞ at any point visited by Y . The
procedure that we propose here addresses the question of
computing

(
w(Yk) : 0≤ k ≤ TAb −1

)
.

Example 2 (Blanchet and Liu 2006) Let (N (t) : t > 0)
be a Poisson process with intensity 1. Define

St =
N(t)

∑
j=1

X j +S0,

where the Xn’s are iid rv’s (independent of N (·)) with
EXn = 0, Var (Xn) = 1 and possess regularly varying tails.
LetYt =(St , t) for t ≥ 0, define Ab = [ηb,∞)×[b,∞) for some
η > 0 and put Bb = R× [b,∞). Then, a result of Rozovskii
(1989) in particular implies the asymptotic approximation

ub (0,0) = P(0,0)
(
TAb < TBb

)
= P(St ≥ ηb)∼ bP(X1 > ηb)

as b↗∞. Blanchet and Liu (2006) proved (in an analogous
discrete time formulation) that strong efficiency of an as-
ymptotic scheme that combines the previous approximation
with the Central Limit Theorem through a kernel of the
for Kv (·) given in (2). The current continuous formula-
tion is convenient in order to apply path sampling (as we
shall see in the next section). As in Example 1, sampling
exactly from efficiently Kv (·) is feasible and the methods
that we develop in this paper can be used to estimate the
corresponding normalizing constants.

3 OGATA’S METHOD AND PATH SAMPLING

Ogata (1989) proposed a method for numerical integration
in several dimensions. In order to describe Ogata’s method
let us focus on a single dimension problem. Suppose that
we have a family of positive functions, f (·,θ), indexed
by a parameter θ ∈ R and integrable with respect to some
underlying measure µ (·). We are interested in computing

w̃(θ1) =
∫

∞

−∞

f (x,θ)µ (dx)
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and assume that we know w̃(θ0) for some θ0 < θ1. First,
we observe that

log(w̃(θ1)/w̃(θ0)) =
∫

θ1

θ0

∂u log w̃(u)du.

Now, assuming that it is possible to exchange derivatives
and integrals (which is verified with standard techniques,
see for instance, Durrett (2004), Appendix A9), we can
write

∂θ log w̃(θ) =
∫

∞

−∞

∂θ f (x,θ)
f (x,θ)

f (x,θ)
w̃(θ)

µ (dx)

= Eθ R(X ,θ) ,

where X is a random variable with law Pθ (·) given by Pθ (X ∈
A) =

∫
A f (x,θ)/w̃(θ)µ(dx), and R(x,θ) = ∂θ log f (x,θ).

Combining the previous two displays we obtain

log(w̃(θ1)/w̃(θ0)) =
∫

θ1

θ0

EuR(X ,u)du

= (θ1−θ0)E (R(X ,U)) , (6)

where U is uniformly distributed over (θ0,θ1) and the pair
(X ,U) has law given by

P(X ∈ A,U ∈ B) =
1

θ1−θ0

∫
B

Pu (X ∈ A)du.

As a consequence, in order to estimate w̃(θ1) one can sample
according to the previous law n iid replicates ((Xk,Uk) : 1≤
k ≤ n) and consider

R̃n =
1
n

n

∑
j=1

(θ1−θ0)R(X j,U j)

≈ (θ1−θ0)E (R(X ,U)) = log(w̃(θ1)/w̃(θ0)) . (7)

Therefore, an estimator w̃(θ1) (which is biased but obvi-
ously consistent) is exp

(
Z̃n

)
w̃(θ0). Note that one can take

advantage of the representation in terms of an expectation
given in (6) to introduce standard variance reductions tech-
niques. For our purposes it suffices to consider the plain
version that we just described. Now, also note that a very
similar development applies if θ takes values in higher di-
mensions. In such case the whole development can be done
along a parameterized smooth trajectory that connects θ0
and θ1. We prefer to simplify the exposition and focus on
the one dimensional case here.

Ogata’s method applies directly in our context, we
just identify its elements with our formulation described in
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previous sections. In particular, we have θ = y,

f (x,θ)µ (dx) = K (y,dx)v(x) ,
w̃(θ) = w(y) .

Note that it is required to have some degree of smoothness
in the parameter θ , for Example 1 this is satisfied in because
v(·) is differentiable. In Example 2, the Poissonization trick
(i.e. basically, we have let the random walk run on a Poisson
clock) is convenient to previous ideas. Other alternatives,
which we do not explore here, is to embed the discrete
problem in a continuous formulation or use smoothing –
Poissonization can be seen as a form of smoothing.

In fact, Ogata’s method can be traced back to the
statistical physics literature where the procedure is known
as thermodynamic integration. The term “path sampling”
was coined by Gelman and Meng (1998), which studied
these techniques in the context of Bayesian computations.
Gelman and Meng (1998) provide a more detailed analysis of
path sampling and certain optimality properties and several
important references in settings such as Chemistry, Physics
and Statistics.

4 PATH SAMPLING IN ACTION

We shall illustrate the path sampling technique through a
detailed example. In particular, we shall work in the context
of Example 1. Suppose that the increments of the random
walk (i.e. the Xk’s) possess a density fX (·) with respect to
the Lebesgue measure. As we indicated in the description
of Example 1,

w(y) =
∫

∞

−∞

fX (y− z)v(z)dz = P(X +Z > b+a− y) .

Recall that our estimator is

Zb =
TAb−1

∏
i=0

w(Yk)
v(Yk+1)

. (8)

Under the change-of-measure proposed by Blanchet and
Glynn (2007a) (indicated in Example 1) we have that
P(v)

y {TAb < ∞}= 1 (where P(v)
y (·) is the law of the process

Y induced by the transition kernel Kv (·) – described in
Example 1 – given that Y0 = y). So, we omit the indicator
I{TAb < ∞} in expression (8).
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We shall replace w(Yk) in (8) by an estimator ŵ(Yk)
obtaining

Ẑb =
TAb−1

∏
i=0

ŵ(Yk)
v(Yk+1)

= Zb

TAb−1

∏
i=0

ŵ(Yk)
w(Yk)

= Zb exp

TAb−1

∑
k=0

(log(ŵ(Yk))− logw(Yk))

 .

Now, using the estimator Ẑb requires estimating w(·)
at points S = {y1, ...,ym} – that is, we must construct
estimators (ŵ(y1), ..., ŵ(yl)) (we shall explain what l > 0
is momentarily). Let us first assume that we have a good
estimator ŵ(y0) for some y0 (we shall also come back to this
issue later). We will refer to the point y0 as the reference
point. Usually y0 is chosen to be the starting point of the
process (in the random walk problem described in Example
1, y0 = 0). The set S correspond to the states visited
(prior to the hitting the set Ab) for the whole set of iid
replications that are used to construct the final estimator
for the first-passage time probability. Let us describe S
in more precise terms. We generate n iid replications of
the process Y up to time TAb under Kv (·); namely, we
obtain{(Y ( j)

k : 0 ≤ k ≤ T ( j)
Ab

),1 ≤ j ≤ n} (where the super-
index j denotes the j-th replication). We denote the observed
values via ỹ( j)

k (i.e. ỹ( j)
k = Y ( j)

k ). We then put

S = {y1, ...ym}= {ỹ( j)
k : 0≤ k ≤ T ( j)

Ab
,1≤ j ≤ n}.

Since we are assuming that Xk’s possess a density, then the
ỹ( j)

k ’s are all distinct and l = ∑
n
j=1 T ( j)

Ab
– however, having

different ỹ( j)
k ’s does not play an important role in general.

The strategy is to apply Ogata’s method to estimate the
ŵ(y j)’s. First, we construct a grid t1 < ... < tk∗ such that
t1 < min j y j < max j y j < tk∗ . Then, for each 1≤ j < k∗, we
can estimate logw(ti+1)/w(ti) through (7). For instance,
let us write

(
X (ti),U (ti,ti+1)

)
to denote a random variable

with law

P
(

X (ti) ∈ A,U (ti,ti+1) ∈ B
)

=
1

ti+1− ti

∫
B∩[ti,ti+1]

∫
A

Kv (u,u+ x)dxdu

=
1

ti+1− ti

∫
B∩[ti,ti+1]

P(X ∈ A|X +Z > b+a−u)du. (9)
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We can sample ni iid copies ((X (ti)
j ,U (ti,ti+1)

j ) : 1 ≤ j ≤ n)
of (X (ti),U (ti,ti+1)) and consider the estimator

R̃(ti,ti+1)
mi =

ti+1− ti
mi

mi

∑
j=1

∂ logv
(

U (ti,ti+1)
j +X (ti)

j

)
∂y

. (10)

As we saw in the previous section,

R̃(ti,ti+1)
mi −→ log(w(ti+1)/w(ti))

as mi ↗∞. (Note that taking derivatives under the integral
sign here is valid almost everywhere if the increments have
a density.) For simplicity, we shall assume that the mi’s are
constant equal to m.

In the context of Example 1, X (ti)
j is sampled according

to the density (5). Now, to estimate w(yk) for yk ∈ S , we
shall take advantage of (10). Without loss of generality let
us assume that yk > y0 (otherwise, swap the roles of yk and
y0 in the discussion that follows). Let r = min{i : ti ≥ y0},
s = max{i; ti < yk}. Then,

R̃(y0,yk)
m = R̃(y0,tr)

m +
s

∑
i=r

R̃(ti,ti+1)
m + R̃(ts,yk)

m . (11)

Therefore R̃(y0,yk)
m provides an unbiased estimator for

logw(yk)/w(y0) and we can form the estimator

ŵ(yk) = ŵ(y0)exp
(

R̃(y0,yk)
m

)
.

Usually, the t j’s are chosen to be equally spaced or one can
take advantage of the precise form of v(·) on the region
of interest – which is explored after the simulations have
been performed. With regard to the number of samples mi

required for R̃(ti,ti+1)
mi (or the rest of the log-ratio estimators),

it is typically possible to choose mi relatively low because
the cardinality of the set S will typically tend to be large.
We can also choose mi based on the output observed by
the importance sampler, for instance, choosing mi to be
proportional to the number points landed in [ti, ti+1]. That
is the higher the importance of the region (as dictated by
the importance sampling outcome) the larger the accuracy
of the corresponding log-ratio estimator.

Finally, we must indicate how to estimate w(y0). We
propose as estimator simply

ŵ(y0) =

(
1
m

m

∑
j=1

v
(

Y ( j)
1

))−1

.

Here we write
(

Y ( j)
1 : 1≤ j ≤ m

)
to denote m iid copies

of the first transition of Y under Kv (y, ·). In the case of
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Example 1, using the notation introduced in (9), we have

ŵ(y0) =

(
1
m

m

∑
j=1

v
(

y0 +X (y)
j

)−1
)−1

. (12)

It follows easily that ŵ(y0) is a consistent estimator (as
m↗∞). Although ŵ(y0) is biased, it is appealing because it
takes explicit advantage of the proposed importance sampler
Kv (y, ·) – which is assumed to be good in principle. In order
to have a better understanding of why taking advantage of
Kv (y, ·) is appealing, it is useful to consider the situation
in Example 1. Note that if y0 = 0, then

w(y0) = P(Z +X > b+a) ,

which is a small probability if b is large. The use of
naive Monte Carlo is not appropriate because the sample
size required to estimate w(y0) with good relative precision
would tend to be high. An algorithm that is useful to
estimate w(y0) efficiently in this context is easy to derive;
however, since our intention is to provide a procedure that
can be used more widely, we propose using (12). It is worth
pointing out that one may wish to compute w(·) at multiple
positions in order to reduce the number of grid points (the
t j’s) required to produce the estimators for the log-ratios.

5 QUANTIFYING THE ERROR OF
PATH-SAMPLING

It is important to analyze the size of the error introduced
by Ogata’s method and this analysis has to be done case-
by-case. We are interested in finding an estimate on the
number of variate generations (in addition to the generation
of transitions under Kv (·)) required to obtain an estimator
Ẑb that is close to Zb in relative terms, that is,

P
(∣∣∣∣log

(
Ẑb

Zb

)
−1
∣∣∣∣≥ ε

)
≤ δ

(for ε and δ fixed). We provide an illustration of this
analysis in a specific case corresponding to Example 1. Let
Xi = Vi− τ , where Vi’s are positive iid rv’s with density

fV (x)∼ L(x)

(1+ x)1+α
,

where L(·) is a slowly varying function. For simplicity
we shall assume that τ is a deterministic quantity such that
EXi < 0 – in the context of the G/G/1 queue application that
motivates Example 1, this assumption deterministic arrival
times.
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We apply a change-of-measure suggested by Blanchet
and Glynn (2007a) with v(y) = P(Z > b− y+a) and

P(Z > t) = 1∧ 1
−EX1

∫
∞

t
P(X > x)dx =

1

(1+ t)α−1 ∧1.

The following lemma summarizes important properties of
w(y).

Lemma 1 There exists κ̃ > 0 such that for τ +b−
y+a >−1,

0 < E
(

∂ logv(y+X)
∂y

v(x+X)
w(X)

)
(13)

=
∂ logw(y)

∂y
=

∂ logP(V +Z > τ +b− y+a)
∂y

≤ κ̃

1+ τ +b− y+a
.

and

E

((
∂ logv(y+X)

∂y

)2 v(y+X)
w(X)

)
≤ κ̃

(1+ τ +b− y+a)2 .

(14)
Proof. Equation (13) from the Karamata’s theorem (see

Embrechts et al (1997)) since

∂ logw(y)
∂y

=
∂yP(X +Z > b− y+a)
P(X +Z > b− y+a)

.

Similarly, note that there exists κ̃1, κ̃2 > 0 such that (for
τ +b− y+a >−1)

∂ logv(y)
∂y

≤ ρ (y) = min
(

κ̃1

(1+ τ +b− y+a)+
, κ̃2

)
.

From the previous estimate we obtain,

E

((
∂ logv(y+X)

∂y

)2 v(X + y)
w(y)

)

≤ E

(
v(y+X)ρ (y+X)2

w(y)

)
.

Now, we set β = 1+τ +b−y+a and pick δ ∈ (0,1) such
that

E

(
v(X + y)ρ (y+X)2

w(y)
;X < δβ

)

≤ κ̃
2
1 E

(
1

(β −X)2
v(X + y)

w(y)
;X < δβ

)
.
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On the other hand, we have (using fX (·) to denote the
density of X)

E

(
v(X + y)ρ (y+X)2

w(y)
;X ≥ δβ

)

=
∫

β

δβ

min

(
κ̃2

1

(β − x)2 , κ̃2
2

)
v(y+ x)

w(y)
fX (x)dx

≤ κ̃3

∫
β

δβ

min

(
κ̃2

1

(β − x)2 , κ̃2
2

)
β α−1L(β − x)L(x)

L(β )(β − x+1)α−1 xα+1
dx

≤ κ̃

δ α+1β 2

∫
β

δβ

min

(
κ̃2

1

(β − x)2 , κ̃2
2

)
L(β − x)

(β − x+1)α−1 dx,

for some constants κ̃ and κ̃3. This completes the proof of
the lemma.

Now, we analyze

log
(

Ẑb

Zb

)
=

TAb−1

∑
i=0

log
ŵ(Yi)
w(Yi)

.

For simplicity, since our main goal is to focus on the error
due to path-sampling, we shall assume that w(y0) is known.
We have

E(v)
y0

TAb−1

∑
i=0

log
ŵ(Yi)
w(Yi)

= 0,

where E(v)
y0 (·) is the expectation operator associated to the

kernel Kv (·) given that Y0 = y0. On the other hand,

TAb−1

∑
i=0

log
ŵ(Yi)
w(Yi)

=
TAb−1

∑
i=0

(
log

ŵ(Yi)
w(y0)

+ log
w(y0)
w(Yi)

)

=
TAb−1

∑
i=0

log
w(y0)
w(Yi)

+
TAb−1

∑
i=0

R̃(y0,Yi)
m ,

where we put ŵ(y0) = 1 and R̃(y0,y0)
m = 0. We construct the

grid t1 < ... < tk∗ in such a way that the Yj’s included in
the grid (i.e. Yi = t ji for i ∈ {0, ...,TAb − 1}). We sort the
t ji ’s and denote the sorted values by t∗0 < t∗1 < ... < t∗TAb−1.
Now, note that

TAb−1

∑
i=0

R̃(y0,Yi)
m =

TAb−1

∑
i=0

R̃(t∗0 ,t∗i )
m =

TAb−1

∑
i=0

i−1

∑
k=0

R̃(t∗k ,t∗k+1)
m

=
TAb−1

∑
i=0

(
TAb − i−1

)
R̃(t∗i ,t∗i+1)

m .
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Let FTAb
be the stopped σ -field generated by Y up to time

TAb . Then,

Var(v)

TAb−1

∑
i=0

log
ŵ(Yi)
w(Yi)

∣∣∣∣∣∣FTAb

 (15)

= Var

TAb−1

∑
i=0

(
TAb − i−1

)
R̃(t∗i ,t∗i+1)

m

∣∣∣∣∣∣FTAb


=

TAb−1

∑
i=0

(
TAb − i−1

)2 Var
(

R̃(t∗i ,t∗i+1)
m

∣∣∣∣FTAb

)
.

We now can select k∗ = c1T 2
Ab

and m > 0. Lemma 1 can
be used to conclude that for some constant κ > 0,

Var(v)
(

R̃(t∗i ,t∗i+1)
m

∣∣∣∣FTAb

)
≤ κ

mT 3
Ab

.

Therefore, we conclude that for some κ > 0

Var(v)

TAb−1

∑
i=0

log
ŵ(Yi)
w(Yi)

∣∣∣∣∣∣FTAb

≤ κ

m
.

Blanchet and Glynn (2007a) proved that E(v)
y0 TAb ≤ cb for

some c > 0. Therefore, we conclude that we require roughly
O
(
b2m

)
variate generations in order to obtain an estimator

Ẑb so that

P
(∣∣∣∣log

(
Ẑb

Zb

)
−1
∣∣∣∣≥ ε

)
= E

(
P
(∣∣∣∣log

(
Ẑb

Zb

)
−1
∣∣∣∣≥ ε

∣∣∣∣FTAb

))
≤ κ

m
.

We conclude this section with a numerical experiment.
Assume that the Vi’s have tail distributions P(Vi > x) =
(1+ x)−5 and suppose that τ = 1/2. In this case, EX =−.25.
We select a = 1 in this case. Our simulations results are
presented in Table 1 for b = 20, 50, and 100. We simulate
1,000 independent Zb’s (which correspond to 1,000 sample
paths) and we denote their sample mean by Z̄b – we computed
w(·) with an efficient one dimensional numerical integral in
order to produce Z̄b. The sample path generation was done
according to the acceptance/rejection scheme proposed by
Blanchet and Glynn (2007a). We then implemented path-
sampling by selecting setting k∗ = 250b2 (ranging the ti’s
from the minimum value observed in the simulations to
b) and set m = 10. We computed the average using the
path-sampling estimates and denoted this quantity by Z̄′b.
We use the notation σ̂R|Y to for the estimated standard
error of the ratio log

(
Z̄′b/Z̄b

)
given the outcome of the

(1,000) generated sample paths (i.e. this standard error just
387
accounts for the variability introduced in the path-sampling
procedure only). σ̂R|Y is computed by repeating the path-
sampling procedure 10 times independently given the (1,000
generated previously). Finally, the column û(b) is our
benchmark, based on 200,000 Monte Carlo simulations using
an importance sampling procedure developed by Blanchet,
Glynn and Liu (2007), which can be shown to be strongly
efficient.

Table 1: Simulation results.

b û(b) Z̄b log
(
Z̄′b/Z̄b

)
σ̂R|Y

20 5.04e−06 5.33e−06 0.0072 0.07
50 1.47e−07 1.456e−07 0.0539 0.149
100 9.571e−09 1.05e−08 −0.002 0.127
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