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ABSTRACT

Compounding processes, also known as perpetuities, play
an important role in many applications; in particular, in
time series analysis and mathematical finance. Apart from
some special cases, the distribution of a perpetuity is hard to
compute, and large deviations estimates sometimes involve
complicated constants which depend on the complete dis-
tribution. Motivated by this, we propose provably efficient
importance sampling algorithms which apply to qualita-
tively different cases, leading to light and heavy tails. Both
algorithms have the non-standard feature of being state-
dependent. In addition, in order to verify the efficiency,
we apply recently developed techniques based on Lyapunov
inequalities.

1 INTRODUCTION

This paper develops efficient simulation methods for estimat-
ing tail probabilities for random variables called perpetuities
(also known as infinite horizon discounted rewards). An
example of a perpetuity is a random variable D given by

D =
∞

∑
n=1

BneSn , (1)

with Sn = X1 + . . .+ Xn a random walk and {Bk : k ≥ 1}
an i.i.d. sequence of non-negative random variables which
are independent of {Sn : n ≥ 1}. The reason that D is
called a perpetuity comes from the following interpretation.
Consider a bond, generating a reward of Bn dollars at time
n. The total present value of the reward at time n is not Bn,
but a random variable depending on interest rate in the first
n time units. Let −Xn be the interest rate at time n. Then
the present value of the reward at time n is BneSn . Thus, D
is the present value of the bond at time 0. Extensions of
this example lead to cases where time may be continuous
(leading to integrals rather than sums), where the rewards
may be negative, or both.
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Perpetuities appear in many different applications. An
obvious area is mathematical finance, but there are also
applications in physics, communication networks, sorting
algorithms, number theory, and more. For examples, see
Vervaat (1979), Embrechts and Goldie (1994), Goldie and
Grübel (1996). In particular, perpetuities naturally appear
in time series analysis. For example, if we consider the
generalized ARCH(1) sequence

Dn+1 = An(Dn +Bn),

with (An,Bn) an i.i.d. sequence, the choice An = eXn leads
to (1), with D the weak limit of Dn as n→ ∞ (assuming
EXn < 0 and E log(|Bn|+1) < ∞).

An explicit analysis of perpetuities is surprisingly hard.
Even for the special case considered in this paper, it is
hard to come up with exact results for the distribution of
Z. Although some particular cases exist that allow for an
explicit analysis (see e.g. Vervaat 1979, Gjessing and Paulsen
1997) it is clear that there is a need for different methods.
Monte Carlo simulation arises as a natural approach to deal
with analysis of perpetuities. Our focus here is on rare-
event simulation methodology for efficient tail estimation of
perpetuities, namely, β (x) = P(D > x), for large values of x.
The theoretical analysis of rare-event simulation algorithms
involve measures of efficiency such as bounded relative error
(or strong efficiency) and logarithmic efficiency, also known
as asymptotic optimality or weak efficiency. Recall that an
unbiased estimator Z (x) for β (x) possesses logarithmic
efficiency if

sup
x≥1

E (Z (x))2

β (x)2−ε
< ∞ (2)

for every ε > 0. If (2) holds with ε = 0, we say that Z (x)
possesses bounded relative error. Because of the infinite
horizon nature of perpetuities (which forces an estimator
that must be implemented in finite time at the expense of
introducing some bias) it is relevant to study efficiency in
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the case of biased estimators and show that the relative bias
can also be handled appropriately. In order to simplify the
exposition in this paper, we shall just study the theoretical
properties of the variance (in terms of (2)) for infinite
horizon estimators. Dealing with the bias is typically not
a problem in the current setting because the exponential
discount allows to truncate the time horizon at a time that
grows as a low degree polynomial as a function of the tail
parameter x while controlling the bias.

There is a substantial amount of literature on this
topic; a non-exhaustive list is Blanchet and Glynn (2005),
Goldie (1991), Goldie and Grübel (1996), Konstantinides
and Mikosch (2005) and Maulik and Zwart (2006). De-
pending on the distribution of X1 and B1, there can be many
different types of tail behavior, ranging from extremely
heavy (for example 1/ logx), to extremely light even in-
ducing bounding support. We focus on three qualitatively
different examples in this paper.

The first example leads to heavy tails: If Xn > 0 with
positive probability, it can happen that eSn can become very
large: only O(logx) consecutive positive realizations of the
Xi suffice for D to be of the order x. Therefore, D is typically
heavy tailed. Under certain regularity conditions, it can be
shown that

P(D > x)∼CHT x−θ∗ , (3)

with θ ∗ > 0 the strictly positive solution of E[eθ∗X1 ] = 1,
a key reference is Goldie (1991). (For two functions f (x)
and g(x) we use the notational convention f (x) ∼ g(x) to
denote limx→∞ f (x)/g(x) = 1.) The constant CHT given in
Goldie (1991) depends on the entire distribution of D. An
alternative, but still rather complicated expression has been
given by Siegmund (2001). Thus, putting aside how good
this asymptotic estimate performs for moderate values of x,
this large deviations estimate is simply not explicit enough
to use as approximation.

In the second example we consider the case in which
the rate of return Xn at time n is negative with probability
one. If, in addition, P(Bn > x)∼ γ(x)e−µx (with γ(x) equal
to a constant, or a power of x), one can show that

P(D > x)∼CEXPP(B1 > x), (4)

see Maulik and Zwart (2006). Again, the lack of explicitness
of the pre-factorCEXP is an issue. If this prefactor is not finite,
it has to be replaced by a more complicated, subexponential
function, which is not known in general.

Finally, if the rewards Bn are constant and Xn < 0 a.s.,
the tail behavior of Z is substantially lighter, leading to
Poisson tails, i.e. − logP(D > x) = O(x logx). To the best
of our knowledge, the behavior of P(D > x) itself is not
known in this case, although logarithmic asymptotics can
be found in Goldie and Grübel (1996) and de Bruijn (1951).
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These results motivate the exploration of alternative
methods (to large deviations) for evaluating P(D > x). In
the present work, we present importance sampling algo-
rithms that can be used to obtain reliable estimates for
P(D > x) in all three cases. The algorithms we present are
based on exponential twisting, but have the non-standard
features that they are time and/or state dependent. Although
state-dependent importance sampling schemes can be traced
back early in the history of Monte Carlo methods (see Ham-
mersley and Morton 1954), the theoretical analysis of such
schemes is relatively new. In the presence of large deviation
principles for light-tailed systems, Dupuis and Wang (2004)
and Dupuis and Wang (2005) developed methodology for
the efficient design and analysis of state-dependent impor-
tance samplers. Such methodology rests on the construction
of solutions to non-linear partial differential equations and
inequalities – in the latter case these inequalities correspond
to subsolutions of an associated Isaacs equation. In situa-
tions where the stochastic system of interest is heavy-tailed
(in particular, does not admit a traditional large deviations
principle) or is purely combinatorial or discrete in nature,
Blanchet and Glynn (2007) and Blanchet (2007) develop
a methodology for efficient design and analysis of state-
dependent importance samplers for rare-event simulation.
In these situations, the analysis depends on stability bounds
and Lyapunov inequalities that control the behavior of the
second moment of the estimator. These Lyapunov inequal-
ities basically correspond to subsolutions of the associated
Isaacs equation when applied to traditional large deviations
settings. We apply techniques based on Lyapunov inequal-
ities in Section 4 in order to quantify the efficiency of the
proposed scheme.

This paper is organized as follows. The Poisson case
is investigated in Section 2. Our algorithm for exponential-
tailed perpetuities is presented in Section 3. The heavy
tailed case is investigated in Section 4.

2 POISSON TAILS

The first case we consider is an example leading to Poisson
tails for D. Specifically, let (−Xk : k ≥ 1) be a sequence
of exponentially distributed random variables with mean λ .
We are interested in developing an efficient state-dependent
importance sampling algorithm for efficient evaluation of
P(D > x) as x↗ ∞, where

D =
∞

∑
k=1

exp(Sk) =
∫

∞

0
exp(−u)dN (u)

=−
∫

∞

0
N (u)d exp(−u) =

∫
∞

0
exp(−u)N (u)du.

Here N (·) represents the Poisson process generated by the
sequence (−Xk : k ≥ 1).
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This random variable appears in several applications,
particularly in analytic number theory and sorting algo-
rithms, see de Bruijn (1951), Vervaat (1972) and Goldie
and Grübel (1996). These papers all treat the behavior of
P(D > x) as x→ ∞. It is not difficult to see from the
previous expression involving an exponential integral of the
Poisson process that D has Poisson-type tails. Specifically,
it holds that

logP(D > x)∼−x logx. (5)

Surprisingly, this estimate does not depend on the rate of
the exponential distribution. This rate does play a role if
one considers more refined estimates; see Vervaat (1972)
for a higher order expansion of logP(D > x). To obtain
estimates for P(D > x), it is therefore reasonable to develop
an efficient importance sampling algorithm. This is the goal
of the current section. For convenience, we assume that the
rate λ of the Poisson process equals 1.

Note first that

E exp(θD) = E exp
(

θ

∫
∞

0
exp(−u)dN (u)

)
= exp

(∫
∞

0
ψ (θ exp(−u))du

)
= exp

(∫
θ

0

ψ (y)
y

dy
)

.

In order to construct the algorithm, select θx such that

ψ
′
D (θx) = x,

where

ψD (θ) = logE exp(θD) =
∫

θ

0

ψ (y)
y

dy.

In the Poisson case that we consider here we have that

ψ (β ) = logE exp(βN (u)) = exp(β )−1

and therefore ψ ′D (θx) = x yields

ψ (θx) = exp(θx)−1 = xθx.

It follows that

θx = log(1+ xθx +δθx)

= log(xθx)+ log
(

1+
1

xθx

)
= log(x)+ log(θx)+

1
xθx

+O

((
1

xθx

)2
)

,
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which in particular yields that

θx = log(x)+ log log(x)+o(log log(x))

as x→ ∞.
We apply importance sampling according by tilting

the Poisson process N (·) dynamically in time. In order to
describe the dynamics of the proposed importance sampling
scheme, let us denote by P̃(·) the probability law induced
by the proposed change-of-measure. The dynamics under
the importance sampler can be described as follows. Let
M (·) be a Poisson process with unit rate under P̃(·). Next,
define

Λ(t) =
∫ t

0
exp(θx exp(−s))ds.

Then, under P̃(·) we have that N (·) has the same distribution
as M (Λ(·)). In other words, we have

P̃(N (t +h)−N (t) = 0) = 1− exp(θx exp(−t))h+o(h)

P̃(N (t +h)−N (t) = 1) = exp(θx exp(−t))h+o(h)

P̃(N (t +h)−N (t) = 1) = o(h)

as h↘ 0. Note that representing N (·) in terms of M (Λ(·))
under P̃(·) is particularly useful in terms of implementing
the algorithm by means of a thinning procedure. For brevity
reasons we shall not provide the complete details here.

The estimator for P(D > x) then becomes

L = exp
(∫

∞

0
ψ (θx exp(−u))du−θxD

)
I (D > x) . (6)

The second moment of the estimator is

ẼL2 = exp(−2xθx)×

Ẽ
(

exp
(∫

∞

0
2ψ (θx exp(−u))du−2θxZ

)
I (Z > 0)

)
≤ exp(−2xθx)exp

(∫
∞

0
2ψ (θx exp(−u))du

)
,

where Z = D− x. Note that∫
∞

0
2ψ (θx exp(−u))du = 2

∫
θx

0

exp(y)−1
y

= O(x)

(in fact, this can be further expanded). We can now invoke
(5) to conclude that our algorithm is logarithmically efficient.
We record this result in the form of a proposition.

Proposition 1. The estimator (6) obtained using the law
P̃(·) described before is logarithmically efficient as x↗∞.
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3 EXPONENTIAL TAILS

We assume now that the rewards Bi are exponentially distrib-
uted with rate λ , and that the interest rates are non-negative.
We also sum from 0 in (1). Although the assumption on
Bi is not critical, this case is of intrinsic interest, since in
this case, D can be expressed as

D =
∫

∞

0
e−X(s)ds, (7)

with {X(s)} a compound Poisson process. Functionals this
type are natural continuous-time analogues of perpetuities
and appear in many applications. See Bertoin and Yor
(2005) for a survey.

The logarithmic asymptotics of P(D > x) are the same
as those of P(B1 > x), but the exact asymptotics may require
a polynomial correction term, see Maulik and Zwart (2006).
This suggests that a large value of D is caused by a single or
several large values of B, which is similar to what happens
in exceedance probabilities for heavy-tailed random walks.

To explain our algorithm, note that

E[eθD] = E

[
∞

∏
k=0

λ

λ −θeSk

]
.

We propose to perform a state-dependent simulation
algorithm where the distribution of the random walk {Sk}
is unperturbed, but where the Bk’s are sampled from an
exponential distribution with rate λ −θxeSk , with θx = λ −
c/x for some c ∈ (0,1). This yields the estimator

L = I(
∞

∑
k=0

eSk Bk > x)
∞

∏
k=0

λ

λ −θxeSk
exp{−θx

∞

∑
k=0

eSkBk}. (8)

We now prove that this estimator is efficient. Under the
original measure, the second moment of this estimator is
equal to

E

[
I(

∞

∑
k=0

eSk Bk > x)
∞

∏
k=0

λ

λ −θxeSk
exp{−θx

∞

∑
k=0

eSkBk}

]
,

which is smaller than

e−θxxE

[
I(

∞

∑
k=0

eSk Bk > x)
∞

∏
k=0

λ

λ −θxeSk

]
.

To complete the proof, we make the simplifying assumption
that there exists an ε > 0 such that X1 ≤−ε a.s.; the general
case will be treated in the extended version of this paper.
Under this assumption, we can upper bound the second
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moment further by

e−θxxP(
∞

∑
k=0

eSk Bk > x)
∞

∏
k=0

λ

λ −θxδ k ,

with δ = e−ε < 1. This regularity condition also guarantees
that CEXP < ∞. Thus, the first term behaves like P(D > x)
up to a constant, while the second term equals P(D > x). To
establish logarithmic efficiency, not that the first term in the
infinite product behaves like O(x) , and that the remaining
(from k = 1 on) infinite product remains bounded as x→∞.
To see this, write

∞

∏
k=1

λ

λ −θxδ k =−
∞

∑
k=1

log(1−δ
k(1− c/(λx))).

Let x be larger than c/λ and let M be large enough such
that δ M < 1/2. Then log(1−δ k(1−c/(λx)))≥−2δ k(1−
c/(λx)) for k ≥ M. From this, the desired boundedness
easily follows.

We summarize our findings as follows:

Proposition 2. If X1 ≤−ε a.s., the estimator (8) obtained
using the law P̃(·) described before has logarithmic effi-
ciency as x↗ ∞.

To control the bias when implementing this algorithm,
note that the infinite sum needs to be truncated at some
point M. If one let M depend on x in such a way that
M = M(x)→ ∞ when x→ ∞, then one can show that the
relative bias vanishes, while preserving optimality.

To illustrate the applicability of the algorithm we
consider a case that is not covered by our proposition:
assume that the negative discount rates, −Xk, are expo-
nentially distributed with mean 10%. The rewards, Bk’s,
are exponentially distributed with mean 1. In this case, D
is gamma distributed with both mean and variance equal
to 11 (cf. Bertoin and Yor 2005). The following table
was obtained using 10,000 replications (100 periods per
replication were simulated). The column IS displays the
importance sampling estimator. σ̂IS shows the estimated
standard deviation of the importance sampling estimator
and σ̂MCM corresponds to the sample standard deviation
for the crude Monte Carlo estimator (we did not include
the values of the CMC estimator because they are far away
from the exact values).

4 HEAVY TAILS

Suppose that (Xn : n≥ 1) is a sequence of i.i.d. rv’s
with logarithmic moment generating function ψ (θ) =
logE exp(θXn) and there exists θ ∗> 0 such that ψ (θ ∗) = 0.
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x P(D > x) IS σ̂IS σ̂CMC
15 1.18e−01 1.15e−01 1.54e−01 4.53e−01
20 1.08e−02 1.01e−02 1.96e−02 3.18e−01
25 5.86e−04 5.39e−04 1.34e−03 2.03e−01
30 2.23e−05 2.08e−05 6.13e−05 1.18e−01
35 6.61e−07 5.97e−07 2.02e−06 6.32e−02

Figure 1: Illustration of the algorithm.

We want to estimate P(D > x) for x large, where we
take the rewards Bn = 1, so that

D =
∞

∑
k=1

exp(Sk) .

Note that by convexity of ψ (·) we have that ψ ′ (0) = EX1 < 0
and therefore D is a well defined random variable. Let us
write x = b/∆ for some b > 0 and ∆ > 0. We shall let x↗∞

by sending ∆↘ 0 while holding b > 0 fixed. Introducing the
parameter ∆ is slightly more convenient in order to describe
a scaled process for which the tail probability of interest
coincides with a first-passage time computation. More
precisely, let us define the process W = ((Dn,Sn) : n≥ 0)
via

(Dn+1,Sn+1) = (Dn +∆exp(Sn +Xn+1) ,Sn +Xn+1)

and put T∆ = inf{n ≥ 0 : Dn > b}. Let us write Ed,s (·) to
denote the corresponding expectation operator. In the next
steps we shall drop the super-script ∆ on Dn. In other words,
we wish to estimate P(0,0) (T∆ < ∞).

Our goal is to design a state-dependent importance
sampling strategy based on exponential tilting. The strategy
is to select the exponential tilting according to the state of
the chain W . Our choice of tilting is guided by the selection
of a parametric family of Lyapunov functions that control
the behavior of the second moment of our estimator. We
tune both the parameters of the Lyapunov function and the
exponential tilting in order to satisfy a linear inequality
which implies the bound on the second moment.

A closely related strategy has been used by Dupuis and
Wang (2005) in the context of systems in which standard
large deviations scaling is in force – in which case, the
Lyapunov inequalities is transformed, after taking a limit
under the large deviations scaling, into differential inequali-
ties. Blanchet, Glynn, and Liu (2007) use a similar strategy
in the context of heavy-tailed multi-server queues. In such
case, the proposed family of changes-of-measure is, obvi-
ously, not parameterized in terms of exponential changes-of-
measure. However, a completely analogous program to the
one described next can be shown to give rise to an efficient
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algorithm by selecting the family of changes-of-measure
based on mixtures.

Our estimator takes the form

L = exp

(
−

T∆−1

∑
k=0

θkXk+1 +
T∆−1

∑
k=0

ψ (θk)

)
I (T∆ < ∞) ,

where θk depends on the Dk and Sk (one could even allow
dependence on the whole history up to time k, but this is
not necessary). If we denote by P̃d,s (·) the distribution of
the chain W under the change-of-measure generated by the
exponential tiltings (i.e. the θk’s) given that (D0,S0) = (d,s),
then we have

P̃d,s (Xk+1 ∈ dx|(D1,S1) , ...,(Dk,Sk)) (9)
= Pd,s (Xk+1 ∈ dx)exp(θkx−ψ (θk)) .

The estimator L is obtained by generating the Xk’s according
to (9).

Note that the second moment of the estimator L can
be expressed via a function r (·) according to the equality

r (d,s) =

Ẽd,s

(
exp

(
−

T∆−1

∑
k=0

2θkXk+1 +
T∆−1

∑
k=0

2ψ (θk)

)
I (T∆ < ∞)

)

=Ed,s

(
exp

(
−

T∆−1

∑
k=0

θkXk+1 +
T∆−1

∑
k=0

ψ (θk)

)
I (T∆ < ∞)

)
;

in particular, EL2 = r(0,0).
The following proposition can be proved as in Blanchet

and Glynn (2007), the details are given in an extended version
of this paper, namely Blanchet and Zwart (2007).

Proposition 3. If there exists a positive function h(·) such
that

h∆ (d,s) ≥ Ed,s (exp(−θX1 +ψ (θ))×
h∆ (d +∆exp(s+X1) ,s+X1))

subject to h∆ (d,s)≥ δ if d > b, then

h∆ (d,s)
δ

≥

Ed,s

(
exp

(
−

T∆−1

∑
k=0

θkXk+1 +
T∆−1

∑
k=0

ψ (θk)

)
I (T∆ < ∞)

)
.

The previous result allows to measure the efficiency of
our estimator in terms of its second moment. In particular,
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we note that

Ẽ0,0L2

P0,0 (T∆ < ∞)2 ≤
h∆ (0,0)

δP0,0 (T∆ < ∞)2 .

If h∆ (d,s) behaves similarly as Pd,s (T∆ < ∞), then we will
be in good shape to prove efficiency. It is known (Goldie
1991) that if d < b

Pd,s (T∆ < ∞)∼C
(

b−d
∆

)−θ∗

exp(sθ
∗)

for some constant C ∈ (0,∞) (independent of d and s) as
∆↘ 0. Motivated by this observation, we choose h∆ (d,s)
to equal

min
(

c∆∆
2θ∗−ρ∆ (b−d)−2θ∗+ρ∆

+ exp((2θ
∗−ρ∆)s) ,1

)
,

(10)
where (b−d)+ , max(b−d,0) and the constants c∆ and ρ∆

(possibly depending on ∆) will be selected in order to satisfy
the Lyapunov inequality. At the end we shall send ρ∆↘ 0
as ∆↘ 0 at a suitable rate so that logarithmic efficiency is
maintained. In particular, we have the following result.

Proposition 4. Let c∆ = log(1/∆)2θ∗ . Then, one can com-
pute λ ,∆0 > 0 such that if ρ∆ = λc−1/(2θ∗)

∆
and ∆ ≤ ∆0,

inequality (10) holds.

In the remainder of this section we shall prove the pre-
vious proposition and at the same time provide the elements
of the algorithm. If h∆ (d,s) < 1 then

Ed,s[exp(−θX +ψ (θ))h∆

(
d +∆es+X ,s+X

)
]

h∆ (d,s)

= Ed,s

(
g∆(s)∧h∆ (d,s)−1

)
, (11)

with g∆(s) equal to

exp(−(θ −2θ
∗+ρ∆)X +ψ (θ))×(

1−∆
exp(s+X)

(b−d)

)−2θ∗+ρ∆

+
.

Now fix a ∈ (0,1) and consider the events

A1 =
{

∆
exp(s+X)

(b−d)
< a
}

,

A2 =
{

∆
exp(s+X)

(b−d)
≥ a
}

.
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If we select θ = θ ∗, then (11) is less or equal than

Ed,s

(
exp((θ ∗−ρ∆)X)×(

1+∆(2θ
∗−ρ∆)η

exp(s+X)
(b−d)

)
;A1

)
+h∆ (d,s)−1 Ed,s[exp((θ ∗−ρ∆)X) ;A2],

where

η =
(1−a)−2θ∗+ρ∆ −1

2θ ∗−ρ∆

.

Suppose that if Z = eX then there exists c∈ (0,∞) such that
P(Z > t)≤ c(1+ t)−3θ∗−1. This holds if E[e(3θ∗+1)X ] < ∞.
Since c∆ = o(∆−ε) for each ε > 0, then

Ed,s[exp((θ ∗−ρ∆)X) ;eX > a∆−1e−s (b−d)]exp(ψ (θ∆))
h∆ (d,s)

≤
h∆ (d,s)−1 Ed,s[Zθ∗−ρ∆ ;Z > a∆−1e−s (b−d)]

h∆ (d,s)

≤ c̃c−1
∆

(
b−d

∆

)−1

es,

for some constant c̃ > 0. Combining these estimates we
obtain that expectation (11) is less or equal to

Ed,s

(
exp((θ ∗−ρ∆)X)

(
1+∆2θ

∗
η

exp(s+X)
(b−d)

))
+ c̃c−1

∆

∆exp(s)
(b−d)

≤ exp(ψ (θ ∗−ρ∆))+2θ
∗
η

exp(s)∆

b−d
exp(ψ (θ ∗+1))

+ c̃c−1
∆

∆exp(s)
(b−d)

. (12)

There exists δ1 > 0 such that if ρ∆ ∈ (0,δ1), then

exp(ψ (θ ∗−ρ∆))≤ 1−ψ
′ (θ ∗)ρ∆/2.

On the other hand, we are assuming that h∆ (d,s) < 1, which
implies

∆exp(s)
b−d

< c−1/(2θ∗−ρ∆)
∆

.
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Hence, if ρ∆ ∈ (0,δ1) we obtain that the right hand side of
the inequality in display (12) is upper bounded by

1−ψ
′ (θ ∗)ρ∆/2

+2θ
∗
ηc−1/(2θ∗−ρ∆)

∆
exp(ψ (θ ∗+1))

+ c̃c−1
∆

c−1/(2θ∗−ρ∆)
∆

.

In order to satisfy the Lyapunov bound on the region
h∆ (d,s) < 1 it suffices to choose ρ∆ such that

ψ
′ (θ ∗)ρ∆/2≥ 2θ

∗
ηc−1/(2θ∗−ρ∆)

∆
exp(ψ (θ ∗+1))

+ c̃c−1
∆

c−1/(2θ∗−ρ∆)
∆

.

This implies that is feasible to choose ρ∆ = O
(

c−1/(2θ∗)
∆

)
as ∆↘ 0.

Now, observe that when h∆ (d,s) = 1, satisfying the
Lyapunov bound is an easy task. In such case, just pick
θk = 0 and the bound is guaranteed to hold because h∆ (·)
is less than one throughout its domain.

We now provide an explicit description of the algorithm:

Algorithm
1. Set ρ∆,c∆ and h(·) according to (10).
2. Let L←− 1, D←− 0 and S←− 0
3. Repeat until D > b/∆

If h(d,s) = 1, then sample X according to the
nominal (original) distribution
Else, sample X with distribution

Pθ∗ (X ∈ dx) = exp(θ ∗x)P(X ∈ dx)

and put L←− exp(−θ ∗X) ·L.
Endif
Update S←− S +X , D←− D+ exp(S)

End
Output L

The next result summarizes the efficiency properties of
the estimator.

Theorem 5. Suppose that E[e(3θ∗+1)X ] < ∞. The estimator
L obtained from the previous algorithm is logarithmically
efficient, that is

lim
∆↘0

log Ẽ0,0L2

2logP(D > b/∆)
= 1.
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