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ABSTRACT

Response Surface Methodology (RSM) is a metamodel-
based optimization method. Its strategy is to explore small
subregions of the parameter space in succession instead of at-
tempting to explore the entire parameter space directly. This
method has been widely used in simulation optimization.
However, RSM has two significant shortcomings: Firstly,
it is not automated. Human involvements are usually re-
quired in the search process. Secondly, RSM is heuristic
without convergence guarantee. This paper proposes Sto-
chastic Trust Region Gradient-Free Method (STRONG) for
simulation optimization with continuous decision variables
to solve these two problems. STRONG combines the tra-
ditional RSM framework with the trust region method for
deterministic optimization to achieve convergence property
and eliminate the requirement of human involvement. Com-
bined with appropriate experimental designs and specifically
efficient screening experiments, STRONG has the potential
of solving high-dimensional problems efficiently.

1 INTRODUCTION

This paper proposes a novel design-of-experiment (DOE)
based simulation optimization algorithm. Simulation Opti-
mization is defined as “a repeated analysis of the simula-
tion model with different values of design parameters, in
an attempt to identify best simulated system performance”
(Barton and Meckesheimer 2006). The response is assumed
to be a black-box, and can only be evaluated by computer
simulations. This paper focuss on the problems with contin-
uous decision variables. The challenges arise in the presence
of randomness of the response function and the unknown
relationship between response and decision variables which
contrasts with classic deterministic optimization assuming
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that users has perfect information about the objective func-
tion including gradient function and Hessian matrix.

Consider the following minimization problem

min
x∈Rp

E(G(x,ω)) (1)

G(x,ω) is the simulation output and G(x,ω) = g(x)+ εx.
Here g(x) is an unknown underlying relationship between
response and decision variables; ω represents the random
variable defined in the probability space (Ω,F ,P); and
εx is the randomness induced by ω . Function G(x,ω)
is assumed measurable. Notice that the subscript x in εx
shows the dependence of the randomness on its location.
This dependence is indeed realistic in broad applications
(Spall 2003). We further assume that:

1. εx ∼ N(0,σ2
x ), and

2. σ2
x is unknown and supx σ2

x < ∞

Given an oracle which is capable of generating the response
G(x,ω), our goal is to find the stationary point of the
underlying response function g(x).

Simulation optimization methodologies can be gener-
ally classified into three categories, stochastic approximation
(SA), sample path optimization (SPO), and response surface
methodology (RSM) (Fu 2002). The method of stochastic
approximation attempts to imitate the deterministic gradient
search method (e.g., steepest descent method) (Fu 2002). It
is a iterative process of moving from one solution to another
based on the gradient estimate. Frequently used gradient
estimation methods are, for example, finite difference esti-
mation, likelihood ratio/score function method, perturbation
analysis and frequency domain method (Carson and Maria
1997). SA has rich convergence theories in various con-
ditions, however, it usually suffers from slow convergence
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rate when the objective function is flat and often diverges
when the objective is steep (Andradottir 1995).

SPO uses the average function to approximate the origi-
nal objective function and then optimize it (average function)
by applying a deterministic optimization method. Gener-
ally, in order to make the original objective function well-
approximated, a large number of sample paths are required
for the average function. One advantage of the the sample
path approach is that it can ”bear the large and power-
ful array of deterministic optimization methods and deal
with problems in which the parameters might be subject to
complicated constraints” (Robinson 1996).

Response surface methodology (RSM) is a sequential
procedure for building relationship (polynomial functions)
between the input and output variables and optimizing this
polynomial functions. The success of RSM is based on the
validity of repeated localized curve fitting and subsequent
optimization (Spall 2003). RSM has an arsenal of powerful
statistical tools including regression and analysis of variance
at its disposal (Fu 1994). Furthermore, combining with
efficient experimental designs, it has the potential to solve
high-dimensional problems. However, RSM has two main
flaws. First, RSM uses steepest descent (or ascend) method
(SD) to search for the next improved region. SD suffers
from two well-known problems (Myers and Montgomery
2002): (i) it is scale-dependent; (ii) the step size along its
path is selected intuitively; human involvements are required
in each iteration. Second, RSM provides no convergence
guarantee, i.e., even if it is kept running for long time
there is no assurance that the solution will be close to the
optimal solution. Some research has been conducted to
provide an automated version of RSM (Nicolai, Dekker,
Piersma, and Oortmarssen 2004). However, there is little
research addressing the convergence issue as the best of our
knowledge.

Trust Region Method (TR) is a well-studied determin-
istic nonlinear programming method (Nocedal and Wright
1999) that has similar framework as response surface
methodology. At each iteration, TR defines a trust region
around the current iterate, build a quadratic approximation
model, find the optimal solution within the trust region
(based on this quadratic model) and then moves to the op-
timal solution (if it is satisfactory by certain criterion). The
size of trust region will be automatically determined by the
algorithm. In addition, it can be proved to converge to the
stationary point of the objective function.

However, TR is developed for deterministic optimiza-
tion, (i.e., the objective function is without noise and can be
expressed explicitly) therefore it cannot handle stochastic
case. Besides, TR builds the quadratic model all the time
therefore it could be computationally intensive when the
dimensionality of problem grows. This research proposed
an algorithm called STRONG which combines RSM and
TR. STRONG takes the benefits from both of them so that
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it can handle stochastic optimization problems, requires no
human involvements, and have convergence guarantee. Fur-
thermore, it is capable of solving high-dimensional problems
efficiently if combined with efficient experimental designs.
This article will be organized as follows. In section 2, we
will review response surface methodology and trust region
method. In section 3, the proposed algorithm STRONG
will be introduced and its performance is discussed. Sec-
tion 4 will demonstrate preliminary numerical results. We
conclude with the future direction in section 5.

2 RESPONSE SURFACE METHODOLOGY AND
TRUST REGION METHOD

2.1 Response Surface Method

Response surface methodology (RSM) introduced in the
early 50’s by Box and Wilson (1951) is a powerful tool
to determine the optimal input combination. Classic RSM
employs a sequential experimental procedure to fit and
optimize a series of polynomials on small subregions. RSM
has been extensively used in industry to select the optimal
operating conditions or product designs. A vast amount of
literatures on RSM can be found, for example, (Box and
Wilson 1951), (Box, Hunter, and Hunter 1978), (Myers and
Montgomery 2002), (Khuri and Cornell 1996).

One of the earliest applications of RSM in simulation
was reported by Biles (1974) and Kleijnen (1975). Since the
simulation model representing the real world systems can
be very complex, difficult and expensive to construct, some
simple approximation models (sometimes called metamod-
els or surrogate models) such as linear or quadratic local
models will be locally constructed to “mimic” the behavior
in the subregion. These metamodels reduce the prediction
variance by extending the effect of the law of large num-
bers over all design points in the local region (Barton and
Meckesheimer 2006). RSM is one of the metamodel-based
methods. The fundamental RSM framework can be briefly
described as follows (Myers and Montgomery 2002):

Stage I

1. Plan and run a factorial (or fractional factorial)
design plus the center points in the region of interest.

2. Do the curvature test. If the curvature test is not
significant, go to step 3. Otherwise go to Stage II.

3. Fit a linear regression model to the data.
4. Determine the path of steepest descent (if it is a

minimization problem).
5. Move along the path of steepest descent until the

response no longer improves.

(Stage I will be repeated until the the linear response surface
becomes inadequate.)
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Stage II

1. Run a central composite design and fit a quadratic
model.

2. Based on the quadratic model, find the optimal
solution.

Based on the framework above, RSM sequentially explores
local regions of the whole experimental region and performs
line searches to approach the optimal region. Its moving
direction is chosen by the steepest descent (which is obtained
from the local model) and step size is determined by a line
search. It is notable that Phase II is only done once, whereas
Stage I is iterated a number of times. Fewer replications
are expended for each iteration in Stage I while in Phase II
the region should be explored thoroughly by using a large
number of replications (Fu 1994). Notice that the optimal
solution is obtained through the quadratic model in Stage
II, therefore it is an “estimated” optimal solution and will
not necessarily be a true optimal solution for the underlying
response.

One of the biggest advantage in RSM is its generality
(Fu 1994). An arsenal of well-studied statistical tools such as
regression analysis, design of experiments and ANOVA can
be incorporated in its framework. However, several issues
need to be solved. Firstly, RSM is not automated. Human
opinions are required to define the region of interest and to
decide the experimental design for each iteration. Secondly,
RSM is heuristic and does not possess convergence property.
Convergence is an important issue because it can provide
valuable insights of the algorithm, e.g., to delineate the
range of applicability and limitations of the algorithm.

2.2 Trust Region Method

Trust Region Method (TR) is a nonlinear optimization algo-
rithm for deterministic problems. Consider a minimization
problem

min
x∈Rn

f (x) (2)

where f (x) is an explicit deterministic function. A basic
framework of trust region method is given as follows (Conn,
Gould, and Toint 2000):

1. Given an initial point x0, an initial trust region
radius 40, and constants η1, η2, γ1, γ2 satisfying
0 < η1 ≤ η2 < 1 and 0 < γ1 ≤ γ2 < 1. Compute
f (x0) and set k=0

2. Choose ‖ ·‖k and define a local model mk (usually
by Taylor expansions) in Bk = {x∈Rn| ‖x−xk‖k ≤
4k}

3. Compute a step sk that “sufficiently reduces” the
model mk and xk + sk ∈ Bk
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4. Compute f (xk + sk)

ρk =
f (xk)− f (xk + sk)

mk(xk)−mk(xk + sk)

If ρk > η1, then define xk+1 = xk + sk; otherwise
define xk+1 = xk

5. Set

4k+1 ∈

 [4k,∞) if ρk ≥ η2,
[γ24k,4k] if ρk ∈ [η1,η2)
[γ14k,γ24k] if ρk < η1.

Increase k by 1 and go to step 1.

A significant strength of TR is its convergence property.
By convergence we mean the assurance that starting at
an arbitrary initial solution will converge to a stationary
point for the original problem. It is worth noting that since
trust region method is used in deterministic optimization, the
objective function is assumed available and can be expressed
explicitly. The gradient and Hessian information are also
known for each x in the domain. Therefore, the local model
mk can be constructed analytically. However, in stochastic
setting, both the objective function, the gradient and Hessian
matrix of each x in the domain are not known and can only
be obtained by “estimation”. In section 3, we will show
how to modify the trust region framework so that it can be
used in the stochastic setting.

2.3 Comparisons of RSM and TR

RSM and TR share some similarities. They both build the
local linear/quadratic model for each iteration and use it to
generate the search direction. However, there exists some
difference between them.

1. TR cannot be used in the stochastic problems.
2. RSM and TR both generate steps based on the

local model, but they use the model in different
fashion. RSM uses the local model to generate a
search direction first and then determines a suitable
step length along this direction while trust region
method defines a “trust region” around the current
solution and chooses an optimal solution of the
local model within the trust region. Therefore, the
search direction and the step size of TR will be
determined simultaneously (Nocedal and Wright
1999).

3. RSM starts with linear models and constructs a
quadratic model only in the last step. TR, on the
other hand, always use the quadratic model for
each iteration so it can be computational intensive
when the dimensionality grows.
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4. RSM is a heuristic method without convergence
guarantee while TR provides convergence guaran-
tee.

5. RSM requires human involvements but TR is an
automated algorithm.

Since RSM and TR both have their advantages and disadvan-
tages, we proposed a method called STRONG combining
the two methods together. STRONG not only can handle
the stochastic case like RSM but also have convergence
property like TR. We will introduce STRONG in section 3.

3 STOCHASTIC TRUST REGION GRADIENT-
FREE METHOD

We proposed a response-surface-based algorithm called
STRONG (Stochastic TRust RegiON Gradient-Free
Method) to solve the unconstrained stochastic optimiza-
tion problems. “Gradient-Free” here means that users don’t
have any explicit information of gradient, namely ∂G

∂x , or
implicit gradient function. Rather, users can only obtain
the gradient information (generally noisy) by estimation.
STRONG consists of two algorithms, main algorithm and
sub-algorithm. The main algorithm is the major frame-
work which approaches an “improved” region while the
sub-algorithm is to find a “satisfactory” solution within the
trust region. Following are assumptions for the underlying
response function and the local approximation model:

Assumption 1. The underlying response function g(x) is
bounded below in Rn.

Assumption 2. The underlying response function g(x) is
twice differentiable and its gradient and Hessian matrix are
uniformly bounded in Rn, i.e., ∃ α1,β1 s.t.
‖ ∇g(x) ‖≤ α1, ‖ H(x) ‖≤ β1 ∀x

Assumption 1 assures that the underlying response function
is bounded below. Therefore, there is at least a local minimal
solution. Assumption 2 provides the assurance that Taylor
expansion can work for every x in the parameter space.
Assumption 3 makes sure that every estimated local model
is uniformly bounded.

3.1 Metamodel Construction

We first give the following definitions which is relevant to
STRONG.

Definition 1. The trust region is the set of all points T k =
{x ∈ Rp| ‖ x− xk ‖≤4k

T}

Definition 2. The sampling region is the set of all points
S k = {x ∈ Rp| ‖ x− xk ‖≤4k

S}
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Definition 3. GN(x) = ∑
N
i=1 Gi(x,ω)

N

Definition 4. Xn denotes the orthogonal design matrix

Xn =


x11 x12 . . . x1p
x21 x22 . . . x2p
...

... . . .
...

xn1 xn2 . . . xnp


Definition 5. Yn×1 denotes the revised response matrix in
which each element subtracts the average of response value
of the center point

Yn×1 =


y1−GN(x)
y2−GN(x)

...
yn−GN(x)


Without loss of generality, we consider the following

quadratic metamodel. If the metamodel is linear then the
quadratic term will be ignored. STRONG requires orthog-
onality for the main-effects experimental design.

γ(d) = ĝ(x)+ ∇̂g(x)d +
1
2

dT Ĥ(xk)d (3)

where

1. ĝ(x) , GN(x)
2. ∇̂g(x) , (XT

n Xn)−1XT
n Yn

Notice that Ĥ(xk) can also be estimated if Xn is augmented
up to the quadratic terms. It is worth mentioning that the
gradient ĝ(x) in STRONG is not obtained by the typical
Ordinary Least Squares (OLS) method. In STRONG, the
intercept is the average of observations at point x and only
the gradient and Hessian matrix are estimated by OLS. This
allows us to prove the properties:

lim
N→∞

ĝ(x) = g(x) w.p.1 (4)

lim
n→∞

∇̂g(x) = ∇g(x) w.p.1 (5)

3.2 Hypothesis Testing Scheme

The following hypothesis testing procedure will guarantee
that the algorithm will make a “substantial” move from
xk to xk+1 in which the new iterate solution can yield a
sufficient reduction. Here k denotes the iteration counter in
the main algorithm and ki denotes the iteration counter in
the sub-algorithm.
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Definition 6. xk yields “sufficient reduction” if

g(xk)−g(xk+1)≥ 1
2 ‖ ∇̂g(xk) ‖ min( ‖∇̂g(xk)‖

‖Ĥ(xk)‖
,4k

T )

Hypothesis testing
H0: xk+1 cannot yield sufficient reduction
H1: xk+1 can yield sufficient reduction

if t =
√

N(GN(xk)−GN(xk+1))
s > t1−αk then reject H0, i.e., we

claim that xk+1 can yield sufficient reductions. The signifi-
cance level for iteration k is specified as αk, which represents
the probability that xk+1 cannot yield sufficient reduction
while we accept it. The αk is predesigned by the users but
needs to satisfy the following requirement:

∞

∑
k=1

αk < ∞ (6)

3.3 Main Algorithm

The following definitions will be used in STRONG algo-
rithm.

Definition 7. Ψki denotes the reject-solution set which col-
lects all the visited solutions up to ki in sub-algorithm
Ψki = {xk1 ,xk2 ,xk3 , ...,xki}

Definition 8. Subproblem
mindk∈Rp γk(dk) = ĝ(xk)+ ∇̂g(xk)dk + 1

2 dkT Ĥ(xk)dk

s.t. ‖ dk ‖≤4k
T

Definition 9. Iteration k(ki) is called “successful” in the
main algorithm (sub-algorithm) if ρk > η0 (ρki > η0)

Main Algorithm

Stage I

1. Initialization: Specify an initial point x0, initial trust
region and sampling region parameters satisfying
0 <40

S <40
T , sample size n, N (N > n) and some

constants η0,η1,γ1,γ2 satisfying 0 < η0 < η1 < 1,
0 < γ1 < 1 < γ2. Set k=0

2. Employ a proper experimental design with the
center points. Take n replications for each design
point and N replications for the center point in the
sampling region.

3. Fit a linear local model.
4. Determine the path of steepest descent.
5. Perform the line search to find the next solution

xk+1 within the trust region.
6. “Reduction test”: If GN(xk)≤GN(xk+1), increment

k by 1, move to xk+1 and go back to step 2.
Otherwise go to Stage II.
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Stage II

1. Employ a proper experimental design.
2. Fit a quadratic model γk(x)
3. Find an approximate solution to the subproblem.

Step1:
dk = argmind∈Rp ĝ(xk)+ ∇̂g(xk)d s.t. ‖ d ‖≤ 4k

T
Step2:
τk = argminτ>0 γk(τdk)s.t. ‖ τdk ‖≤4k

T
Set dk

C = τkdk, xk+1
C = xk

C +dk
C

4. Acceptance/Rejection

Compute ρk = GN(xk
C)−GN(xk+1

C )
γk(0)−γk(dk

C)
5. Trust Region Update

if ρk < η0,4k+1
T = γ14k

T , 4k+1
S = γ14k

S. Let xk
C =

xk0and go to sub-algorithm.
elseif η0 < ρk < η1, 4k+1

T =4k
T , 4k+1

S =4k
S, let

xk+1 = xk +dk
C go to step 6.

else ρk > η1 4k+1
T = γ24k

T , 4k+1
S = γ24k

S, let
xk+1 = xk +dk

C, go to step 6.
6. “Sufficient reduction” test: Do the sufficient reduc-

tion hypothesis test with type I error αk (section
3.2). If the test is passed, increment k by 1, move
to xk+1and go to step 1. Otherwise, let xk

C = xk0

and go to sub-algorithm.

Figure 1 illustrates the framework of main algorithm of
STRONG. Notice that the selection of “proper experimental
design” in stage I could be very flexible. For example, a
fractional factorial design with center points is appropriate
for stage I. In stage II, a proper experimental design could be
an augmented orthogonal design such as central composite
design so that a quadratic model can be fitted. In Stage
I, STRONG is similar as RSM. It searches an “improved”
region with the least computational effort. In stage II, Trust
Region framework will replace the original RSM stage II. It
is worth mentioning that STRONG will repeat the process
of stage II until converge, whereas in RSM the stage II is
just done once.

3.4 Sub-algorithm

When the local model constructed in the main algorithm
cannot generate a satisfactory solution in STAGE, STRONG
will initiate the sub-algorithm. Sub-algorithm will use
simulation-allocation rule (SAR) (Hong and Nelson 2006)
to allocate simulation observations for the reject-solution
set. Let nki(x) be the additional observations allocated
to xki at iteration ki as determined by the SAR. Then
Nki(x) = ∑

i
j=0 a j(x) denotes the total number of observations

on solution xki at iteration ki for every x ∈Ψki

Definition 10. (Hong and Nelson 2006) The SAR guarantees
that a j(x) ≥ 1 if x is a newly visited solution at iteration



Chang, Hong, and Wan
Figure 1: Framework of the main algorithm.

ki (x ∈ Ψki \Ψki−1) and limi→∞ Nki(x) = ∞ for all visited
solutions (x ∈

⋃
∞
k=0 Ψki )

Sub-algorithm

1. Employ a proper experimental design in the sam-
pling region.

2. Use the accumulated design points from previous
iterations to construct a quadratic approximation
model γki

3. Find an approximate solution to the subproblem.
Step 1:
dki = argmind∈Rp ĝ(xki)+ ∇̂g(xki)d s.t. ‖ d ‖≤4ki

T
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Step 2:
τki = argminτ>0 γki(τdki)s.t. ‖ τdki ‖≤4ki

T

Set dki
C = τkdki , xki+1

C = xki
C +dki

C . Determine a j(x)
by SAR and update the reject-solution set Ψki =
{xk0

C ,xk1
C ,xk2

C , ...,xki
C}

4. Update the best solution in the reject-solution set
x∗ki

= argminx∈Ψki
GNki (x)

5. Acceptance/Rejection

Compute ρki =
G

Nki (xk0 )−G
Nki (x∗ki

)

rki (0)−rki (d∗ki
)

6. Trust Region Update
if ρki < η0,4

ki+1
T = γ14ki

T ,4ki+1
S = γ14ki

S , let4k
T =

4ki+1
T , 4k

S =4ki+1
S , increment i by 1 and go back

to step 1.
elseif η0 < ρki < η1, 4

ki+1
T = 4ki

T , 4ki+1
S = 4ki

S ,

let 4k
T =4ki+1

T , 4k
S =4ki+1

S increment i by 1 and
go to step 7.
else ρki > η1, 4

ki+1
T = γ24ki

T , 4ki+1
S = γ24ki

S ,

let 4k
T =4ki+1

T , 4k
S =4ki+1

S increment i by 1 and
go to step 7.

7. “Sufficient reduction” test: Do the sufficient re-
duction hypothesis test with type I error αk. If the
test is passed, increment k by i, let xki = xk+1 and
go back to the main algorithm step 1 of Stage II.
Otherwise, increment i by 1 and go to step1.

Figure 2 illustrates the framework of sub-algorithm
of STRONG. In the sub-algorithm, only quadratic mod-
els are used to approximate the underlying function. The
sub-algorithm will work on enhancing the fidelity of the
local model and reducing the sampling error by increas-
ing the replication for the center point as well as adding
more design points within the sampling region sequentially.
The computational efforts will be adaptively increased until
a satisfactory solution is obtained. Once the satisfactory
solution is obtained, STRONG will go back to the main
algorithm and move to the improved solution. The number
of replications for center point as well as the number of
design points within the sampling region will go back to
the originally fixed level which is specified in the main
algorithm.

There are three main reasons that may cause the rejection
of the solution in stage I (i.e., produce the unsatisfactory
solution).

1. The local approximation model is poor.
2. The step size is too large so that the predicted

reduction does not match the true reduction.
3. Sampling error of the response function.

The sub-algorithm tackles these situations by taking the
corresponding solid strategies.
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1. Shrink the sampling region, increase the number
of replication for the center point and add more
design points.

2. Shrink the trust region.
3. Collect all visited solutions within the trust region

and increase the replication for each of them.

Figure 2: Framework of the sub-algorithm.

In the first strategy, with the shrinkage of sampling
region, the number of replications for the center point is
increased. The response sampling error for the center point
will decrease. Thus, the intercept estimate will be more
and more precise. Meanwhile, the design points are also
accumulated. The gradient estimate can be shown to be more
and more precise as well in this fashion. In other words, the
intercept and the gradient estimate in the quadratic model
will be gradually approaching the true value. In the second
strategy, the optimization step will be more restrictive with
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the shrinkage of trust region. STRONG will rather be more
conservative in optimization step if the current local model
cannot provide a satisfactory solution, i.e., the local model
is not reliable. In the last strategy, the visited points will
continue updating when more replications are taken for each
of them since the visited solutions could be wrongly rejected
due to randomness in the previous iterations. This strategy
allows the visited and wrongly rejected solutions to come
back if it finally turns out to be a good solution.

Sub-algorithm will keep shrinking the trust region as
well as the sampling region by the same ratio until the
solution is accepted. The model fidelity can be improved
by the arguments we made earlier. On the other hand, the
bias between the metamodel and true underlying response
function will be reduced. In both main algorithm and sub-
algorithm, STRONG uses “trust region” to control the step
size. It is an adaptive and systematic way to manage the
optimization step. STRONG won’t be too conservative to
proceed when the model approximation does a good job
of predicting improvement. Moreover, it is automatically
determined in the algorithm. In STRONG, the trust region
and the sampling region are deliberately separated from
each other. The reason is because the trust region controls
the optimization step while the sampling region is related
with the gradient estimate. Therefore, the trust region is
expected to be large so that the optimization step won’t be
restricted in a small region, whereas the sampling region is
required to be small so that a better gradient estimate can
be obtained. Following the framework of sub-algorithm,
we made the following observations.

1. For each iteration (no matter in main algorithm or
in sub-algorithm), the algorithm implied that the
sampling region is contained in the trust region,
i.e., S k ⊂T k

2. The sample size for each one in the reject-solution
set is increasing with iterations and Nk1 < Nk2 <
... < Nki

3. Ψk0 ⊂Ψk1 ⊂ ...⊂Ψki

4. limi→∞ GNki (xko) = g(xk0)
5. The quadratic approximation model γki changes

with the iteration ki (i.e., ĝ(xki
C ) and ∇̂g(xki

C ) change
with iteration).

3.5 Theoretical Performance

We have proved the following results.

Theorem 1. ∀ iteration k, if the local approximation model
is given by γk(dk

C) = ĝ(xk
C)+∇̂g(xk

C)dk
C + 1

2 dkT
C Ĥ(xk

C)dk
C then

the Cauchy step dk
C satisfies

γ
k(0)− γ

k(dk
C)≥ 1

2
‖ ∇̂g(xk

C) ‖ min(
‖ ∇̂g(xk

C) ‖
‖ Ĥ(xk

C) ‖
,4k

T )
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Theorem 2. If the sub-algorithm generates a subsequence
of iterate points Ψki = {xk0

C ,xk1
C , ...xki

C} then ∃ trust region
4K

T and some constant C2, s.t., when 4ki
T <4K

T ,

‖ γki(dki
C )−GNki (xk0

C +dki
C ) ‖≤C2(4ki

T )2

Theorem 3. ∀xk0 in the sub-algorithm, if ‖∇g(xk0) ‖≥ ξ >

0, then ∃K, s.t. whenever ki ≥ K, 4ki
T ≤ 4K

T , ∃dki we
eventually have ρki ≥ η0.

Theorem 4. For any initial point x0, the algorithm will
generate a sequence of iterate solutions {xk} in the main
algorithm, assuming the last subsequence of iteration
solutions in the sub-algorithm are {xki} then either
limk→∞ ‖ ∇g(xk

C) ‖= 0 or limi→∞ ‖ ∇g(xki
C ) ‖= 0

Theorem 1 provides an lower bound of the reduction
of the local model for each iteration. Notice that this lower
bound depends on the local model. Theorem 2 guarantees
that in sub-algorithm if the trust region keeps shrinking
then eventually the difference between predicted response
and the average of predicted response will be bounded by
the square of trust region size. Theorem 3 provides the
guarantee that the sub-algorithm will never stop unless we
are at a stationary point. In particular, it guarantees that
a good step dki will be eventually accepted if the current
iterate is not stationary (i.e., ‖ ∇g(xk0) ‖≥ ξ > 0), and a
new iterate xki+1 will be generated. Theorem 4 provides the
convergence guarantee of STRONG.

4 PRELIMINARY NUMERICAL RESULTS

Consider the well-known Rosenbrock test function in the
optimization literature. This test function was first presented
in Rosenbrock(1960). This test function has an interesting
shape that the solution lies in a curved valley (Spall 2003).

g(x) =
p/2

∑
i=1

[100∗ (x2i− x2
2i−1)

2 +(1− x2i−1)2] (7)

Without losing the generality, we assume p = 2 and use
Monte-Carlo simulation to evaluate the response value

G(x) = 100∗ (x2− x2
1)

2 +(1− x1)2 + ε, (8)

where ε ∼i.i.d. N(0,σ2).
Notice that the minimum solution is (x1,x2) = (1,1)

and the minimal objective function value is 0. The fol-
lowing numerical evaluation will focus on the comparisons
between STRONG and FDSA (Finite-Difference Stochastic
Approximation). It is notable that g(x) is the objective func-
tion and x∗ is the true optimal solution (1,1) and g(x∗) = 0,
g(xk

C)−g(x∗) represents the distance of the current solution
to the optimal solution. In the following cases, we will use
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2k factorial design to fit the linear model and use central
composite design to fit the quadratic model.

Case 1: The starting point is set at (30, -30) and the variance
of noise is set at 10. STRONG (n=2, N=5) and FDSA are
used to solve the problem.

Table 1: Performance of STRONG in Case 1

No. of obs. g(xk
C)−g(x∗) Distance Reduced

0 86490841 0%
120 1680400 98%
300 49351 100%
420 11921 100%
530 62.84 100%
600 24.24 100%
680 1.58 100%

Table 2: Performance of FDSA with the bad starting point
in Case 1

No. of obs. g(xk
C)−g(x∗)

0 86490841
10 9801000000
20 9801000000

100 9801000000

Case 2: The starting point is set at (3,−3) and σ2 is set
at 10, bound of parameter is (0,5)∗ (0,5).

Table 3: Performance of FDSA with the good starting point
in Case 2

No. of obs. g(xk
C)−g(x∗) Distance Reduced

0 3604 0%
20 1566.7 98%
40 52.02 100%
60 1.01 100%
80 0.82 100%

100 0.77 100%

Case 3: Follow the same setting in Case 1, we compare the
numerical performance of STRONG in different variance.
The stopping rule is set at g(xk

C)−g(x∗) < 1.

Table 4: Performance of STRONG with different variance
in Case 3

Variance No. of obs.
1 2732

10 3256
20 6242
30 12812

100 18148
We compared the numerical performance between

STRONG and FDSA. Case 1 shows that STRONG can
converge to the optimal solution in less than 700 function
evaluations even when staring point is far from the optimal
solution (see Table 1). In addition, in the first 120 observa-
tions, the distance from starting point to the optimal solution
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is reduced by 98% which illustrates its fast convergence
rate. Case 2 also shows that FDSA can be divergent (see
Table 2) if the same far starting point is applied in FDSA.
This case shows that FDSA is very sensitive to the starting
point. Case 2 illustrates that FDSA could converge and is
more efficient if the starting point is chosen close to the
optimal solution. Notice that in Case 1 (FDSA) we do not
restrict the parameter space but in Case 2 parameter space
for FDSA is restricted in a small region (0,5)*(0,5). Case 3
shows STRONG can still converge to the optimal solution
even when the variance of noise is set very high (see Table
4), whereas FDSA will still diverge since the setting is the
same as Case 1.

5 CONCLUDING REMARKS

This paper discussed a novel RSM-based simulation opti-
mization method. Compared to traditional response surface
method, STRONG is automated and has been proved to
converge to the local optimal solution with probability 1.
Besides, STRONG has a flexible and “smart” sequential
strategy for constructing the metamodels which can miti-
gate the computational loadings greatly. In the numerical
evaluation, we show that STRONG outperforms FDSA al-
gorithm which may diverge when the response is very steep
(Andradottir 1995). STRONG, on the other hand, can ef-
ficiently converge to the optimal solution regardless of the
location of the starting solution. Furthermore, STRONG is
pretty flexible in selection of experimental designs, com-
bined with a efficient factor screening method, STRONG
has the potential to solve high-dimensional problems, which
we will explore in the future research.
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