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ABSTRACT 

Simulation optimization (SO) is the process of finding the 
optimum design of a system whose performance 
measure(s) are estimated via simulation. We propose some 
ideas to improve overall efficiency of the available SO 
methods and develop a new approach that primarily deals 
with continuous two dimensional problems with bounded 
feasible region. Our search based method, called Adaptive 
Partitioning Search (APS), uses a neural network as meta-
model and combines various exploitation strategies to 
locate the optimum. Our numerical results show that in 
terms of the number of evaluations (simulation runs) 
needed, the APS algorithm converges much faster to the 
optimum design than two well established methods used as 
benchmark. 

1 INTRODUCTION  

Numerical optimization refers to a class of optimization 
methods which only use the numerical values of objective 
function. Such cases may arise when simulation is applied 
to evaluate performance measure(s) of selected design 
points of a stochastic system. In these cases, it is 
practically impossible or computationally expensive to 
obtain the closed form objective function based on decision 
variables. Hence, simulation optimization (SO) methods 
try to find the best designs of a system through numerical 
estimations of the stochastic performance measure(s) of the 
underlying system obtained via simulation.  
 Many approaches have been proposed in the literature 
for SO problems. These approaches and the range of the 
problems they address could be classified with various 
criteria (Henderson and Nelson 2006). Depending on the 
possible range of values of decision variables, the methods 
are classified into continuous, discrete or mixed 
approaches. When the number of design options is limited, 
statistical selection methods are usually appropriate (Kim 
and Nelson 2006). The methods could also be classified 
based on the qualitative or quantitative (or mixed) nature 
of decision variables and type of objective function (single 
criterion or multi criteria) (Azadivar 1999). For detailed 
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review of the available methods, see Andradóttir (1998), 
Ólafsson and Kim (2002), Gosavi (2003) and for more 
recent surveys, see Andradóttir (2006), Ólafsson (2006) 
and Fu et. al. (2005). 
 Most of the practical SO methods in the literature have 
a core iterative search based strategy which evaluates 
available information of past searches (if any) in each 
iteration, propose new candidate solution(s), and simulate 
these candidate(s). Therefore, the total computational time 
in each iteration can be divided into two parts: 

1. The time required to propose new candidate 
solution(s) , and 

2. the simulation run time for the proposed 
candidates. 

In the first part the methods use some intelligent strategy to 
propose new candidate solution(s), and in the second part 
the objective function(s) of these candidate solution(s) are 
evaluated. For example, in the first part Genetic Algorithm 
(GA) applies various operators such as selection, crossover 
and mutation to generate a new population of candidate 
solutions in each iteration, and then in the second part the 
objective functions of the new population are evaluated 
and returned to the core optimizer of the GA. 
 In the case of deterministic optimization problems 
where a closed-form objective function is available, the 
time required for the second part of the optimization of 
objective function evaluation is usually negligible as 
opposed to the time of the first part of proposing new 
solution(s). In contrast, when a simulation run is used to 
estimate the objective function, the time of the first part 
could be much less than the second part because running a 
simulation model for real systems is usually 
computationally time-consuming. It is therefore reasonable 
to measure the efficiency of a SO algorithm in terms of the 
number of simulation runs required and design the 
algorithm such that as few as possible simulation runs are 
needed. 
 Most of the current methods for SO have originally 
developed for problems with available closed-form 
objective function. Therefore, since in the deterministic 
context the time of evaluating the closed-form objective 
function could be considered negligible, these methods 
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may not carefully allocate the simulation runs when 
applied directly to simulation optimization problems. In 
other words, they are not efficient in proposing new 
solutions, that is, allocating simulation runs, and hence 
require a large amount of time to simulate each of these 
solutions. This fact motivates the development of methods 
that make better use of the past information of simulated 
points in a search based strategy.  
 The underlying idea of this paper is that the following 
principles could be used to guide the allocation of 
simulation runs, and hence characterize a simulation 
optimization method that does makes good use of 
simulation run time: 

1. It should not evaluate the objective function of a 
single solution point more than once.  

2. It should not evaluate the objective function of a 
solution point that is so close to some other 
previously simulated points that there is no 
significant difference between the designs 
corresponding to these points. This is primarily 
germane to continuous problems.  

3. It should control the amount of search in the 
neighborhood of already found good solution 
points and avoid excessively searching the 
neighborhood of local optima. 

4. When searching new local optima in unvisited 
areas of the feasible region the search strategy 
should directly take into account the size of those 
unvisited areas.  

Designing a simulation optimization method that addresses 
each of these four desired characteristics requires more 
computational memory to store past information and 
control over past searches. This translates into more 
computational burden for what we referred to above as the 
first part of search based methods. On other hand, we 
content that this increased “thinking” and higher 
computational overhead could be justified by significantly 
less cost in the second part if more appropriate candidate 
solutions are suggested in the first part and hence fewer 
simulation runs are required.  

We also note that these four desired characteristics or 
principles are not the only desired characteristics of 
simulation optimization algorithms, and others may be 
more appropriate in certain applications. However, as we 
will see in the algorithm proposed below, following these 
principles appears to result in an effective search 
algorithm. 
 The need for more evaluation of candidate solutions 
before actually conducting simulation to obtain 
performance measures usually justifies more complex 
methods which are more conservative in proposing new 
candidates. If the simulation run time is large enough, we 
believe that the best methods are those which try to extract 
and use the valuable information obtained right after each 
simulation run before proposing a new candidate or at least 
their population of proposed candidates in each iteration is 
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as little as possible (with a conservative perspective). This 
strategy of better utilization of past information usually 
leads to less overall time for SO methods. 
 The remainder of the paper is organized as follows. 
Guided by the four principles above, we propose a new 
iterative heuristic search based method for continuous 2-
dimensional problems in section 2. The main ideas of the 
method are discussed in section 2.1 and more mathematical 
details are provided in section 2.2. Section 3 summarizes 
some experimental results for this method. Finally, section 
4 concludes the paper and discusses our future research 
directions. 

2 OPTIMIZATION METHOD FOR CONTINUOUS 
2-DIMENSIONAL PROBLEMS 

To illustrate the effectiveness of the four principles stated 
in section 1 above, we now propose a method for 
simulation optimization of problems with two bounded 
continuous decision variables. For simplicity and without 
loss of generality, we assume that the upper and lower 
bound of both decision variables are 0 and 100, 
respectively, which are the only constraints of the 
underlying optimization problem. The problem goal is to 
minimize an expected objective function which is a closed 
form function of simulation performance measure(s). 

2.1 Overview 

The core optimizer of the proposed optimization method 
views simulation as a black box. In fact, the only role of 
simulation in this method is to transform the new vectors 
of decision variables introduced by optimizer into an 
estimated objective function through sampling from 
simulation performance measure(s). 
 Throughout the algorithm, the square-shape feasible 
region is divided into smaller pieces called partitions. Each 
partition with a unique code is always a triangle with 3 
corner points that have already been simulated. The space 
within each partition is unvisited, that is, contains no 
simulated point. The algorithm starts out with creating 
initial partitions by simulating 4 corner points of the square 
of feasible region and the middle point (see Figure 1). 
Using these 5 simulated points, the feasible region is 
divided into 4 same-shape partitions. 

 
Figure 1: Initial 5 simulated points and 4 partitions 

(100,100) 

(100,0) (0,0) 

(0,100) 

Partition 4 

Partition 1 

Partition 3 

Partition 2
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The overall procedure of the method is to select one of the 
available partitions called promising partition and simulate 
a point inside this partition. Then the promising partition is 
further divided into 3 new partitions with respect to the 
location of recently simulated point inside the partition (see 
Figure 2 with respect to promising partition 2 in Figure 1). 
As new simulation points are added, so do the number of 
partitions (in fact two more partitions per simulation are 
added to the partitions). The natural questions that we 
address here and in the next section after some definitions 
are how the promising partition and the new point inside it 
are selected, that is, how to allocate the next simulation 
runs. 

 
Figure 2: Promising Partition 2 in Figure 1 is further 
divided into new partitions 2, 5, 6 
 
In order to determine the partition where the next 
simulation runs will be allocated, we use four sets of 
partition codes called Available List (AL), Candidate List 
(CL), Blocked List (BL), and Taboo List (TL). Each 
partition is always a member of exactly one of the three 
partition sets of AL, BL, or TL. CL is always a subset of 
AL. A partition will be selected from either AL or CL. 
 AL is the set of all partitions that promising partition 
may be selected among them. This list includes all 
partitions that haven’t been blocked or tabooed. BL 
includes all partitions that have an angle which is close 
enough to 180 degree. For example if a threshold of 170 
degree is defined, each partition with an angle of more than 
170 degree is blocked. Blocked partitions are temporarily 
ignored for promising partition selection. Our experience 
shows that if these blocked partitions are allowed to be 
selected as promising partition, flatter partitions are 
obtained and simulation points are wasted along a line 
(principles 1 & 2). There is a process in the algorithm 
called repartitioning which merges blocked partitions with 
a neighboring partition and then splits the merged area into 
two new partitions. Using this method, the area of blocked 
partitions may find a new chance to be selected as the 
promising partition. TL includes all partitions that have 2 
conditions: the area of the tabooed partitions is less than a 
threshold and their all 3 angles are close enough to 60 
degree. Except a rare event, tabooed partitions are 
permanently ignored for promising partition selection. The 
rare event is the condition that a tabooed partition becomes 
a neighboring partition of a blocked partition, whereas 
repartitioning may let the area of a tabooed partition 
available for further search. Tabooed partitions are 
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expected to be very small partitions that the user assumes 
no significant difference between the design points inside 
the partition because these points are very close to each 
other (see principles 1 and 2 above). Our experience also 
shows that the corner points of the tabooed partitions are 
local optima of feasible region, so we taboo them to avoid 
excessive search surrounding high quality points (principle 
3). In some iterations, the algorithm let all available 
partitions to participate in promising partition selection but 
in some others, a subset of available list, CL, is selected 
and only members of this list are allowed to be the next 
promising partition. 
 Now suppose that we are in a particular iteration of the 
algorithm and have determined whether a candidate list or 
available list is used for promising partition selection. The 
promising partition is selected randomly among the 
partitions of candidate or available list, but the 
corresponding probability distribution should not be 
uniform. Instead a probability is assigned to each member 
of CL or AL and the promising partition is selected 
randomly using these probabilities. In order to achieve the 
characteristics of a good simulation optimization algorithm 
outlined in section, we propose three criteria which affect 
the probability of selecting a particular partition. These are 
called space score, meta-model score, and quality score. 
These three criteria are combined into a single indicator 
called total score for each partition and the total scores for 
the members of AL or CL determines the probability of 
selecting each partition.  
 The space score is motivated by the fourth principle 
from section 1 and is a relative area indicator for each 
partition. The higher the area of a partition in opposed to 
other partitions, the higher this criterion would be. This 
score helps to explore unvisited areas of the feasible 
region.  
 Again motivated by the observation that running 
simulations is computationally expensive relative to other 
activities, our method induces a meta-model to the input-
output (vector of decision variables-estimated objective 
function) of simulation module. Some sample points are 
drawn from the area of each partition and the objective 
function of these samples are approximated with the 
trained meta-model, which here is a neural network. The 
meta-model score is based on these approximated objective 
functions. The better the approximated objective function 
of the samples of a partition, the higher this criterion would 
be. In fact, this criterion monitors the whole feasible region 
quality.  
 Finally, the quality score for a partition is the 
representation of the quality of the estimated objective 
function of simulated points surrounding the partition. The 
better the quality of these points, the higher the quality 
score. This criterion exploits the information of high 
quality simulated points with the hope of discovering local 
(or maybe global) optima.  
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 To construct a total score, we use a criterion 
coefficient for each of the three criteria, which are changed 
between each iteration based on the effectiveness of using 
each criterion.  
 The meta-model is updated (restructured and 
retrained) periodically, for example the user of the 
algorithm may specify that after each five simulations, the 
meta-model is updated. The algorithm uses available list in 
an iteration if the neural network is updated in that 
iteration, otherwise it uses a candidate list. The members of 
the candidate list are selected from the set of available list 
based on the score of the partitions in the available list.   
 After selecting the promising partition, a point is 
selected inside the promising partition and simulated. 
Selection of this point is based on the most effective 
criteria of the promising partition. Simulating this point, an 
iteration ends and stopping criteria are checked to see if 
more iterations could be performed. 

2.2 Detailed Algorithm 

In this section we present more details for the algorithm 
motivated above. Since the key component of the 
algorithm is the partitions that are adapted to the 
information obtain from the simulation runs already made, 
we call it Adaptive Partitioning Search (APS). The APS 
algorithm has three phases, which can be summarized as 
follows. 

 
 Major Steps 

Phase 1 • Simulate five fixed points 
• Divide the feasible region into four 

partitions 
 

Phase 2 • Select one of the four partitions (which is 
called promising partition) based only on  
metamodel criterion 

• Select and simulate a point inside the 
promising partition 

. 
Phase 3 • Stop the algorithm if any of the terminating 

conditions are true. 
• Divide the last promising partition into 

three new partitions 
• Update the information of partitions and 

algorithm 
• Select a partition called promising partition 
• Select and simulate a point inside the 

promising partition 
• Return to the first step of the phase 

 
In the next three subsections, each of these steps will 

be elaborated upon. 
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2.2.1 Phase One 

In this short Phase, five fixed points are always simulated 
which are (0,0), (100,0), (0,100), (100,100), (50,50) as 
shown in Figure 1. Then the feasible region is divided into 
four partitions using the diagonals of the square of the 
feasible region. The primary purpose of simulating these 
fixed points is to set up initial partitions. But from practical 
perspective, we also believe that extreme values of 
decision variables are generally more likely to be the 
optimum in real world systems. 

2.2.2 Phase Two 

A meta-model is induced using the first five simulated 
points. We use an artificial feed forward neural network as 
meta model that is trained by Levenberg - Merquardt 
algorithm. The neural network has one input layer with 2 
neurons (the number of decision variables), an output layer 
(since our test problems have a single performance 
measure) and at least one hidden layer with an upper bound 
on the number of neurons in each hidden layer. We use a 
combination of constructive learning algorithms and 
pruning methods for finding the suitable structure of 
hidden layers with least mean squared error objective (see 
Ma and Khorasani, 2003).  
 Of the three criteria of space, meta-model (neural 
network in our case), and quality, only meta-model is used 
for selecting the promising partition in this phase. First, 
some sample points are selected from each partition. Our 
sample points for a partition are located on the three 
medians of the triangle of the partition and have a 
minimum distance with each other and corner points of the 
triangle. Using this sampling strategy, the samples 
represent almost all regions of each partition and are not 
too close to simulated corner points (principles 1 and 2). 
Then, the objective function of each sample of each 
partition is predicted by the structured and trained meta 
model. The predicted objective function of the th sample 
of i th partition denoted by 

j

ijϕ  is scaled such that it has a 

positive quantity. The Neural Network Score ( ) is 
defined by comparing the predicted objective function of 
the best sample in each partition with that among all 
partitions: 

iN
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minmin
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⎬
⎫

⎩
⎨
⎧

= iN
ijj

kjjk
i ϕ

ϕ
 

The total score iψ of partition i  and finally the probability 
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where  is the neural network criterion coefficient that is 
equal to 1/3 for this phase.  

n

 After selecting the promising partition, the point inside 
the promising partition that has had the best predicted 
objective function based on neural network model is 
selected and simulated. 

2.2.3 Phase Three 

Before commencing a new iteration in this phase, the 
stopping criteria defined by user are checked and if any 
one of them is true, the algorithm terminates. As examples 
of terminating conditions, maximum number of iterations 
or stalled searches may be used here. 
  Now suppose that a new iteration must be executed. 
The overall procedure of this phase is the same as phase 2; 
a new promising partition is selected and a point inside this 
partition is simulated. If it is the first iteration in phase 3, 
the four partitions obtained in phase 1 are added to empty 
set of AL. Other partition sets (TL and BL) are initialized 
empty as well. As the first step, the old promising partition 
is divided into 3 new partitions (Figure 2). Now the old 
promising partition is removed from AL and the 3 new 
partitions acquired by partitioning the old promising 
partition are put in one of the sets of AL, BL or TL. First 
the conditions of membership to BL and TL (as briefly 
described in previous section) are evaluated and if a 
partition doesn’t meet the requirements of membership to 
BL nor TL, it is put into AL. After this step, Repartitioning 
process of the algorithm merges the area of blocked 
partitions with one of immediate neighboring partitions 
and split the resulted tetragon into two new areas, provided 
that the obtained areas are actually triangle-shape partitions 
again (Figure 3). These new partitions are then put into TL 
or AL.  

 
 
 Figure 3: Repartitioning Process merges blocked partition 
9 (left figure) with its neighbor (partition 7) and forms new 
partitions 
 
As the algorithm goes on, the number of partitions rapidly 
increases and it is computationally cumbersome to let all 
Available partitions to have a chance to be selected as the 
next promising partitions; so in some iterations in order to 
improve the computational efficiency of the algorithm, a 
subset of Available partitions based on the last assigned 
total score (excluding the effect of criterion coefficients) 
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are randomly selected and put into CL. The new partitions 
obtained by splitting the last promising partition and those 
obtained in Repartitioning Process are also put into CL. 
Then the promising partition is selected among CL. But in 
some other iterations, the algorithm let all Available 
partitions to have a chance to be further searched (based on 
a user defined plan). Whenever AL is used, the meta model 
is also updated (restructured and retrained) with all 
available simulated points.  
 Now a partition must be selected among the members 
of either AL or CL. For selecting this partition, a space 
score , a meta-model Score , and a quality score  
are assigned to partition i  which is a member of AL or 
CL. These criteria form a total score for each partition 

iS iN iQ

iψ  
and the probability iπ  of selecting each partition is defined 
by: 

 
{ }

ALorCLi

QqNnSs

ALorCLk
k

i
i

iiii

∈∀=

×××=

∑
∈

ψ
ψπ

ψ ,,max
 (1) 

where s ,  and  are the criterion coefficient of space, 
meta-model, and quality respectively. These coefficients 
are always between zero and one and add up to one, they 
can vary between iterations of this phase. All three 
criterion scores are so defined that vary between zero and 
one and the best partition(s) based on a specific criterion 
has a score of one for that criterion.  

n q

 The space score is defined by comparing the area of 
each partition with the area of the biggest partition in AL 
(no matter if AL or CL are used). If area of partition i  is 
denoted by , we have: iA

{ }
{ } ALorCLiS

k
ALk

ki
A

AA
i ∈∀=

∈
max  

 If AL is used, the meta-model is updated; hence, the 
meta-model score of all available partitions are also 
updated with the same idea as phase two (comparing local 
best objective function approximation in partition with 
global best). Otherwise, CL is used and only the meta-
model score of new partitions are assigned after sampling 
some points from each partition.  
 Each side of a triangle-shape partition could be the 
border of two immediate neighbor partitions (e.g. partition 
6 in Figure 2 is in the neighborhood of partitions 3, 2 and 
5). Any two neighbor partitions have 2 simulated points in 
common and one non-common point. So, each partition 
has 3 corner points, at most 3 neighbor partitions and 
consequently at most 3 neighbor point (which are non-
common points of neighbor partitions).  
 The quality score is more complex than the other two 
scores. The method considers a quality effect for each 
corner points and each neighbor point of a partition. The 
quality score of i th partition which is a member of AL or 
CL is: 
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ALorCLi

Q iiiiiii

∈∀
= 321321 ,,,,,max ηηηζζζ }

 

Here ijζ and ijη are the quality effect of th corner ( ) 

and neighbor ( ) points of i th partition respectively. The 
values of quality effect of neighbors and corners are 
between 0 and 1. If th neighbor doesn’t actually exists 
(there are AT MOST 3 neighbors), 

j ijc

ijn

j
01 =iη . The quality 

effect of th corner of i th partition is defined by: j

CLorALi
ccf
cBcM

ijij

ijij
ij ∈∀

×

×
=

)()(
)()(

ρ
ζ  

and the quality effect of j th neighbor of i th partition 
when this neighbor point exists and is active is defined by: 

CLorALi
nnf
nBnM

ijij

ijij
ij ∈∀

×

×
=

)()(
)()(

ρ
η  

In formulas of ijζ and ijη , is a scaled measure of 
estimated objective function of the corresponding corner or 
neighbor point (obtained by simulation). 

f

ρ is “saturation 
indicator”, this indicator equals to 1 if the total number of 
simulated points within the circle-shape neighborhood 
centered by the corresponding corner or neighbor point is 
less than an allowed upper bound and is infinite, otherwise. 
This upper bound depends on the quality of the estimated 
objective function of the corresponding corner or neighbor 
point. Generally, the better the quality, the higher the upper 
bound would be and more searches are allowed in that 
neighborhood (principle 3). Any simulated point is the 
corner point of more than one partition simultaneously; 
M as the “Membership Indicator” is the fuzzy 
membership of the corresponding point to each partition 
that has this point as a corner. B as the “Belongingness 
Indicator” compares the belongingness of each point to the 
partition that has this point as a corner point and the 
corresponding immediate neighbor partition. More details 
of these indicators are beyond the limited space of this 
paper. Interested readers are referred to Kabirian (2006). 
 After selecting a new promising partition, a point 
inside this partition must be simulated. Selection of this 
point depends on the “winner” criteria of selecting 
promising partition. The winner criteria is the criterion that 
its score for the new promising partition multiplied by its 
coefficient is equal to the total score of the new promising 
partition (see equation (1)). This criterion has had the most 
effect in selecting the new promising partition.  
 If the winner criterion is space, the intersection point 
of medians of the new promising partition is simulated. If 
the winner criterion is meta-model, the best sampled point 
inside the promising partition based on the responses of 
neural network is simulated (the same idea as phase 2). 
Finally, if the winner criterion is quality, then the new 
point to be simulated is selected in the neighborhood of the 
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corner or neighbor point of the promising partition with 
highest quality effect (see equation 2). However, the 
procedure of selecting new simulation point in any of the 
above cases guarantees that the point is always within the 
promising partition and preferably far enough away from 
previously simulated points (principles 1 & 2). 
 Depending on the success or failure of the winning 
criterion in finding “good” points in last iteration, the 
coefficients of all criteria are adapted. As an example, if 
the winning criterion has been meta-model and last 
iteration has simulated a point better than the best found 
point until then, the coefficient of meta-model criterion is 
increased and those of the other two are reduced. 
 Phase 3 is repeated as long as a stopping rule 
terminates the algorithm.  

3 NUMERICAL RESULTS 

Generally, there are 2 types of test beds available for 
evaluation the performance of SO algorithms. The first 
type includes actual simulation in which a number of 
artificial or real stochastic systems with some decision 
variables and performance measures are used. The second 
type includes closed form objective functions which mimic 
the role of simulation by providing numerical values of 
objective function given vectors of decision variables. The 
advantage of first type is that test beds are more realistic. 
But the experimenter has usually no intuition about the 
combination of response surfaces used. On the other hand, 
the advantage of the second type is that one can control the 
variety of the combination of response surfaces. Both types 
of test beds have been used in the literature. Pasupathy and 
Henderson (2006) have recently proposed some standards 
and test beds for comparing SO methods. Since the method 
proposed in this paper is primarily for two-dimensional 
problems, we design specific test beds here. 
 In our full numerical experiments we have used 20 
closed form objective functions as test problems, and here 
we show a sampling of those results from four 
representative test functions. The feasible region of these 
test problems is a 100 by 100 square, the same as the 
problem definition for the proposed algorithm. The value 
of the objective function of the global optimum of all these 
test problems is 1 and the worst solutions have an objective 
function of 100. So, the objective function values fall in the 
range of 1-100. These objective functions have been 
designed such that the location of the global optimum can 
be changed manually. The top part of Figure 18 shows the 
original version of the first objective function and the 
lower part of the Figure show two versions of this 
objective function whose global optimum locations have 
been changed randomly. (We refer to these two as two 
observations of the original objective function.) 
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Figure 4: Objective Function 1-Monomodal  

 
Figure 5 shows the four selected objective functions out of 
all 20 in their original format. The combination of our test 
bed of 20 objective function includes a wide range of 
response surfaces ranging from simple smooth single peak 
like that of Figure 4 to multiple peak, qualitative decision 
variables like objective function 16 in Figure 5 and very 
irregular functions like objective function 17 in Figure 5. 

 
Figure 5: Four selected closed form objective functions 
used as test beds 
 
For experiments of this paper, we only let the competing 
methods to use the numerical values of these objective 
functions. We add a random variable with standard normal 
distribution to the value of objective functions to mimic the 
random nature of simulation outputs. As mentioned earlier, 
the minimum of objective function is 1. So, we define the 
range of 1-1.5 as the optimum neighborhood and for each 
objective function, any competing method which simulates 
a point whose objective function falls within this optimum 
neighborhood is stopped because this method is believed 
that has found the optimum. But we also set a maximum 
number of simulation runs for the competing methods so 
that if a method fails to find a point within optimum 
neighborhood in the first 1000 simulation runs, it is 
stopped.  
 We use Stochastic Approximation (see Kim 2006 for 
overall procedure of this method) and Genetic Algorithm 
(Holland 1992) to compete with the proposed algorithm in 
optimizing the test problems. We used MATLAB software 
for coding the three methods. Firstly, we defined a number 
of parameter sets for Stochastic Approximation and 

 

 

 
 Number 5: Major with Minor           Number 9: Tsunami 

Number 16: Manhattan                   Number 17: Mirrored Peaks 
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Genetic Algorithm and using the test problems, we found 
the best parameter set for these 2 methods. Also, Educated 
guesses were used for the parameters of the proposed 
algorithm.  
 For the experiments, we first draw 5 observation of 

 proposed algorithm was 
uc

e graphs of the 

those obtained for 
he

4 CONCLUSION 

In this paper, a new simulation optimization method was 

each objective function. Each one of 3 competing method 
were tested 5 times for each observation of each objective 
function and the best found objective function after each 
simulation run for the trials of the observations of each 
objective function was averaged.  
 The computational time of the
m h more than those of the other two methods; but this 
time does not include simulation run time since we used 
closed form objective functions. In worst cases, the 
computation of the APS algorithm took less than a few 
minutes with 1000 evaluation of objective function. Hence, 
assuming the simulation run time is large enough, we 
neglected the computational time of the core optimizers 
and use the number of simulation runs as the performance 
metric to compare the competing methods. 
 The first 4 charts of Figure 6 shows th
average values of the objective function of the best found 
point after each simulation run for the 5 trials of 5 
observations of objective functions of Figure 5 versus the 
number of simulation runs. The y-axes show logarithmic 
values of these averages. It must be noted that the curves of 
each method is not very accurate for the optimum 
neighborhood because when a trial of an observation of an 
objective function reaches this optimum neighborhood, 
that trial is stopped. The last chart of Figure 6 shows the 
average over all 20 objective functions. 
 The results shown in Figure 6 and 
ot r individual objective functions clearly show that the 
APS algorithm converges to the optimal neighborhood 
much faster than its competitors. There were some 
objective functions in our test bed that none of the 
competing methods could reach the optimum 
neighborhood within 1000 simulation runs (like objective 
function 17), but the general pattern is that for almost all of 
the objective functions, the curve of the APS algorithm 
were well below those of the other two methods.  

proposed based on some ideas to improve the efficiency of 
simulation optimization methods. Our primary method 
could deal with 2 dimensional continuous optimization 
problems. The method uses a neural network as a meta 
model and combines different search strategies to explore 
the bounded feasible region. Using 20 objective functions 
with various shapes, we showed that the APS algorithm 
could have better convergence properties than Genetic 
Algorithm and Stochastic Approximations.   
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igure 6: Logaritmic average best found Objective 

he authors believe that the method could be extended to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
F
functions of Figure 4 response surfaces and the average 
over all 20 objective functions used as test bed. 
 
T
higher dimensions. One challenge in this extension is the 
time complexity of the method which is expected to grow 
very rapidly as dimension increases. One solution to this 
problem is to use Candidate list more frequently in the 3rd 

Objective Function 16: Manhattan
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Objective Function 9: Tsunami
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Objective Function 17: Mirrored Peaks
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Legend: 
Proposed Algorithm: 
Genetic Algorithm: 
Stochastic Approximation: 
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ieve that the method could be adapted for 
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