
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

LANDMARK PAPER REPRISE – INSIDE SIMULATION SOFTWARE: HOW IT WORKS AND WHY IT
MATTERS

Proceedings of the 1994 Winter Simulation Conference

ed. J. D. Tew, S. Manivannan, D. A. Sadowski, and A. F. Seila

INSIDE SIMULATION SOFTWARE:
HOW ITITWORKS AND WHY ITITMATTERS

Thomas J. Schriber

Computer and Information Systems
The University of Michigan

Ann Arbor, Michigan 48109-1234 U.S.A.

ABSTRACTABSTRACT

This paper provides beginning and intermediate simula-

tion practitioners and interested simulation consumers

with a grounding in how discrete-event simulation soft-

ware works. This is done by describing alternative entity

states, the use of lists to organize entities in the various
states and the use of algorithms to manage these lists and
manipulate entities during a simulation. This general
treatment, which should benefit all simulation practi-
tioners, is then discussed in terms of GPSWI-1, ProModel
and SIMAN. The focus is on understanding the under-
lying mechanisms of simulation. Such understanding
will help practitioners build models more confidently,
use model verification tools more thoroughly, and model
complex system logic precisely as intended.

1 INTRODUCTION

1.1 Background

A “black box” ‘approach is often taken in teaching and
learning discrete-event simulation software. The charac-
teristics of the tools provided by the software are studied
and examples for use of the tools are given, but the un-
derlying foundation that is the basis for these tools is
touched on only briefly or is even ignored. We believe
that simulation practitioners should ideally know the
characteristics of the tools at their disposal and should
understand how these tools fit into and are derived from
the logical underpinnings of discrete-event simulation.
Practitioners who can thus “see through two lenses” are
in a position to build and verify models faster and use
simulation tools more imaginatively.

Taking the point of view of the practitioner into
account, our objective here is to briefly present the
logical underpinnings of discrete-event simulation and
relate this material to the major tools provided in three
instances of discrete-event simulation software.

1.2 Structure of the Paper

In Section 2 of the paper we briefly comment on
simulation experiments, bringing the focus down to

Daniel T. Brunner

System Flow
6366 Guilford Avenue, Suite 310

Indianapolis, Indiana 46220 U.S.A.

single simulation runs and then homing in on the start-
to-finish internal processing that takes place during a run
at a single instant of simulated time. It is at single
instants of simulated time that simulation software has
to handle simultaneous events serially, and it is this
handling with which much of the paper deals.

Section 3 describes the transaction-flow world view
and how it differs from conventional procedural
programming. The concept of “units of traffic” is
reviewed and then, to lay the groundwork for
examination of specific algorithms, the alternative states
through which units of traffic migrate as a simulation
proceeds are introduced.

Next, in Section 4, we introduce the list data structures
used by simulation software to manage individual units

of traffic. Roughly speaking the types of lists available
in each simulation software tool are the same. The list

types generally correspond to the various states
introduced in Section 3.

This leads to a Section 5 discussion of how competi-
tion among units of traffic for scarce system resources is
managed in each of the three tools. The goal in this sec-
tion is to describe the general structure of the software
and its primary algorithms. Some of the finer details are
deferred to Section 6, where we turn to specific examples
of conditions that one might want to model, and describe
how the approach would differ among the software tools

under consideration.

1.3 Terminology and Conventions

Throughout this paper we use terms that we define as
well as terms reserved by the developers of a particular
simulation tool and/or its documentation. Terms we
define are italicized on first use and are expressed in
lower-case normal type subsequently. Terms that are
tool-specific are Capitalized or, where appropriate, are
spelled out iu ALL CAPS.

We also frequently use a “part/machine” metaphor to
illustrate specific points. In a classical job-shop manu-
facturing model, a part waits with other parts to use a
machine. When it is that part’s turn to use the machine
and the machine is ready to be used, the part undergoes
processing for a particular (possibly randomly sampled)

45



46 Schriber amd Brunner

time. This metaphor is easily transposed to many other
types of manufacturing and non-manufacturing models.

2 OVERVIEW OF MODELMODELEXECUTION

2.1 Experiments, Replications, and Runs

Conducting a simulation project includes carrying out
one or more experiments. Experiments are differentiated
by the introduction of one or more alternatives in the un-
derlying logic or data used in a simulation model. An al-
ternate part sequencing rule might be tried, for example,
or the quantity of constrained machines might be varied.

Each experiment consists of one or more replications.
A replication is a simulation that uses given model logic

and data but a different set of random numbers, and so
produces different statistical results that can then be
analyzed across a set of replications.

Each replication consists of initializing the model,
running it for a period of simulated time or until some
condition is met, and reporting results. We call the
“running it” phase a run.

2.2 Inside a Run

During a run the simulation clock tracks the passage of
simulated time. The clock is an internally managed
stored data value that changes during the run. The clock
advances in discrete steps. Generally the steps are not of
equal size. (Fixed time increment simulations are not
considered here). When the clock changes, its new value
is set equal to the time of the next scheduled event.

Computations and logic within a run are executed at a
series of discrete instants of simulated time. When all
computations and logic that can occur at a particular time
have been completed, the clock is up&ted (advanced).

The execution of a run thus takes the form of a two-
phase loop: “execute all possible events at the current

time” followed by “advance the clock,” repeated
indefinitely. We call the two phases the Entity
Movement Phase (EMP) and the Clock Update Phase
(CUP), respectively. During either phase a run-ending
condition may become true, causing the run to conclude.

Each EMP requires a variable amount of computer
time to complete. The EMP unfolds according to a set of
rules that are different for each software tool. Although a
given EMP takes place at a single instant of simulated
time, the underlying software has much work to do to be
sure all pending and newly generated events get processed
correctly during that time instant.

3 TRANSACTION-FLOW WORLD VIEW

3.1 Entities

Most discrete event simulation software operates on what
has been labeled the transactionjow world view. By this
we mean the person building the model (whom we’ll call

the modeler) views the simulated system as a network of
operations — conceptually similar to a flow chart —
through which individual units of traffic flow (move).
The units are called transactions or entities; we’ll use
“entities” as our generic term.

In real-world terms, the concept of an entity often
closely corresponds to physical constructs, In a highway
traffic model, a vehicle is an entity. In a manufacturing
model an entity may be a part, a subassembly, a finished
product, a carton, a work order — anything that moves.

Entities often have attributes. An attribute is a local

data item of which each entity has its own copy. For

example a part entity might have a color attribute, or a

work order entity might have a due date attribute.

3.2 Resources

Resources are constructs used to model the state of con-
strained system elements. On a highway, for example,
physical lane space is a constrained system element. In a
manufacturing facility, production machines and material
handling equipment are constrained system elements.

Most tools have one or several “resource” constructs
that are intended for the direct representation of con-
strained system elements, and other constructs
(e.g., counters, switches, data variables) whose state can
be related to the state of such elements. We take the
broad view that any of these constructs may appropri-
ately be called a “resource.”

A wide range of physical things can be modeled as
either entities or resources. A machine operator could be
viewed as either or both, as could a forklift truck. In fact
it is possible to invert the world view: consider a fixed-
location grinding machine “entity” that goes through
time looking for a constrained supply of a parts
“resource” to process,

3.3 Simultaneous Movement of Entities

If a program written in a procedural language such as
FORTRAN or C is thought of as a flow chart, there is
one “entity” (one “unit of control”) that circulates
through the flow chart until the program has finished, In
discrete event simulation software, there may be dozens
or even thousands of individual entities that circulate
simultaneously through the network. They stop and start
and hand off control to one another in a way that is
carefully choreographed inside the simulation software.

Despite this “multi-threaded” complexity, the typical
underlying simulation program — which itself is a
procedural program — can only recognize a single active
entity at any moment during the computer’s execution of
the model. Broadly speaking the active entity will move
through the flow chart until it encounters a delay
(a waiting condition) or is destroyed. It will then yield to
some other entity which becomes the new active entity.
And so on. It is in this manner that simulation software
handles simultaneous events serially.



Inside Simulation Soft ware: How it Works and Why it Matters 47

3.4 Entity States

Each entity is always in one of five alternative states: the
Active State; the Ready State; the Time-Delayed State;
the Condition-Delayed State; the Dormant State. We
designate these States 1 through 5, respectively, and
capitalize the state names throughout the paper for
emphasis. All simulation software recognizes all five
entity states and handles each state in a particular way.

3.4.1 State 1: The Active State

The Active State is the state of the active entity. Many
entities may move into and out of the Active State at
any given simulated time. During the underlying
execution of the EMP, there is only one active entity at
any moment of computer time. In part/machine terms, a
part is in the Active State while it is actually moving
through the flowchart (executing logic or calculations),
but not while it is waiting for or using a machine.

3.4.2 State 2: The Ready State

The Ready State is the state of entities ready to enter the
Active State. Usually more than one entity is processed
during an instant of simulated time. The CUP usually
produces at least one entity that is free to move through
the network of operations, and EMP execution often
produces other free-to-move entities that must all be
processed during that EMP, Yet only one entity at a time
can be in the Active State.

So, at a given point during an EMP, there maybe zero
to many entities that are free to move through the
network but cannot do so for the sole reason that some
other entity is active. These Ready-State entities are not
waiting for anything other than their turn to move.

3.4.3 State 3: The Time-Delayed State

The Time-Delayed State is the state of entities waiting
for a known simulation time to be reached so that they
can then (re)enter the Ready State. Time-Delayed entities
are waiting for a certain amount of time to elapse. A
“part” entity might wait for example for the end of its
ongoing processing time when it is in the midst of using
a machine. For Time-Delayed entities, the “certain
amount of time” may have been specified as a random
variable or a state-dependent value, but it became known
at the beginning of the wait, thereby making it possible
for the entity to wait for a scheduled next time when it
can re-enter the Ready State.

3.4.4 State 4: The Condition-Delayed State

The Condition-Delayed State is the state of entities
waiting until some system condition is met — such as a
part waiting to use a machine that is currently busy.
Condition-Delayed entities are waiting for a specific

condition whose time ot occurrence cannot be determined
at the beginning of the delay.

3.4.5 State 5: The Dormant State

Sometimes it is desirable to place entities into a state
from which there is no escape that will be triggered au-

tomatically by changes in model conditions. We call this
the Dormant State. Dormant-State entities rely on other
entities to make an explicit decision to bring them from
the Dormant State back into the Ready State.

An example is the placement of job-ticket entities into
a waiting state (Dormant State) that requires a control
entity or operator entity to make an explicit decision
about which job-ticket to pull next.

4 ENTITY MANAGEMENT STRUCTURES

In order to understand how an Entity Movement Phase
proceeds, one needs to understand the data structures that
are used by simulation software to separate and organize
entities in each of the five states.

An entity is itself a fairly simple data structure
occupying a few dozen to a few hundred bytes (characters)
of computer memory. The data that “is” each entity never
moves in computer memory, not even for the active
entity. Instead, the simulation software uses a variety of
ranked (ordered) lists and other data structures to organize
and track the entities.

4.1 The Active Entity

As already stated, there is only one active entity at a
time. It can be thought of as occupying a list of length
one. This Active-State entity flows through the network
until encountering an operation that puts it into another
state or destroys it, It then yields control to another en-
tity. If there is no possibility of further action at the
current time, the EMP ends and a CUP begins.

4.2 The Current Events List

Entities in the Ready State belong to a single ranked list

that we’ll call the current events list. This list has a tool-
dependent name and is managed differently by each tool,
so we will come back to it in the tool-specific sections.

For all three tools studied there are various ways an
entity can join the current events list. Most commonly it
is through migration from the future list or from a delay
list (these lists are defined below). Also, new “cloned”
entities start out on the current events list.

4.3 The Future Events List

Entities in the Time-Delayed State are inserted into a
single ranked list at the beginning of their (telay of
known duration. This list, which we call the future
events list (FEL), is ranked by increasing entity move



48 Schriber and Brunner

time. Entity move time is calculated as the simulation
clock value at thetime ofentity insertion into the FEL,
plus the known delay duration. The event at the head
(front) of the FEL is the next event to occur after
completion of an ongoing EMP.

After an EMP is over, the CUP looks at the FEL, and
the move time of the FEL’s earliest-ranked member
becomes the new clock value. If this event is the
scheduled (reactivation of one or more entities that the
modeler has defined, then these entities are shifted to the
Active State and/or the Ready State and the EMP begins.

Some tools will pull additional events from the front
of the FEL during one CUP if those events have move
times that match the move time of the head of the FEL.

In addition to an existing entity beginning a time
delay, there are some other ways entities and/or internal
events can get onto the FEL, depending on the tool.
These include entity arrivals and beginning- and end-of-
downtime events, as well as others.

4.4 Delay Lists

Delay lists are used to manage entities in the Condition-
Delayed State. When two or more such entities wait for
identical or partially identical conditions, competition re-
sults. There are different ways to implement competi-
tion. We describe two basic ways in this section and a
third way in Section 4.5. Important software-specific
aspeets are described in later sections.

If the delay condition can be related to one or more
specific changes in the state of the model, then related
waiting can be used. For example, when a machine
changes from busy to idle, the underlying algorithms can
fetch the next entity to use the machine from the appro-
priate delay list. Related waiting is the most prevalent
approach used to structure delay, It offers execution effi-
ciency and precise seleetion of entities in pre-ranked delay
lists. Entities undergoing related waiting we checked for
possible removal from the Condition-Delayed State when
the related model state changes.

If the delay condition is too complex to be related to
model state changes, polled waiting may be useful. With
polled waiting the underlying simulation algorithms
assume responsibility for checking from time to time to
see if the waiting entity(ies) can be removed from the
Condition-Delayed State. Delay lists for polled waiting
must be pre-ranked because the polling algorithm must
make decisions about which entities to check first.

Complex delay conditions include Boolean (AND/OR)
combinations of possible task-triggering state changes
(e.g., a part supply running low prior to 2:00 PM or an
output bin needing to be emptied).

4.5 Independent Lists

Entities in the Dormant State reside in special lists that
are neither related to a delay condition nor polled. We call
these independent lists. In general there is no automatic

way for an entity to leave an independent list. Dormant
entities are waiting for something, but they don’t know
what the something is: it’s the job of some other entity
to know. The “something” could involve resource
constraints, which makes this the third of the methods
mentioned above for managing competition. Independent
lists are always defined by the modeler.

5 HOW COMPETITION IS MANAGED
IN THREE SOFTWARE TOOLS

We have chosen three software tools for explicit descrip-

tion. The tools are SIMAN V (Systems Modeling Cor-
poration, Sewickley, PA, USA), ProModel (Version 1.1
for Windows, ProModel Corporation, Orem, UT, USA),
and GPSS/H (Release 2, Wolverine Software Corpora-
tion, Annandale, VA, USA). There are many other tools
that might be as well or better suited for a particular task
than the ones described here, Our choice has been made
based on our perception that these three tools are fairly
general-purpose, i.e., applicable in diverse contexts.

5.1 SIMAN

The discussion of SIMAN addresses SIMAN V, which
has some features that differ in important ways from
earlier versions of SIMAN.

Table 1 shows the SIMAN names for the constructs
discussed in previous sections. The SIMAN documenta-
tion also mentions the Event Calendar, which is the
combined Current Events Chain and Future Events Heap.

Generic Term I SIMAN Equivalent

Entity Entity

Resource Resource, Blockage,
Conveyor, Transporter

Operation Block

Current Events List Current Events Chain

Future Events List Future Events Heap

Delay List Attached Qu eue
Independent List Detached Queue

Table 1: SIMAN Terminology

5.1.1 The Current Events Chain

SIMAN has a Current Events Chain (CEC) that contains
all Ready-State Entities (and only contains Ready-State
Entities). The first step in the EMP is to remove the
Entity at the head of the CEC and place it into the
Active State. The Active-State Entity is not part of the
CEC.

If additional Ready-State Entities are placed on the
CEC while the Active-State Entity is moving, they are
inserted in last-in, first-out order. This means that if one
part splits into two, then after the original part comes to
rest its clone will be the next active Entity. An
exception is that if several Ready-State Entities are added



Inside Simulation Soft ware: How it Works and Why it Matters 49

to the CEC simultaneously from the same operation,
they will be added at the front of the list (that is, LIFO
in terms of other Ready-State Entities) but they will be
FIFO among themselves.

When the most recently active Entity leaves the Active
State and there are no more Ready-State Entities, (i.e.,
the CEC is empty), the EMP checks for polled wait
conditions that might have been relaxed (see Section
5.1.3.2). If there are none a CUP ensues.

5.1.2 The Future Events Heap

Time-Delayed Entities in SIMAN reside in an internal
structure named the Future Events Heap, From the
modeler’s point of view this structure behaves like a list
ranked on increasing move time. The Entity with the
earliest move time is the next one off the FEH.

SIMAN will remove more than one Entity from the
FEH during a single CUP if the Entities are tied for
earliest move time.

The SIMAN FEH may contain “internal Entities” that
come not from other Entity states but from elements
specified in the model/experiment definition. An example
is beginning- and end-of-downtime Entities. These are
not really “Entities” but are system events. When such
an Entity is found during a CUP, appropriate processing
ensues and zero or more “real” Entities may end up in the
Ready State (with the leader eligible for Active-State
status immediately). Because of internal Entities, the
CEC maybe empty when an EMP begins. The check for
polled wait conditions (see Section 5.1.3.1) will
nevertheless be performed as part of the EMP.

5.1.3 Queues

SIMAN has several types of delay lists. Those directly
accessible to fhe modeler include Attached Queues and
Detached Queues, as discussed in the following sections.

5.1.3.1 Attached Queues

Attached Queues are Entity lists used by SIMAN to
implement the Condition-Delayed State. “Attached”
Queues are attached to a Block — a particular Block of a
type known as a Hold Block. For example, SEIZE, the
Block used by an Entity (e.g., a part) to attempt to
capture a Resource (e.g., a machine), is a Hold Block.
Every Hold Block has a Queue attached to it in which
Entities can wait for the Hold condition to be satisfied.

Attached Queues are ranked FIFO, LIFO, or by lowest
or highest value of an expression at insertion time. The
Entities in a given Attached Queue might be waiting for
different conditions, e.g., different Resources or combina-
tions of Resources.

Waiting in Attached Queues is related to the
underlying condition (except in the case of the SCAN
Block; see the last paragraph in section 5,1.3.1). When

is chosen from among a list of Contenders. The
Contenders consist of the highest-ranked Entity waiting
for that condition (or waiting in part for that condition)
in each of one or more Queues. If only a single Queue is
involved, then there is only one Contender.

Selection of the winning Entity from among multiple
Contenders, if necessary, is made primarily by Block-
based Priority and secondarily by FIFO (see Section 6.8).

Other Hold Blocks in SIMAN that implement related
waiting include ACCESS, ALLOCATE, PREEMPT,
PROCEED, REQUEST, and WAIT.

A Shared Queue is like an Attached Queue but can be
referenced in more than one place. A Shared Queue
allows Entities waiting at different Hold Blocks to be
ranked in one list. For a given condition there can be at
most one Contender in a Shared Queue.

If no QUEUE Block precedes a Hold Block, SIMAN
will generate an attached, non-shared Queue called an
Internal Queue. Internal Queues are similar to Attached
Queues but are not named, are always ranked FIFO,
produce fewer statistics, and are more execution-efficient.

Special cases of Hold Blocks are SCAN and WAIT.
SCAN holds Entities until an arbitrary expression that
can reference system state information and/or data values
becomes true. SCAN Queues are polled. WAIT holds an
Entity until a signal code is received. Because a signal
can only be sent by another Entity, WAIT is an
implementation of the related wait discussed above.

5.1.3.2 Detached Queues

Detached Queues are Entity lists used by SIMAN to im-
plement the Dormant State. Entities in Detached Queues
can be “sprung” from their Dormant State by SEARCH/
REMOVE Block pairs.

Some useful options for ranking Detached Queues on
insertion and for re-ranking and choosing on extraction
are provided (see Section 6.9).

Entities in Detached Queues can also be extracted when
QPICK or MATCH Blocks execute.

5.2 ProModel

Table 2 shows the ProModel names for the constructs
discussed in previous sections. Although the terminolo-

Generic Term ProModel Equivalent

Entity Entity

Resource Location, Resource,
Variable, Node

Operation Process Step

Current Events List Action List

Flltllre Events List Future Events List

Delay List Waiting List

Independent List None
(hut see Section 5.2.3)

the Hold Block condition changes, the “winning” Entity Table 2: ProModel Terminology



50 Schriber and Brunner

gies may differ, the mechanisms described in this section
aJso apply to the MedModel and ServiceModel products
ffom the same vendor.

ProModel Entities compete for Loca[ion$, Resources
and Variables. A Location corresponds to the physical
space occupied by an Entity. An Entity can occupy no
more than one Location at any given computer time
during the execution of the model. This means an Entity
must gain access to its next Location before it can let go
of its current one

ProModel Resources are used to model resources that

are auxiliary to the physical space required. Examples are
forklift trucks or human beings. Entities can own and
control multiple Resources simultaneously.

Resources themselves can compete for Nodes, moving
independently through the Node network in search of
something to pick up or a place to be idle. In this sense
Resources can behave internally like Entities. They
migrate among the first four of the Entity states and are
tracked in lists.

A Variable in ProModel is a general-purpose data
storage element whose state can be the object of a WAIT
UNTIL and for which statistics are automatically
collected.

5.2.1 The Action List

The ProModel Action List contains Entities (and Re-
sources) in the Ready State. It is ranked LIFO and is
empty at the end of the EMP. Deactivation of the active
Entity or Resource causes the first Entity or Resource on
the Action List to become active.

5.2.2 The Future Events List

Entities (undergoing WAIT operations) and Resources
(while moving), along with certain internally generated
Entities and events, can wait on the Future Events List
(FEL). Processing is “first out based on earliest move
time.” ProModel will remove only one Entity or event
during a CUP. In the case of time ties on the FEL there
can thus be two or more successive EMPs that use the
same instant of simulated time.

Many of the ProModel model-definition constructs
have optional user-defined Logic fields (for example,
Downtime Logic and Location Exit Logic). Logic is a
collection of Operation Statements that afe automatically
exeeuted at the appropriate point during model execution,
An Entity can launch Independent Logic which is like a
cloned subroutine call (the Entity goes on its way). We
mention Logic here because Downtime Logic and
Independent Logic can produce non-Entity-related events
on the FEL. When processed, these events may go into
another future-list wait or into some type of delay list.
They may cause Entities (or Resources~~ materialize on
the Action List.

5.2.3 Waiting Lists

ProModel’s Waiting Lists function as delay lists to
implement a variety of related waiting conditions. There
is no polled waiting. One type of Waiting List (Entities
waiting for a SEND) is more like an Independent List.

To understand the interaction among Locations,
Resources, and Variables, we need to take a peek inside
the structure of ProModel. The transaction-flow part of
ProModel is specified by the modeler as an ordered
collection of Process Steps called the Process Table.
Every Process Step contains the name of an Entity Type
(or AU) and the name of a Location (or AU). An Entity
“flows” from one Process Step to the next by jumping
to the next Process Step in the Table that matches its
Type and Location (starting over again at the top of the
Table if necessary). This determines “what this Entity
Type is supposed to do when it is at this Location,”

A Process Step has two logical components,
Operation Logic and Routing Logic, and can contain
zero, one, or more than one of each component.
Competition by Entities for Resources takes place in the
Operation Logic. Competition by Entities for Locations
and any transportation Resources takes place in the
Routing Logic. The Routing Logic is applied after the
Operation Logic has been executed.

A Waiting List (for Entities) is attached to each
Location, to each Resource, and to each Variable. A
Waiting List (for Resources) is attached to each Node.
(Competition by Resources for Nodes takes place
automatically based on Path Networks, Work/Park Lists,
and Node/Location associations defined outside the table
of Process Steps.)

A single Entity (or Resource) can reside
simultaneously in many delay lists of the same type. As
a result, ProModel does not require a polling mechanism
for modeling Boolean (AND/OR) combinations of
conditions. An internal mechanism removes the Entity
from the “other” delay lists as soon as it escapes from
one of them. For more on Boolean conditions in
ProModel see Section 6.5.

There are various Routing Rule options for specifying
next Location alternatives. And it is possible to define a
Location in such a way that it can override the ranking of
its delay list when it is ready to accept another occupant.

ProModel has no independent lists as such. However,
JOIN, LOAD, and SEND are all Routing Logic options
that place Entities on special Location-specific lists
where they await a JOIN, LOAD, or SEND Operation
Statement, respectively, executed by another Entity at
the destination Location. This explicit triggering makes
these special lists resemble independent lists. But
because of the Location relationship, and because the
condition is somewhat specific, and finally because the
lists are not custom-managed, we consider the waiting to
be related waiting and the lists to be delay lists.



Inside Simulation Soft ware: How it Works and Why it Matters 51

5.3 GPSS/H

GPSS/H equivalents of the generic terms are given in
Table 3. N~te that the Curre~t Events Chain se~ves two
purposes as described below.

The EMP in GPSS/H is called the Scan Phase. The
GPSS/H Scan Phase is more involved than the EMP in
SIMAN and ProModel. (GPSS/H Scan Phase particulars
are discussed in chapters 4 and 7 of Schriber 1991.)

I Generic Term I GPSS/H Equivalent 1
Entity Transaction

Resource Facility, Storage,
Logic Switch

Operation Block

Current Events List Current Events Chain

Future Events List Future Events Chain

1 Delay List I Current Events Chain 1

I Independent List I User Chain I

Table 3: GPSS/H Terminology

5.3.1 The Current Events Chain

Perhaps the most striking difference in GPSS/H when
compared with other tools is that certain Condition-
Delayed Transactions are commingled with the Ready-
State Transactions on the Current Events Chain (CEC).
For Condition-Delayed CEC Transactions, the CEC can

be thought of as a single global delay list.
Other than the CEC and some internal delay lists (see

Section 6.6), there are no delay lists in GPSS/H.
(GPSS/H has a QUEUE Block and a Queue construct
that do not perform list management functions; they are
for statistics gathering purposes only.)

Another unique characteristic of the GPSS/H CEC is
that it is ranked FIFO within Priority Class. See Section
6.8 for more on Priority. This reflects its global-delay-
list function. Like other types of delay lists, the CEC is
frequently not empty in GPSS/H when the EMP ends.

5.3.1.1 The Scan Phase

At the beginning of the Scan Phase (EMP) GPSS/H
starts at the head of the CEC and tries to move that
Transaction into its next Block. If the Block is one that
can deny entry (SEIZE, ENTER, GATE, TEST or PRE-
EMPT) and entry is denied, then the Transaction is in a
Condition-Delayed State and GPSS/H leaves lhe carrdi-
ahte on the CEC and moves on to examine the sequential
Transaction on the CEC. If entry is not denied, then the
candidate becomes the active Transaction (without being
removed from the CEC) and begins executing Blocks.

The same mechanism applies whenever a Transaction
becomes active. If entry is denied when the active Trans-
action tries to execute a Block, then the Transaction
shifts to the Condition-Delayed State and remains on the
CEC while GPSS/H resumes scanning the CEC in
search of a new active Transaction. However, because of

possible state changes precipitated by the active Transac-
tion’s Block execution(s), the scan can either continue
sequentially or restart (see Section 5.3.1.2 below).

The GPSS/H mechanism of keeping certain
Condition-Delayed Transactions on the CEC and
examining them one or more times during the Scan
Phase to see if they are in Ready State at the instant of
examination implies that all of these Transactions are
fundamentally in a polled wait condition.

5.3.1.2 Restarting the Scan

There is an internal status change flag (SCF) that is set
to TRUE when any of certain unique blocking conditions
(see Section 5.3.1 .3) changes state. If the SCF is TRUE
when the active Transaction ceases to be active, then the
SCF is set back to FALSE and the scan restarts at the
head of the CEC as if the EMP had just begun;
otherwise the scan continues sequentially on the CEC.

The rationale behind this approach is that there maybe
up-stream Transactions that have higher Priority or at
least arrived sooner and should be given first crack at
moving in response to the change in system state. The
net effect of scan restarts is to provide FIFO-within-
Priority-Class queueing automatically for all operations
involving the most common blocking conditions.

It is possible for the Scan Phase to end (i.e., the scan
reaches the CEC tail and the SCF is FALSE) with
Ready-State Transactions still on the CEC, Such
“missed” Ready-State Transactions might have been
waiting for a non-unique condition that became true. In
these rare cases, a BUFFER Block can be executed by the
active Transaction to return itself temporarily to the
Ready State and force an immediate scan restart.

5.3.1.3 Related Waiting on the CEC

State changes involving unique blocking conditions in-
clude (but are not limited to) the transition of a resource
(Facility) into or out of use; the transition of a Storage
(a GPSS/H counter with a capacity) to a smaller count,
or out of the empty or into the full state, and a change in
the setting of a true-or-false Logic Switch. Transactions
waiting to SEIZE a Facility or ENTER a Storage or
waiting at a GATE for a Storage to become non-empty
or full or for a Logic Switch to change are in a unique
blocking condition. (Other types of unique blocking are
also possible but are not detailed here.)

Scan restarts imply extra processing demands while
GPSS/H re-encounters and re-evaluates Condition-De-
layed Transactions, To combat this each Transaction has
a flag called the Scan Skip Indicator (SS1) that marks cer-
tain Transactions — those waiting for unique blocking
conditions — as Condition-Delayed. This flag is checked
before an actual attempt is made to move a candidate-for-
active Transaction into its next Block, allowing the scan
to bypass quickly most Condition-Delayed Transactions.

The SS1 gets cleared automatically at the instant the
unique blocking condition for which the Transaction is



52 Schriber and Brunner

waiting gets removed. Internal delay lists are used to
track which Transactions’ SS1s need to be cleared for a
given state change. These lists are related to the

underlying condition, so the fundamental polled waiting
nature of the GPSS/H CEC mechanism is in fact — for
unique blocking conditions — a hybrid polled/related
approach for unique blocking conditions. (It is primarily
polled but is supported, for execution efficiency, by a
related-list mechanism.)

5.3.2 The Future Events Chain

The GPSS/H Future Events Chain (FEC) is like future
events lists in other tools. The GPSS/H CUP will
remove multiple Transactions from the FEC if they are
tied for the earliest move time, inserting them one by
one into the appropriate place on the CEC.

GPSS/H does not schedule internal entities for
beginning- and end-of-downtime events. GPSS/H uses
model downtimes (as well as many other control
conditions) with actual Transactions. These are ordinary
Transactions that go through the ordinary Time-Delayed
State to simulate time-between-failures and time-to-
repair.

5.3.3 User Chains

Transactions are put into a Dormant State in GPSS/H
via the User Chain construct. User Chains are indepen-
dent lists. After a Transaction puts itself onto a User
Chain (via a LINK Block), it can only be removed by
another Transaction (via an UNLINK Block). When
UNLINK execution transfers one or more Dormant-State
Transactions to Ready State, the SCF will be made
TRUE so that these CEC newcomers will have their turn
to become active before the next CUP. User Chains can
achieve performance improvements over CEC-based
queueing because User Chains (like delay lists in other
tools) need never be scanned except when an UNLINK is
executed.

6 WHYWHYIT MATTERS

6.1 Overview

In this section we list several types of modeling situa-
tions and comment on them in terms of the three soft-
ware tools. The situations are stated in a generic text-
book way, but real world analogues are included. Many
simulation projects can be carried out without encounter-
ing these situations. However, the situations do provide
a framework for exposing specific differences among the
internaJ algorithms of the three tools studied.

6.2 Yielding Control

Suppose the arrival of the last carton is to trigger the re-
leasing of a cluster (slug) of cartons from a conveyor,

The last carton is to “close the gate” against the arrival
of more cartons, but it must let waiting cluster-mates get
through the gate first. Or, in another example, a box-of-
parts entity is to split (clone) individual parts into the
system and the parts need first crack at some resource.

Of interest is whether a mechanism is available to al-
low the Active-State entity to yield control to newly cre-
ated clones or to other entities that have shifted into the
Ready State.

In SIMAN, clones created via BRANCH can be
allowed to go ahead of the original Entity. An alternative
to BRANCH is to use a DELAY to put the active Entity
into a Time-Delayed State for a brief simulated time.

In ProModel, “WAIT O’ can be used to put the active
Entity back on the FEL. It will be returned later to the
Active State at the same simulated time. One of
ProModel’s cloning operations, CREATE, can be used
to allow the clones to go ahead of the cloner.

In GPSS/H, “PRIORITY PR,BUFFER’ can be used
to reposition the active Entity behind equal-priority
Transactions (including any clones) on the CEC, shift
the active Entity back to the Ready State, and restart the
scan of the CEC.

6.3 Re-capturing the Same Resource

Suppose in a model a part relinquishes a machine, then
immediately re-competes for the machine (e.g., RE-
LEASE followed by SEIZE in GPSS/H or SIMAN; or
FREE followed by GET or USE followed by USE in
ProModel). The intention is to give a more highly quali-
fied part a chance to be the next to capture the machine.

Of interest in this scenario is the order of events
following the relinquishing of a resource. There are at
least three logical alternatives: (1) Coupled with the
relinquishing of the resource is the immediate choosing
of the next owner of the resource, without the
relinquishing entity having yet reached the point of
becoming a contender. (2) The step of choosing the next
resource owner is deferred until after the relinquishing
entity has become a ranked contender. (3) “Neither of the
above” — that is, choice of the next owner is not
coupled with the relinquishing of the resource, but the
active entity does not contend with others waiting for the
resource, either; instead, without paying heed to others,
it recaptures the resource immediately.

Each of these alternatives comes into play in the tools
considered here. SIMAN, ProModel, and GPSS/H
implement the first, second and third alternatives,
respective y. (We are talking about default behavior that
can be modified using other techniques.)

6.4 List Head’s Request Can’t Be Satisfied
but Another’s Can

Suppose several Condition-Delayed entities are waiting
in FIFO order in a single place for at least one unit of a
particular resource. The second entity wants only one



Inside Simulation Soft ware: How it Works and Why it Matters 53

unit of that resource. The first entity wants two units or
one unit plus some other condition. If the first request
cannot be satisfied but the second one can, will the
second entity get the resource?

In SIMAN, the second Entity will not get the
Resource because only the highest-ranked member of the
Queue is a Contender (see Section 5.1.3,1). Other
techniques can be used to modify this behavior.

For ProModel Resources the Waiting List is searched
from the top. JOINTLY GET requests that are not
satisfied are passed by. GET requests will claim as much
of what is requested as possible, even if the request is not
fully satisfied. But the first Entity in a Location’s delay
list always gets the Location, because an Entity can be
requesting no more than one unit and Boolean Location
conditions are always OR.

In GPSS/H with CEC queueing, the second
Transaction will get the resource (if the scan reaches it

before conditions change again). User Chains can be used
to modify this behavior.

6.5 Waiting for a Compound Condition

All three tools offer a way to wait for the truth of a
Boolean expression that describes a complex model state,
but the tools differ in implementation and flexibility.

SIMAN’S “related wait” mechanism (Section 5.1.3.1)
allows waiting for combinations of Resources by using
Resource Sets (for OR conditions) and lists of Resources
and/or Resource Sets (for AND conditions). If the
“winning” Entity does not meet the full condition, then
no Entity claims the Resource.

SIMAN also offers the SCAN mechanism (Section
5.1 .3.1). SIMAN waits to evaluate all SCANS until the
CEC is empty. Then it evaluates each SCAN condition
once on behalf of the Entity at the head of that SCAN’s
Queue, extracting that Entity to the CEC if the condition
is true. Then, if the CEC is non-empty, the EMP
continues. When the CEC is again empty, each SCAN
condition is again evaluated on behalf of the Entity at the
head of that SCAN’s Queue, and so on. Although the
polled SCAN mechanism might miss a transitory state
change, the delayed evaluation does minimize overhead.

In ProModel the Operation statements for claiming
Resources (GET, JOINTLY GET, and USE) and for
waiting on a Variable level (WAIT UNTIL) can model
AND/OR Boolean conditions, Boolean Location
selection is only on an OR basis because an Entity can
claim only one Location. GET et al. can only look at
Resources and WAIT UNTIL can only look at Variables,
Array elements or Entity Attributes.

For Boolean conditions involving GET or USE, once
any Resource request that is part of the condition has
been satisfied (but with the overall condition still being
false), then only that “branch” of the Boolean tree is
evaluated further. For example, in the condition
GET A OR (B AND C), once a unit of B or C has been
claimed then A alone cannot satisfy the condition.

ProModel attaches a delay list to each Variable, so the
wait is related. Transitory changes in a Variable’s value
will not be missed by entities in a WAIT UNTIL.

GPSS/H offers the refusal-mode TEST Block which
can deny entry (thereby forcing FIFO-within-Priority-
Class queueing on the CEC) based on virtually any con-
dition. However, there can be performance penalties,
Scan-skip indicators are not set for TEST conditions, so
the full condition must be evaluated every time each such
Transaction is encountered in an EMP. TEST is a polled
wait, so there is a slight chance of missing a very transi-
tory state change unless BUFFER is used in some cases.

6.6 Grouping, Batching, Combining,
and Matching

All three tools support options for making many parts
from a box of parts or an assembly out of subassem-
blies. All allow entities to be collapsed into a single en-
tity or collected in one place prior to moving forward as
individual entities and allow single entities in different
parts of the model to pause and coordinate with one an-
other. ProModel and SIMAN also allow entities to be
grouped into a compound Entity that behaves for a time
as a single Entity but can be ungrouped later.

In ProModel all entities that reach a given collection
point are collected together — a natural representation of
many manufacturing systems. SIMAN allows the
formation of many collections at one point.

GPSS/H can form one collection at each of many
points, relying on a built-in attribute (the Assembly Set
number) which defines a “family” as “all Transactions
that share a common ancestor through one or more
previously executed SPLIT Blocks.” In all three tools the
underlying mechanism for these options may be thought
of as relying on internal related delay lists.

6.7 Signals

Suppose entities need to wait for a notification from
another part of the model. All three tools provide this
capability. SIMAN offers the WAIT Block which waits
for a Signal. When the Signal is sent one or more
Entities in one or more Queues can move, ProModel
offers the WAIT UNTIL capability, allowing related
waiting using a Variable as a signal. A Variable delay
list is always searched from head to tail when the
Variable’s state changes. GPSS/H has true/false Logic
Switches that provide a signaling capability based on
polled/related waiting.

6.8 Priorities

All three tools support the concept of Priority — a
numerical value that either can or does influence the
insertion-time ranking of waiting entities. In SIMAN
and ProModel, the priority is attached to the Hold Block
(SIMAN) or attached to the Operation Step (proModel).



54 Schriber and Brunner

Entities in relative waits are ranked by default as “FIFO

by priority” meaning Priority is the dominating factor.
Priority is a transitory thing and only affects the ranking
for a particular wait.

In GPSS/H Priority is a built-in but modifiable
Transaction attribute used in ranking Transactions on the
CEC (only). (Care should be taken when deprioritizing if
an immediate effect is desired. Sometimes a BUFFER
Block is called for to force the active Transaction to yield
control temporarily to higher-Priority Transactions.)

6.9 Extraction-time Ranking

For models that perform resource scheduling, it can be

critical to use current system state information to extract
the best candidate from a waiting list. All the tools offer
many options for ranking on insertion into a delay list,
but we are looking for extraction-time ranking.

SIMAN delivers expression-based SEARCHing that
includes references to candidate attributes and identifies
the best single candidate.

ProModel allows extraction of a best candidate based
on one attribute of the candidates but not on an arbitrary
expression that incorporates candidate attributes.

GPSS/H allows extraction (via UNLINK) based on a
modeler-specified Boolean expression used as a tWeL the
expression can directly reference attributes of candidate-
Transactions in the Dormant State.

6.10 Interactive Model Verification

This section comments on how a detailed understanding
of “how simulation software works” encourages and sup-
ports interactive probing of simulation model behavior.

In general, simulation models can be run interactively
or in batch mode. Interactive runs are of use in checking
out (verifying) model logic during model-building and in
troubleshooting a model when execution errors occur.
Batch mode is then typically used to make production
runs with verified models.

Interactive runs put a magnifying glass on a simula-
tion model while it executes. The modeler can follow the
active entity step by step and display at will the current
and future events lists and the delay and independent lists
as well as other aspects of the state of the model. These
activities yield valuable insights into model behavior for
the modeler who knows the corresponding concepts.
Without such knowledge, the modeler might not take
full advantage of the interactive tools provided by the
software, and might even entirely avoid using the tools.

7 SUMMARY

This paper discusses the major logical considerations that
motivate the underlying platform which is the basis for
much discrete-event simulation software. The discussion
centers on alternative entity states, the use of lists to or-
ganize entities in the various states, and the use of algo-

rithms to manage these lists and manipulate entities dur-
ing a simulation. Practitioners who are knowledgeable

about these considerations in general and understand their
implications in terms of the simulation software they
use should be in a position to build models faster and
more creatively, use simulation tools (including model
verification tools) more imaginatively, and be more
confident that the models they build reflect system
complexities precisely as intended.

ACKNOWLEDGEMENTS

Much of the information in this paper was derived from
extended conversations with software vendor personnel.
The authors gratefully acknowledge the time investments
in this project that were generously provided by David T.
Sturrock, Deborah A. Sadowski, C. Dennis Pegden and
Vivek B apat, all of Systems Modeling Corporation;
Charles Harrell, Eric Du and Kerim Tumay, all of
ProModel Corporation; and Robert C. Crain and James
O. Henriksen, both of Wolverine Software Corporation.

REFERENCES

Banks, J., B. Burnette, H. Kozloski, and J. Rose. 1994
(forthcoming). In[roductiorz to SIMAN V and Cinema
V. New York: John Wiley & Sons.

Henriksen, J. O., and R. C. Crain. 1989. GPSS/H
Reference Manual, Third Edition. Annandale, Virginia:
Wolverine Software Corporation.

Pegden, C. D., R. E. Shannon, and R. P. Sadowski.
1990. Introduction to Simulation Using SIMAN. New
York McGraw-Hill Inc.

ProModel Corporation. 1993. ProModel for Windows.
Orem, Utah: ProModel Corporation.

Schriber, T. J. 1991. An Introduction to Simulation
Using GPSS/H. New York: John Wiley & Sons.

Systems Modeling Corporation. 1994. SIMAN V
Reference Guide. Sewickley, Pennsylvania: SMC.

AUTHOR BIOGRAPHIES

DANIEL T. BRUNNER founded System Flow, an
independent simulation services firm, in March 1993.
Prior to that he was with Wolverine Software Corpora-
tion where he managed simulation services, technical
support, training, and product marketing activities. He
holds a B.S. in Electrical Engineering from Purdue
University and an MBA from The University of
Michigan. Mr. Brunner served as Business Chair of the
1992 Winter Simulation Conference and is General Chair
of the 1996 WSC. He is a member of IIE and SCS.

THOMAS J. SCHRIBER is a Professor of Com-
puter and Information Systems at The University of
Michigan. He teaches in a variety of areas while doing
research and consulting in discrete-event simulation, He
is a member of DSI, ORSA, SCS and TIMS.


