
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

ALLOCATION OF SIMULATION RUNS FOR SIMULATION OPTIMIZATION

Alireza Kabirian
Sigurdur Olafsson

Department of Industrial and Manufacturing Systems Engineering

Iowa State University
2019 Black Engineering, Ames, IA 50011

ABSTRACT

Simulation optimization (SO) is the process of finding the
optimum design of a system whose performance
measure(s) are estimated via simulation. We propose some
ideas to improve overall efficiency of the available SO
methods and develop a new approach that primarily deals
with continuous two dimensional problems with bounded
feasible region. Our search based method, called Adaptive
Partitioning Search (APS), uses a neural network as meta-
model and combines various exploitation strategies to
locate the optimum. Our numerical results show that in
terms of the number of evaluations (simulation runs)
needed, the APS algorithm converges much faster to the
optimum design than two well established methods used as
benchmark.

1 INTRODUCTION

Numerical optimization refers to a class of optimization
methods which only use the numerical values of objective
function. Such cases may arise when simulation is applied
to evaluate performance measure(s) of selected design
points of a stochastic system. In these cases, it is
practically impossible or computationally expensive to
obtain the closed form objective function based on decision
variables. Hence, simulation optimization (SO) methods
try to find the best designs of a system through numerical
estimations of the stochastic performance measure(s) of the
underlying system obtained via simulation.
 Many approaches have been proposed in the literature
for SO problems. These approaches and the range of the
problems they address could be classified with various
criteria (Henderson and Nelson 2006). Depending on the
possible range of values of decision variables, the methods
are classified into continuous, discrete or mixed
approaches. When the number of design options is limited,
statistical selection methods are usually appropriate (Kim
and Nelson 2006). The methods could also be classified
based on the qualitative or quantitative (or mixed) nature
of decision variables and type of objective function (single
criterion or multi criteria) (Azadivar 1999). For detailed
3631-4244-1306-0/07/$25.00 ©2007 IEEE
review of the available methods, see Andradóttir (1998),
Ólafsson and Kim (2002), Gosavi (2003) and for more
recent surveys, see Andradóttir (2006), Ólafsson (2006)
and Fu et. al. (2005).
 Most of the practical SO methods in the literature have
a core iterative search based strategy which evaluates
available information of past searches (if any) in each
iteration, propose new candidate solution(s), and simulate
these candidate(s). Therefore, the total computational time
in each iteration can be divided into two parts:

1. The time required to propose new candidate
solution(s) , and

2. the simulation run time for the proposed
candidates.

In the first part the methods use some intelligent strategy to
propose new candidate solution(s), and in the second part
the objective function(s) of these candidate solution(s) are
evaluated. For example, in the first part Genetic Algorithm
(GA) applies various operators such as selection, crossover
and mutation to generate a new population of candidate
solutions in each iteration, and then in the second part the
objective functions of the new population are evaluated
and returned to the core optimizer of the GA.
 In the case of deterministic optimization problems
where a closed-form objective function is available, the
time required for the second part of the optimization of
objective function evaluation is usually negligible as
opposed to the time of the first part of proposing new
solution(s). In contrast, when a simulation run is used to
estimate the objective function, the time of the first part
could be much less than the second part because running a
simulation model for real systems is usually
computationally time-consuming. It is therefore reasonable
to measure the efficiency of a SO algorithm in terms of the
number of simulation runs required and design the
algorithm such that as few as possible simulation runs are
needed.
 Most of the current methods for SO have originally
developed for problems with available closed-form
objective function. Therefore, since in the deterministic
context the time of evaluating the closed-form objective
function could be considered negligible, these methods

Kabirian and Olafsson

may not carefully allocate the simulation runs when
applied directly to simulation optimization problems. In
other words, they are not efficient in proposing new
solutions, that is, allocating simulation runs, and hence
require a large amount of time to simulate each of these
solutions. This fact motivates the development of methods
that make better use of the past information of simulated
points in a search based strategy.
 The underlying idea of this paper is that the following
principles could be used to guide the allocation of
simulation runs, and hence characterize a simulation
optimization method that does makes good use of
simulation run time:

1. It should not evaluate the objective function of a
single solution point more than once.

2. It should not evaluate the objective function of a
solution point that is so close to some other
previously simulated points that there is no
significant difference between the designs
corresponding to these points. This is primarily
germane to continuous problems.

3. It should control the amount of search in the
neighborhood of already found good solution
points and avoid excessively searching the
neighborhood of local optima.

4. When searching new local optima in unvisited
areas of the feasible region the search strategy
should directly take into account the size of those
unvisited areas.

Designing a simulation optimization method that addresses
each of these four desired characteristics requires more
computational memory to store past information and
control over past searches. This translates into more
computational burden for what we referred to above as the
first part of search based methods. On other hand, we
content that this increased “thinking” and higher
computational overhead could be justified by significantly
less cost in the second part if more appropriate candidate
solutions are suggested in the first part and hence fewer
simulation runs are required.

We also note that these four desired characteristics or
principles are not the only desired characteristics of
simulation optimization algorithms, and others may be
more appropriate in certain applications. However, as we
will see in the algorithm proposed below, following these
principles appears to result in an effective search
algorithm.
 The need for more evaluation of candidate solutions
before actually conducting simulation to obtain
performance measures usually justifies more complex
methods which are more conservative in proposing new
candidates. If the simulation run time is large enough, we
believe that the best methods are those which try to extract
and use the valuable information obtained right after each
simulation run before proposing a new candidate or at least
their population of proposed candidates in each iteration is
 364
as little as possible (with a conservative perspective). This
strategy of better utilization of past information usually
leads to less overall time for SO methods.
 The remainder of the paper is organized as follows.
Guided by the four principles above, we propose a new
iterative heuristic search based method for continuous 2-
dimensional problems in section 2. The main ideas of the
method are discussed in section 2.1 and more mathematical
details are provided in section 2.2. Section 3 summarizes
some experimental results for this method. Finally, section
4 concludes the paper and discusses our future research
directions.

2 OPTIMIZATION METHOD FOR CONTINUOUS
2-DIMENSIONAL PROBLEMS

To illustrate the effectiveness of the four principles stated
in section 1 above, we now propose a method for
simulation optimization of problems with two bounded
continuous decision variables. For simplicity and without
loss of generality, we assume that the upper and lower
bound of both decision variables are 0 and 100,
respectively, which are the only constraints of the
underlying optimization problem. The problem goal is to
minimize an expected objective function which is a closed
form function of simulation performance measure(s).

2.1 Overview

The core optimizer of the proposed optimization method
views simulation as a black box. In fact, the only role of
simulation in this method is to transform the new vectors
of decision variables introduced by optimizer into an
estimated objective function through sampling from
simulation performance measure(s).
 Throughout the algorithm, the square-shape feasible
region is divided into smaller pieces called partitions. Each
partition with a unique code is always a triangle with 3
corner points that have already been simulated. The space
within each partition is unvisited, that is, contains no
simulated point. The algorithm starts out with creating
initial partitions by simulating 4 corner points of the square
of feasible region and the middle point (see Figure 1).
Using these 5 simulated points, the feasible region is
divided into 4 same-shape partitions.

Figure 1: Initial 5 simulated points and 4 partitions

(100,100)

(100,0) (0,0)

(0,100)

Partition 4

Partition 1

Partition 3

Partition 2

Kabirian and Olafsson

The overall procedure of the method is to select one of the
available partitions called promising partition and simulate
a point inside this partition. Then the promising partition is
further divided into 3 new partitions with respect to the
location of recently simulated point inside the partition (see
Figure 2 with respect to promising partition 2 in Figure 1).
As new simulation points are added, so do the number of
partitions (in fact two more partitions per simulation are
added to the partitions). The natural questions that we
address here and in the next section after some definitions
are how the promising partition and the new point inside it
are selected, that is, how to allocate the next simulation
runs.

Figure 2: Promising Partition 2 in Figure 1 is further
divided into new partitions 2, 5, 6

In order to determine the partition where the next
simulation runs will be allocated, we use four sets of
partition codes called Available List (AL), Candidate List
(CL), Blocked List (BL), and Taboo List (TL). Each
partition is always a member of exactly one of the three
partition sets of AL, BL, or TL. CL is always a subset of
AL. A partition will be selected from either AL or CL.
 AL is the set of all partitions that promising partition
may be selected among them. This list includes all
partitions that haven’t been blocked or tabooed. BL
includes all partitions that have an angle which is close
enough to 180 degree. For example if a threshold of 170
degree is defined, each partition with an angle of more than
170 degree is blocked. Blocked partitions are temporarily
ignored for promising partition selection. Our experience
shows that if these blocked partitions are allowed to be
selected as promising partition, flatter partitions are
obtained and simulation points are wasted along a line
(principles 1 & 2). There is a process in the algorithm
called repartitioning which merges blocked partitions with
a neighboring partition and then splits the merged area into
two new partitions. Using this method, the area of blocked
partitions may find a new chance to be selected as the
promising partition. TL includes all partitions that have 2
conditions: the area of the tabooed partitions is less than a
threshold and their all 3 angles are close enough to 60
degree. Except a rare event, tabooed partitions are
permanently ignored for promising partition selection. The
rare event is the condition that a tabooed partition becomes
a neighboring partition of a blocked partition, whereas
repartitioning may let the area of a tabooed partition
available for further search. Tabooed partitions are

3

4

1
2

65
 365
expected to be very small partitions that the user assumes
no significant difference between the design points inside
the partition because these points are very close to each
other (see principles 1 and 2 above). Our experience also
shows that the corner points of the tabooed partitions are
local optima of feasible region, so we taboo them to avoid
excessive search surrounding high quality points (principle
3). In some iterations, the algorithm let all available
partitions to participate in promising partition selection but
in some others, a subset of available list, CL, is selected
and only members of this list are allowed to be the next
promising partition.
 Now suppose that we are in a particular iteration of the
algorithm and have determined whether a candidate list or
available list is used for promising partition selection. The
promising partition is selected randomly among the
partitions of candidate or available list, but the
corresponding probability distribution should not be
uniform. Instead a probability is assigned to each member
of CL or AL and the promising partition is selected
randomly using these probabilities. In order to achieve the
characteristics of a good simulation optimization algorithm
outlined in section, we propose three criteria which affect
the probability of selecting a particular partition. These are
called space score, meta-model score, and quality score.
These three criteria are combined into a single indicator
called total score for each partition and the total scores for
the members of AL or CL determines the probability of
selecting each partition.
 The space score is motivated by the fourth principle
from section 1 and is a relative area indicator for each
partition. The higher the area of a partition in opposed to
other partitions, the higher this criterion would be. This
score helps to explore unvisited areas of the feasible
region.
 Again motivated by the observation that running
simulations is computationally expensive relative to other
activities, our method induces a meta-model to the input-
output (vector of decision variables-estimated objective
function) of simulation module. Some sample points are
drawn from the area of each partition and the objective
function of these samples are approximated with the
trained meta-model, which here is a neural network. The
meta-model score is based on these approximated objective
functions. The better the approximated objective function
of the samples of a partition, the higher this criterion would
be. In fact, this criterion monitors the whole feasible region
quality.
 Finally, the quality score for a partition is the
representation of the quality of the estimated objective
function of simulated points surrounding the partition. The
better the quality of these points, the higher the quality
score. This criterion exploits the information of high
quality simulated points with the hope of discovering local
(or maybe global) optima.

Kabirian and Olafsson

 To construct a total score, we use a criterion
coefficient for each of the three criteria, which are changed
between each iteration based on the effectiveness of using
each criterion.
 The meta-model is updated (restructured and
retrained) periodically, for example the user of the
algorithm may specify that after each five simulations, the
meta-model is updated. The algorithm uses available list in
an iteration if the neural network is updated in that
iteration, otherwise it uses a candidate list. The members of
the candidate list are selected from the set of available list
based on the score of the partitions in the available list.
 After selecting the promising partition, a point is
selected inside the promising partition and simulated.
Selection of this point is based on the most effective
criteria of the promising partition. Simulating this point, an
iteration ends and stopping criteria are checked to see if
more iterations could be performed.

2.2 Detailed Algorithm

In this section we present more details for the algorithm
motivated above. Since the key component of the
algorithm is the partitions that are adapted to the
information obtain from the simulation runs already made,
we call it Adaptive Partitioning Search (APS). The APS
algorithm has three phases, which can be summarized as
follows.

 Major Steps

Phase 1 • Simulate five fixed points
• Divide the feasible region into four

partitions

Phase 2 • Select one of the four partitions (which is
called promising partition) based only on
metamodel criterion

• Select and simulate a point inside the
promising partition

.
Phase 3 • Stop the algorithm if any of the terminating

conditions are true.
• Divide the last promising partition into

three new partitions
• Update the information of partitions and

algorithm
• Select a partition called promising partition
• Select and simulate a point inside the

promising partition
• Return to the first step of the phase

In the next three subsections, each of these steps will

be elaborated upon.
 366
2.2.1 Phase One

In this short Phase, five fixed points are always simulated
which are (0,0), (100,0), (0,100), (100,100), (50,50) as
shown in Figure 1. Then the feasible region is divided into
four partitions using the diagonals of the square of the
feasible region. The primary purpose of simulating these
fixed points is to set up initial partitions. But from practical
perspective, we also believe that extreme values of
decision variables are generally more likely to be the
optimum in real world systems.

2.2.2 Phase Two

A meta-model is induced using the first five simulated
points. We use an artificial feed forward neural network as
meta model that is trained by Levenberg - Merquardt
algorithm. The neural network has one input layer with 2
neurons (the number of decision variables), an output layer
(since our test problems have a single performance
measure) and at least one hidden layer with an upper bound
on the number of neurons in each hidden layer. We use a
combination of constructive learning algorithms and
pruning methods for finding the suitable structure of
hidden layers with least mean squared error objective (see
Ma and Khorasani, 2003).
 Of the three criteria of space, meta-model (neural
network in our case), and quality, only meta-model is used
for selecting the promising partition in this phase. First,
some sample points are selected from each partition. Our
sample points for a partition are located on the three
medians of the triangle of the partition and have a
minimum distance with each other and corner points of the
triangle. Using this sampling strategy, the samples
represent almost all regions of each partition and are not
too close to simulated corner points (principles 1 and 2).
Then, the objective function of each sample of each
partition is predicted by the structured and trained meta
model. The predicted objective function of the th sample
of i th partition denoted by

j

ijϕ is scaled such that it has a

positive quantity. The Neural Network Score () is
defined by comparing the predicted objective function of
the best sample in each partition with that among all
partitions:

iN

4,3,2,1min

minmin
4,3,2,1 =∀= ⎭

⎬
⎫

⎩
⎨
⎧

= iN
ijj

kjjk
i ϕ

ϕ

The total score iψ of partition i and finally the probability

iπ of selecting this partition are defined by:

i

iNn

k k

i
i

ii

∀=

∀⋅=

∑ =

,

,

4

1
ψ

ψπ

ψ

Kabirian and Olafsson

where is the neural network criterion coefficient that is
equal to 1/3 for this phase.

n

 After selecting the promising partition, the point inside
the promising partition that has had the best predicted
objective function based on neural network model is
selected and simulated.

2.2.3 Phase Three

Before commencing a new iteration in this phase, the
stopping criteria defined by user are checked and if any
one of them is true, the algorithm terminates. As examples
of terminating conditions, maximum number of iterations
or stalled searches may be used here.
 Now suppose that a new iteration must be executed.
The overall procedure of this phase is the same as phase 2;
a new promising partition is selected and a point inside this
partition is simulated. If it is the first iteration in phase 3,
the four partitions obtained in phase 1 are added to empty
set of AL. Other partition sets (TL and BL) are initialized
empty as well. As the first step, the old promising partition
is divided into 3 new partitions (Figure 2). Now the old
promising partition is removed from AL and the 3 new
partitions acquired by partitioning the old promising
partition are put in one of the sets of AL, BL or TL. First
the conditions of membership to BL and TL (as briefly
described in previous section) are evaluated and if a
partition doesn’t meet the requirements of membership to
BL nor TL, it is put into AL. After this step, Repartitioning
process of the algorithm merges the area of blocked
partitions with one of immediate neighboring partitions
and split the resulted tetragon into two new areas, provided
that the obtained areas are actually triangle-shape partitions
again (Figure 3). These new partitions are then put into TL
or AL.

 Figure 3: Repartitioning Process merges blocked partition
9 (left figure) with its neighbor (partition 7) and forms new
partitions

As the algorithm goes on, the number of partitions rapidly
increases and it is computationally cumbersome to let all
Available partitions to have a chance to be selected as the
next promising partitions; so in some iterations in order to
improve the computational efficiency of the algorithm, a
subset of Available partitions based on the last assigned
total score (excluding the effect of criterion coefficients)

2θ

1θ

10
9 2 8 7

4

1

3

6
5 10

9
2 8

7

4

1

3

6
5

 367
are randomly selected and put into CL. The new partitions
obtained by splitting the last promising partition and those
obtained in Repartitioning Process are also put into CL.
Then the promising partition is selected among CL. But in
some other iterations, the algorithm let all Available
partitions to have a chance to be further searched (based on
a user defined plan). Whenever AL is used, the meta model
is also updated (restructured and retrained) with all
available simulated points.
 Now a partition must be selected among the members
of either AL or CL. For selecting this partition, a space
score , a meta-model Score , and a quality score
are assigned to partition i which is a member of AL or
CL. These criteria form a total score for each partition

iS iN iQ

iψ
and the probability iπ of selecting each partition is defined
by:

{ }

ALorCLi

QqNnSs

ALorCLk
k

i
i

iiii

∈∀=

×××=

∑
∈

ψ
ψπ

ψ ,,max
 (1)

where s , and are the criterion coefficient of space,
meta-model, and quality respectively. These coefficients
are always between zero and one and add up to one, they
can vary between iterations of this phase. All three
criterion scores are so defined that vary between zero and
one and the best partition(s) based on a specific criterion
has a score of one for that criterion.

n q

 The space score is defined by comparing the area of
each partition with the area of the biggest partition in AL
(no matter if AL or CL are used). If area of partition i is
denoted by , we have: iA

{ }
{ } ALorCLiS

k
ALk

ki
A

AA
i ∈∀=

∈
max

 If AL is used, the meta-model is updated; hence, the
meta-model score of all available partitions are also
updated with the same idea as phase two (comparing local
best objective function approximation in partition with
global best). Otherwise, CL is used and only the meta-
model score of new partitions are assigned after sampling
some points from each partition.
 Each side of a triangle-shape partition could be the
border of two immediate neighbor partitions (e.g. partition
6 in Figure 2 is in the neighborhood of partitions 3, 2 and
5). Any two neighbor partitions have 2 simulated points in
common and one non-common point. So, each partition
has 3 corner points, at most 3 neighbor partitions and
consequently at most 3 neighbor point (which are non-
common points of neighbor partitions).
 The quality score is more complex than the other two
scores. The method considers a quality effect for each
corner points and each neighbor point of a partition. The
quality score of i th partition which is a member of AL or
CL is:

Kabirian and Olafsson

{
ALorCLi

Q iiiiiii

∈∀
= 321321 ,,,,,max ηηηζζζ }

Here ijζ and ijη are the quality effect of th corner ()

and neighbor () points of i th partition respectively. The
values of quality effect of neighbors and corners are
between 0 and 1. If th neighbor doesn’t actually exists
(there are AT MOST 3 neighbors),

j ijc

ijn

j
01 =iη . The quality

effect of th corner of i th partition is defined by: j

CLorALi
ccf
cBcM

ijij

ijij
ij ∈∀

×

×
=

)()(
)()(

ρ
ζ

and the quality effect of j th neighbor of i th partition
when this neighbor point exists and is active is defined by:

CLorALi
nnf
nBnM

ijij

ijij
ij ∈∀

×

×
=

)()(
)()(

ρ
η

In formulas of ijζ and ijη , is a scaled measure of
estimated objective function of the corresponding corner or
neighbor point (obtained by simulation).

f

ρ is “saturation
indicator”, this indicator equals to 1 if the total number of
simulated points within the circle-shape neighborhood
centered by the corresponding corner or neighbor point is
less than an allowed upper bound and is infinite, otherwise.
This upper bound depends on the quality of the estimated
objective function of the corresponding corner or neighbor
point. Generally, the better the quality, the higher the upper
bound would be and more searches are allowed in that
neighborhood (principle 3). Any simulated point is the
corner point of more than one partition simultaneously;
M as the “Membership Indicator” is the fuzzy
membership of the corresponding point to each partition
that has this point as a corner. B as the “Belongingness
Indicator” compares the belongingness of each point to the
partition that has this point as a corner point and the
corresponding immediate neighbor partition. More details
of these indicators are beyond the limited space of this
paper. Interested readers are referred to Kabirian (2006).
 After selecting a new promising partition, a point
inside this partition must be simulated. Selection of this
point depends on the “winner” criteria of selecting
promising partition. The winner criteria is the criterion that
its score for the new promising partition multiplied by its
coefficient is equal to the total score of the new promising
partition (see equation (1)). This criterion has had the most
effect in selecting the new promising partition.
 If the winner criterion is space, the intersection point
of medians of the new promising partition is simulated. If
the winner criterion is meta-model, the best sampled point
inside the promising partition based on the responses of
neural network is simulated (the same idea as phase 2).
Finally, if the winner criterion is quality, then the new
point to be simulated is selected in the neighborhood of the
 368
corner or neighbor point of the promising partition with
highest quality effect (see equation 2). However, the
procedure of selecting new simulation point in any of the
above cases guarantees that the point is always within the
promising partition and preferably far enough away from
previously simulated points (principles 1 & 2).
 Depending on the success or failure of the winning
criterion in finding “good” points in last iteration, the
coefficients of all criteria are adapted. As an example, if
the winning criterion has been meta-model and last
iteration has simulated a point better than the best found
point until then, the coefficient of meta-model criterion is
increased and those of the other two are reduced.
 Phase 3 is repeated as long as a stopping rule
terminates the algorithm.

3 NUMERICAL RESULTS

Generally, there are 2 types of test beds available for
evaluation the performance of SO algorithms. The first
type includes actual simulation in which a number of
artificial or real stochastic systems with some decision
variables and performance measures are used. The second
type includes closed form objective functions which mimic
the role of simulation by providing numerical values of
objective function given vectors of decision variables. The
advantage of first type is that test beds are more realistic.
But the experimenter has usually no intuition about the
combination of response surfaces used. On the other hand,
the advantage of the second type is that one can control the
variety of the combination of response surfaces. Both types
of test beds have been used in the literature. Pasupathy and
Henderson (2006) have recently proposed some standards
and test beds for comparing SO methods. Since the method
proposed in this paper is primarily for two-dimensional
problems, we design specific test beds here.
 In our full numerical experiments we have used 20
closed form objective functions as test problems, and here
we show a sampling of those results from four
representative test functions. The feasible region of these
test problems is a 100 by 100 square, the same as the
problem definition for the proposed algorithm. The value
of the objective function of the global optimum of all these
test problems is 1 and the worst solutions have an objective
function of 100. So, the objective function values fall in the
range of 1-100. These objective functions have been
designed such that the location of the global optimum can
be changed manually. The top part of Figure 18 shows the
original version of the first objective function and the
lower part of the Figure show two versions of this
objective function whose global optimum locations have
been changed randomly. (We refer to these two as two
observations of the original objective function.)

Kabirian and Olafsson

Figure 4: Objective Function 1-Monomodal

Figure 5 shows the four selected objective functions out of
all 20 in their original format. The combination of our test
bed of 20 objective function includes a wide range of
response surfaces ranging from simple smooth single peak
like that of Figure 4 to multiple peak, qualitative decision
variables like objective function 16 in Figure 5 and very
irregular functions like objective function 17 in Figure 5.

Figure 5: Four selected closed form objective functions
used as test beds

For experiments of this paper, we only let the competing
methods to use the numerical values of these objective
functions. We add a random variable with standard normal
distribution to the value of objective functions to mimic the
random nature of simulation outputs. As mentioned earlier,
the minimum of objective function is 1. So, we define the
range of 1-1.5 as the optimum neighborhood and for each
objective function, any competing method which simulates
a point whose objective function falls within this optimum
neighborhood is stopped because this method is believed
that has found the optimum. But we also set a maximum
number of simulation runs for the competing methods so
that if a method fails to find a point within optimum
neighborhood in the first 1000 simulation runs, it is
stopped.
 We use Stochastic Approximation (see Kim 2006 for
overall procedure of this method) and Genetic Algorithm
(Holland 1992) to compete with the proposed algorithm in
optimizing the test problems. We used MATLAB software
for coding the three methods. Firstly, we defined a number
of parameter sets for Stochastic Approximation and

 Number 5: Major with Minor Number 9: Tsunami

Number 16: Manhattan Number 17: Mirrored Peaks
 369
Genetic Algorithm and using the test problems, we found
the best parameter set for these 2 methods. Also, Educated
guesses were used for the parameters of the proposed
algorithm.
 For the experiments, we first draw 5 observation of

 proposed algorithm was
uc

e graphs of the

those obtained for
he

4 CONCLUSION

In this paper, a new simulation optimization method was

each objective function. Each one of 3 competing method
were tested 5 times for each observation of each objective
function and the best found objective function after each
simulation run for the trials of the observations of each
objective function was averaged.
 The computational time of the
m h more than those of the other two methods; but this
time does not include simulation run time since we used
closed form objective functions. In worst cases, the
computation of the APS algorithm took less than a few
minutes with 1000 evaluation of objective function. Hence,
assuming the simulation run time is large enough, we
neglected the computational time of the core optimizers
and use the number of simulation runs as the performance
metric to compare the competing methods.
 The first 4 charts of Figure 6 shows th
average values of the objective function of the best found
point after each simulation run for the 5 trials of 5
observations of objective functions of Figure 5 versus the
number of simulation runs. The y-axes show logarithmic
values of these averages. It must be noted that the curves of
each method is not very accurate for the optimum
neighborhood because when a trial of an observation of an
objective function reaches this optimum neighborhood,
that trial is stopped. The last chart of Figure 6 shows the
average over all 20 objective functions.
 The results shown in Figure 6 and
ot r individual objective functions clearly show that the
APS algorithm converges to the optimal neighborhood
much faster than its competitors. There were some
objective functions in our test bed that none of the
competing methods could reach the optimum
neighborhood within 1000 simulation runs (like objective
function 17), but the general pattern is that for almost all of
the objective functions, the curve of the APS algorithm
were well below those of the other two methods.

proposed based on some ideas to improve the efficiency of
simulation optimization methods. Our primary method
could deal with 2 dimensional continuous optimization
problems. The method uses a neural network as a meta
model and combines different search strategies to explore
the bounded feasible region. Using 20 objective functions
with various shapes, we showed that the APS algorithm
could have better convergence properties than Genetic
Algorithm and Stochastic Approximations.

Kabirian and Olafsson

igure 6: Logaritmic average best found Objective

he authors believe that the method could be extended to

F
functions of Figure 4 response surfaces and the average
over all 20 objective functions used as test bed.

T
higher dimensions. One challenge in this extension is the
time complexity of the method which is expected to grow
very rapidly as dimension increases. One solution to this
problem is to use Candidate list more frequently in the 3rd

Objective Function 16: Manhattan

1

10

100

1 101 201 301 401 501 601 701 801 901
simulation run

Lo
ga

rit
m

ic
 A

ve
ra

ge

be
st

 fo
un

d
 o

bj
. f

un
.

Objective Function 5: Major w ith Minor

1

10

100

1 101 201 301 401 501 601 701 801 901
simulation run

Lo
ga

rit
m

ic
 A

ve
ra

ge

be
st

 fo
un

d
 o

bj
. f

un
.

Objective Function 9: Tsunami

1

10

100

1 101 201 301 401 501 601 701 801 901
simulation run

Lo
ga

rit
m

ic
 A

ve
ra

ge

be
st

 fo
un

d
 o

bj
. f

un
.

Objective Function 17: Mirrored Peaks

1

10

100

1 101 201 301 401 501 601 701 801 901
simulation run

Lo
ga

rit
m

ic
 A

ve
ra

ge

be
st

 fo
un

d
 o

bj
. f

un
.

A verage o f a ll 20 Object ive F unct io ns

1

10

100

1 101 201 301 401 501 601 701 801 901
simulation run

Lo
ga

rit
m

ic
 A

ve
ra

ge

be
st

 fo
un

d
 o

bj
. f

un
.

Legend:
Proposed Algorithm:
Genetic Algorithm:
Stochastic Approximation:
 370
ieve that the method could be adapted for

n’t able to

ACKNOWLEDGMENT

The first author would like to thank Professor Hashem

REFERENCES

Andradóttir, S. 1998. A review of simulation optimization

And ulation

Apr na
2006. Enhancing business process management with

phase of the algorithm. Other solutions are to simplify the
various indicators used in the 3 criteria of phase 3 specially
Quality Score. We are studying these solutions in order to
extend the algorithm to higher dimensions and our future
work (Kabirian and Olafsson 2007) generalizes the method
presented here.
 We also bel
discrete decision variables. Our results for applying the 2-
dimensional case also showed promising results for
qualitative decision variables. We are also working on
using the ideas of APS method for multicriteria problems.
 Another issue that must be addressed is accounting for
the randomness involved in simulation responses. The
experimental results presented in this paper were obtained
under noisy responses of closed form objective functions
used as test bed (we added a standard normal to the
objective function values). The nice experimental
convergence properties of the APS algorithm under the
noisy test bed are signals that the APS algorithm could
somehow handle the randomness of responses.
 Due to limited space in this paper, we were
discuss about a statistical procedure that determines the
number of simulation replications required for each
simulation run in the algorithm (and consequently we
didn’t apply it in the experiments). In our next work
(Kabirian and Olafsson 2007), we will present this
procedure and prove asymptotic convergence under the
condition that the mean response is continuous in a
neighborhood of the global optimum. However, the
disadvantage is that mathematical convergence guarantee
usually requires simulation of design points that have
already been simulated (Olafsson 2006) which is
inefficient. Since the final goal of developing SO methods
is practical appeal, we believe the efficiency should not be
sacrificed for having mathematical convergence proofs in
the tradeoff between the two.

Mahlooji for supervising his M.Sc. dissertation in the
Department of Industrial Engineering at Sharif University
of Technology.

techniques, in D.J. Medeiros, E.F.Watson, J.S. Carson,
and M.S. Manivannan (eds.), In Proceedings of the
1998 Winter Simulation Conference, 151-158.
radóttir, S. 2006. An overview of sim
optimization via random search. In Henderson and
Nelson (eds.), Handbooks in operations research and
management science, 13, 617 – 632, Elsevier.
il, J. M., M. Better, F. Glover, J. Kelly, M. Lagu

Kabirian and Olafsson

simulation optimization. In Proceedings of the 2006
Winter Simulation Conference, 642-649
divar, F. 1999. Simulation optimization methodologies.
In Proceedings of the 1999 Winte

Aza
r Simulation

Fu,
w, new developments, and

Gos
ques and reinforcement

Hol

 method of simulation

Kab

Kim
lation

Kim
lson (eds.), Handbooks in

Ma,
yer feedforward neural networks.

Olaf
ations research and

Olaf
ation

Pasu
problems. In Proceedings of

UTHOR BIOGRAPHIES

a Ph.D. student in the
Department of Industrial and Manufacturing Systems

Conference. 93-100.
M. C., F. W. Glover, J. April. 2005. Simulation
optimization: A revie
applications. In Proceedings of the 2005 Winter
Simulation Conference. 83-95
avi A. 2003. Simulation-based optimization:
parametric optimization techni
learning. Kluwer Academic Publishers

land, J. H., 1992. Genetic algorithms. Scientific
American, July 1992, 66-72.

Kabirian, A. 2006. A review of current methodologies and
developing a new heuristic
optimization. Master of Science Dissertation (In
Farsi), Sharif University of Technology, Tehran, Iran
irian, A., S. Olafsson 2007. Simulation based
optimization via golden partition search. Working
paper, IMSE Department, Iowa State University
, S. 2006. Gradient-based simulation optimization. In
Proceedings of the 2006 Winter Simu
Conference, 159-167
, S, B. L. Nelson. 2006. Selecting the best system. In
Henderson and Ne
operations research and management science, 13,
501-534, Elsevier.
 L., K. Khorasani. 2003. A new strategy for adaptively
constructing multila
Neurocomputing, 51, 361 – 385.
sson, S., 2006. Metaheuristics. In Henderson and
Nelson (eds.), Handbook in oper
management science, 13, 633 –654, Elsevier.
sson, S., J. Kim. 2002. Simulation optimization. In
Proceedings of the 2002 Winter Simul
Conference, 1931-1936
pathy R., S. G. Henderson 2006. A testbed of
simulation-optimization
the 2006 Winter Simulation Conference, 255-263.

A

ALIREZA KABIRIAN is

Engineering at Iowa State University since 2006. He
received a M.Sc. in Industrial Engineering from Sharif
(Aryamehr) University of Technology, Tehran, Iran in
2006 and a B.Sc. in Industrial Engineering from University
of Najafabad, Esfahan, Iran. After money and home town,
his interests include simulation, optimization and
stochastic modeling. His e-mail address is
<a_kabirian@yahoo.com>.

 371
IGURDUR OLAFSSON is an associate professor in the S
Department of Industrial and Manufacturing Systems
Engineering at Iowa State University. He received a M.S.
and Ph.D. from the Department of Industrial Engineering
at the University of Wisconsin – Madison, and B.S. in
mathematics from the University of Iceland. His research
interests focus on discrete optimization, especially
metaheuristics, and their uses in simulation optimization
and data mining. His web page can be found at
<www.public.iastate.edu/~olafsson>.

mailto:a_kabirian@yahoo.com

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

