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ABSTRACT

The problem of finding the binomial population with the
highest success probability is considered when the number of
binomial populations is large. A new rigorous indifference
zone subset selection procedure for binomial populations
is proposed with the proof of the corresponding least fa-
vorable configuration. For cases involving large numbers
of binomial populations, a simulation optimization method
combining the proposed subset selection procedure with
an elitist Genetic Algorithm (GA) is proposed to find the
highest-mean solution. Convergence of the proposed GA
frame work are established under general assumptions. The
problem of deriving supersaturated screening designs is
described and used to illustrate the application of all meth-
ods. Computational comparisons are also presented for the
problem of generating supersaturated experimental designs.

1 INTRODUCTION

In some situations of interest, the goal of optimization is
to find the binomial system with the highest success prob-
ability. This can occur, for example, when one is trying
to find the system offering the highest probability of suc-
cess or “yield” evaluated using simulation. In this paper,
simulation optimization methods are proposed for this goal
both for cases in which the number of systems of interest
is relatively small and for cases in which the number of
systems is very large. The general search methods pro-
posed here for the latter cases progress through successive
relatively small subset selection problems. Therefore, the
paper contains contributions relevant to both subset selec-
tion and general stochastic optimization. The problem that
we focus on here to illustrate all proposed methods is the
derivation of supersaturated design of experiments matri-
ces considered in Allen and Bernshteyn (2003). Yet, the
methods here could conceivably be applied to situations as
diverse as experimenting to find the best baseball batter
3311-4244-1306-0/07/$25.00 ©2007 IEEE
and maximizing patient satisfaction by improved staffing in
hospital emergency rooms.

1.1 Supersaturated Experimental Designs

An experimental design is an n×m matrix specifying the
combinations of settings for m factor inputs relevant to
performing n tests. For example, the first run might be
associated with setting all system inputs to a chosen low
level and measuring outputs. Experimental designs for
screening are useful for studying complicated systems to
determine input-output relationships using a small number
of experimental tests. Supersaturated experimental designs
and associated analysis methods are relevant for cases in
which the experimental budget is so small that the number
of runs, n, is even less than the number of factors, m.

Selecting the best supersaturated design matrices is a
combinatorial optimization problem with a large number of
possible solutions. For a screening design with p controllable
factors of interest and two possible levels for each factor,
the number of possible screening designs with n runs is 2np.

There are two types of optimization criteria used in the
literature to define optimality design matrices, deterministic
and probabilistic criteria. Deterministic criteria consider
some surrogate objectives such as D and G efficiency. Al-
gorithms so-called “exchange algorithms” are widely used
for this type of criteria (Li and Wu 1997).

Allen and Bernshteyn (2003) proposed several proba-
bilistic and relatively exotic criteria for generation of new
designs such as the so-called “pCOV ” or coverage probabil-
ity. pCOV is the success probability that the experimental
design and analysis method correctly identifies a subset of
the factors of interest that covers all factors whose changes
truly affect responses of interest. These criteria are exotic
because they required some form of numerical method or
simulation to be conducted for their evaluation.

The optimization method Allen and Bernshteyn (2003)
used for generating their designs was the so-called con-
fidence interval based elitist genetic algorithms (CIEGA,
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Bernshteyn (2001)). However, CIEGA is not associated
with any rigorous convergence results and computational
comparisons of CIEGA with alternatives are limited. In
this paper, we propose a new method for generating exper-
imental designs that maximize pCOV together with proven
convergence results and a thorough computational compar-
ison with relevant alternatives.

1.2 Screening Design Optimization

Exchange Algorithms (EA) and their variants (e.g., Fedorov
1969, Fedorov 1972, Mitchell and Miller 1970 and Donev
and Atkinson 1988) are widely used to generate experimental
designs. The basic idea of EAs is to start with an initial
design (random and/or specified) and update it by exploring
all pair-wise exchanges between the rows (or columns) in that
design and candidate settings/runs from a list of choices. The
method greedily selects the exchange which most improves
the criterion value of interest. Then, the process is repeated
using the updated design until no improvement can be
achieved. EAs are designed for specific optimality criteria
with particular structures such that fast update calculations
are available to make exhaustive local searches possible. The
relevance of exchange algorithms for stochastic optimization
design of experiments problems has not yet been established
due to the unavailability of fast update methods.

The proposed methods are based on a series of subset
selections, i.e., attacking a large optimization problem by
comparing N solutions at a time. A special case of the
proposed scheme is elitist Genetic Algorithm (GA). Elitist
GAs are widely-used general methods, believed to be the
most promising GA for noisy functions since relatively few
objective function evaluations are used to discriminate bad
solutions (De Jong 1975, Aizawa and Wah 1994).

1.3 The Proposed Scheme

Let m be the number of dimensions in the optimization space.
A candidate solution can be written as x = (x1,x2, . . . ,xm).
A “generation” of N solutions being considered at iteration,
t xt ≡ (xt,1,xt,2, . . . ,xt,N) where xt,i are individual solutions.
This generation of solutions can also be called a population.
A general GA framework is as follows.

Subset Selection: Copy an elitist subset of solutions in
the current population to the next population.

In-Fill: Many methods could be used to fill-in the popu-
lation including embedded search methods such as
simulated annealing. Also, one could apply genetic
cross-over to generate new solutions by exchang-
ing individual settings xi between two solutions in
current generation.

Immigration/Mutation: Randomly generate new solu-
tions to next generation.
332
In this paper, we focus on identifying the elitist subset
to keep the best solution. In this case the above scheme
reduces to a method called a sequential subset selection
elitist genetic algorithm (SSSEGA). However, all of the
rigorous results that follow are more general than elitist
GAs and apply to many population based search methods
conforming to the abovementioned scheme.

In general, many variants of elitist GAs have been
proposed by changing the specifics of one or more of the
three “operators”: subset selection, cross-over, and immi-
gration. For example, Aggarwal et al. (1997) proposed
an optimized crossover mechanism for the independent set
problem, and Poland et al. (2001) used Exchange Algo-
rithms as the mutation operator. Although most of the GA
literature is focused on solving deterministic optimization
problems, recent research has attempted to use GA to solve
stochastic simulation optimization problems such as Hed-
lund and Mollaghasemi (2001). However, to our knowledge
no long run convergence results are available for GAs for
stochastic problems have been established.

In this paper, we specifically focus problems involving
finding the binomial population with the highest success
probability motivated by our design to generate supersat-
urated designs. For cases in which only a small number
of candidate solutions are considered at one time, we pro-
pose subset selection methods that are generalizations of the
Levin and Robbins (1981) indifference zone procedure. Our
procedure permits a subset of predetermined size to be se-
lected while offering standard indifference zone guarantees.
We further propose a population based search incorporating
our subset selection procedure and present related rigor-
ous convergence results. Finally, we compare the proposed
optimization method with two alternatives of generating
supersaturated designs from the literature.

The rest of this paper is organized as follows. Section
2 describes the framework of the proposed optimization
algorithm. In section 3 we discuss in details the algorithm
designed and applied to find the optimal supersaturated
designs. Section 4 presents computational comparisons
between the proposed method and alternatives. Section 5
gives conclusions and future research.

2 THE PROPOSED ALGORITHM

2.1 The Proposed Method

In this paper, we consider noisy problems such that the
best solution previously identified could be discarded by
chance at any iteration of the search method. To address
this issue, the following proposed subset selection operator
guarantees, with a probability no less than Pt , to keep at
least a single solution whose objective value (e.g., success
probability) is within δt to that of the real best solution in
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each generation t. Pt and δt are allocated such that

∏
∞
t=0 Pt = P∗, and (1)

∑
∞
t=0 δt = ∆. (2)

In the long run, this schema guarantees to find a solution
which is within ∆ to the global optima with probability
P∗ (The proof will be shown in section 2.2). This gives
SSSEGA a guarantee to find “good enough” solutions, thus
has important practical meaning for discrete stochastic op-
timization problems. Denoting xt,i as the ith solution in tth

generation, the framework of SSSEGA is as follows.

Initialize
t← 1; Predetermine ∆ and P∗.
Randomly generate N solutions (xt,1,xt,2, . . . ,xt,N).

Repeat
Calculate δt and Pt from series satisfying equations
(2) and (1). In this paper, computational results de-
rived from the following series with predetermined
parameters ε,o,u, and s:

δt = ∆(1− s)st , and (3)

Pt = 1− u
(t +o)1+ε

, (4)

where 0 < s < 1, o < u < 1 and 0 < ε < 1.
Subset Selection

Identify the subset B of size b ≥ 1 containing at
least one solution having objective value within
δt to the real best solution in current generation
t, with probability no less than Pt . Copy those
solutions in B to the next generation.

Crossover
Create c solutions by swapping the genes between
any two solutions in current generation t.

Immigration
Randomly generate N− c−b designs; t← t +1.

Until {the selected stopping rule is satisfied}.

2.2 Convergence Theorem

In this section, we prove that the SSSEGA procedure will
converge to a solution having an objective value within ∆ to
the global optimum with probability greater than P∗ in the
long run. The proof also assumes that the solution space is
finite such that there is a positive probability that acceptable
solutions may be randomly hit by immigration and/or in-
fill. The proof of the long run convergence is analogous to
existing proofs for simulated annealing based methods in
Andradóttir (1999). The following notations are used in the
lemmas and theorem. The convergence theorem is based
on Ittiwattana (2002). However, in this paper, no “batch for
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normality” is required for convergence due to the proposed
subset selection procedure for binomial population.

Xt ≡ the state of a generation t. Suppose we have N
solutions in each generation, then Xt = (Xt,1,Xt,2, . . . ,Xt,N),
where Xt,i is a state of ith solution.

xt ≡ a specific generation t, or in other words, a realiza-
tion of Xt . Suppose we have N solutions in each generation,
then xt = (xt,1,xt,2, . . . ,xt,N), where xt,i is a specific ith so-
lution vector.

E≡ the state space of the generations, i.e., all possible
combinations of solution vectors that can form feasible
generations for the GA.

d(x)≡ the objective value difference between solution
x and global optima.

A∆ ≡ the optimal state space. A∆ = {x∈E : d(x) < ∆}.
Ac

∆
≡ the completion of A∆. Ac

∆
= E\A∆.

A∆,t ≡ the state space of the best solution in the gen-
eration t. A∆,t = {xt ∈ E : d(xt) < ∆t}, where ∆t is the
indifference parameter at generation t. ∆t is defined as
∆t = ∑

t
j=1 δ j where δ j is given by (3) such that ∆∞ = ∆.

Note that in our algorithm, the solutions chosen to
be copied into the next generation only depend upon the
solutions in current generation and the random mechanism.
Therefore, P{Xt ∈A∆,i|X1,X2, . . . ,Xt}= P{Xt+1 ∈A∆,i|Xt},
which is the Markovian property, and each forward evolution
of one generation is one stage transition. We define the
t−m stage transition matrix to an arbitrary state “A” as

P(m,t)(xm,A) = P{Xt ∈ A|Xm = xm}. (5)

We assume that the probability that the next generation
xi will enter A∆ (i.e., contain a good solution), given that
the generation was not in the A∆, is greater than or equal
to pi+1. This assumption holds when E is finite. With
these definitions, we have the following lemma that follows
Rudolph (1996) results for deterministic problems.

Lemma 1 If P(i,i+1)(xi,A∆,i+1) ≥ pi+1 > 0 for all
xi ∈ Ac

∆,i,∀i = 1, . . . , t and P(i,i+1)(xi,A∆,i+1)≥ P∗i+1 > 0 for
xi ∈ A∆,i,∀i = 1, . . . , t, then for t ≥ m+1, we have

P(i,i+1)(xi,A∆,i+1)≥ [1−
t

∏
i=m+1

(1− pi)]
t

∏
i=m+1

P∗i . (6)

Proof. The result holds for t = m+1 because pm+1 <
pm+1P∗m+1 and Pm+1 < pm+1P∗m+1 giving P(m,t)(xm,A∆,t) =
P(m,m+1)(xm,A∆,m+1)≥ pm+1P∗m+1 = [1− (1− pm+1)]P∗m+1,
which is independent of the choice of xm. Next, we prove
by induction that if (6) is true for t, then it is true for t + 1.
From the independence of probabilities in Markov chains:

P(m,t+1)(xm,A∆,t+1) =

∑
ym+1∈E

P(m+1,t+1)(ym+1,A∆,t+1)P(m,m+1)(xm,ym+1).
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Since A consists of A∆,t+1 and Ac
∆,t+1,

P(m,t+1)(xm,A∆,t+1) =

∑
ym+1∈A∆,m+1

P(m+1,t+1)(ym+1,A∆,t+1)P(m,m+1)(xm,ym+1)+

∑
ym+1∈Ac

∆,m+1

P(m+1,t+1)(ym+1,A∆,t+1)P(m,m+1)(xm,ym+1).

(7)
Note that for ym+1 ∈ A∆,m+1 we have directly from our
assumptions and independence:

P(m+1,t+1)(ym+1,A∆,t+1)≥
t+1

∏
i=m+2

P∗i . (8)

Inserting this into equation (7) and rearranging, we have:

P(m,t+1)(xm,A∆,t+1)≥
t+1

∏
i=m+2

P∗i ∑
ym+1∈A∆,m+1

P(m,m+1)(xm,ym+1)+

∑
ym+1∈Ac

∆,m+1

P(m+1,t+1)(ym+1,A∆,t+1)P(m,m+1)(xm,ym+1).

(9)
If Lemma 1 is true for t, then

P(m+1,t+1)(ym+1,A∆,t+1)≥ [1−
t+1

∏
i=m+2

(1− pi)]
t+1

∏
i=m+2

P∗i .

Therefore, rearranging (9) we have

P(m,t+1)(xm,A∆,t+1)≥
t+1

∏
i=m+2

P∗i { ∑
ym+1∈
A∆,m+1

P(m,m+1)(xm,ym+1)

+ [1−
t+1

∏
i=m+2

(1− pi)] ∑
ym+1∈Ac

∆,m+1

P(m,m+1)(xm,ym+1)}

=
t+1

∏
i=m+2

P∗i {P(m,m+1)(xm,A∆,t+1)

+ [1−
t+1

∏
i=m+2

(1− pi)]P(m,m+1)(xm,Ac
∆,t+1)}

=
t+1

∏
i=m+2

P∗i [P(m,m+1)(xm,A∆,t+1)+P(m,m+1)(xm,Ac
∆,t+1)

−
t+1

∏
i=m+2

P(m,m+1)(xm,Ac
∆,t+1)(1− pi)]

=
t+1

∏
i=m+2

P∗i

[
1−

t+1

∏
i=m+2

P(m,m+1)(xm,Ac
∆,t+1)(1− pi)

]
.

(10)
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P(m,m+1)(xm,A∆,t+1)≥ pm+1 by assumption, (10) gives:

P(m,t+1)(xm,A∆,t+1)≥
t+1

∏
i=m+2

P∗i

[
1−

t+1

∏
i=m+1

(1− pi)

]

≥
t+1

∏
i=m+1

P∗i

[
1−

t+1

∏
i=m+1

(1− pi)

]
.

Therefore equation (6) in Lemma 1 is proven by induction.
Next we define P{Xm = xm} as the distribution of the

starting generation of the solutions in the in the initial
generation, m. We have the following lemma.

Lemma 2 Assuming that the conditions of Lemma
1 are satisfied for specific ∆, and the series of Pt satisfies
P∗ = ∏

∞
i=m+1 Pt , we then have limt→∞ P{Xt ∈ A∆,t} ≥ P∗.

Proof.

P{Xt ∈ A∆,t}= ∑
E

P(m,t)(xm,A∆,t)P{Xm = xm}

≥ [1−
t

∏
i=m+1

(1− pi)]
t

∏
i=m+1

Pi ∑
E

P{Xm = xm}

= [1−
t

∏
i=m+1

(1− pi)]
t

∏
i=m+1

Pi.2

The last line follows from Lemma 1 and is independent of
the starting point distribution. Therefore,

lim
t→∞

P{Xt ∈ A∆,t} ≥ [1−
∞

∏
i=m+1

(1− pi)]
∞

∏
i=m+1

Pi

=
∞

∏
i=m+1

Pi = P∗.

Now we have the following convergence theorem.
Theorem 1 The following are sufficient conditions

for the SSSEGA procedure to converge to a solution having
an objective value within ∆ of the global optimum solution
with probability greater than P∗ in the long run: N−c−b >
0 and b > 0 (where N is the total number of populations
in each generation, and c and b are solutions generated
by crossover operator and mutation operator, respectively),
and δt and Pt satisfy conditions (2), (1), (3) and (4).

Proof. The first condition of Lemma 1 is satisfied for at
least some values of pi > 0 because N−c−b > 0, and the
second condition is guaranteed due to the subset selection
procedure in each generation in SSSEGA. The conditions
of Lemma 2 are satisfied because of equation (1). Thus
long run convergence of SSSEGA is guaranteed. 2

Note that Theorem 1 is general such that it could apply to
simulation optimization in which the outputs associated with
alternative solutions could come from custom distributions.
However, the problem of maximizing the success probabil-
ities considered next offers perhaps the easiest opportunity
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to satisfy the needed conditions without assumptions such
as approximate normality.

3 APPLICATION TO BINOMIAL OUTPUTS

In section 2, we have described SSSEGA procedure and of-
fered conditions under which the method could converge to
an acceptable solution largely regardless of the distributions
of the outputs associated with each candidate solution. In
this section, we focus on the problem of maximizing suc-
cess probability, i.e., selecting the binomial system with the
highest success probability. Motivated by the need to satisfy
the conditions of Theorem 1, an open sequential indiffer-
ence zone subset selection method called the “generalized
Levin-Robbins” (GLR) procedure is proposed for the Subset
Selection operator. The rigorous guarantees associated with
the GLR procedure are then proven. Also, the insertion of
the GLR method into abovementioned optimization scheme
and SSSEGA is briefly discussed. Finally, the application
of GLR and SSSEGA to the problem of generating su-
persaturated designs from Allen and Bernshteyn (2003) is
described as an application for all methods.

3.1 The Generalized Levin-Robbins (GLR) Procedure

Bechhofer et al. (1995) reviewed procedures to deal with the
subset selection and indifference zone problems for binomial
populations. The goals of the procedures are generally to
select either the best one with indifference zone parameter δ ,
or a subset with random size that contains the best one among
binomial populations. The framework proposed in this paper
and the associated convergence proof conditions place two
type of requirements on the subset selection method: (1)
it needs to terminate with a subset of a user-specified size,
b, and (2) there must be at least one solution in the subset
having an objective value within a user-specified difference,
δ , as compared with the real best one among the solutions
in the population. To our knowledge, there is no previously
proposed subset selection procedure designed for binomial
populations, although similar procedures exist for normal
populations (e.g., Koenig and Law 1985).

The procedure proposed here is called the generalized
Levin-Robbins procedure because it is an extension of the
procedure proposed by Levin and Robbins (1981). The
procedure from Levin and Robbins (1981) is designed to
pick only a single system or solution (b = 1) whose success
probability is acceptable, i.e., within δ of the best success
probability associated with any of the m systems being
compared. The following procedure terminates having a
subset with b solutions in which at least one solution has
acceptable probability.

Let Y(n)
(i) denote the ordered accumulated number of

successes observed of the m populations, i = 1, . . . ,m after
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n vector trials, i.e., Y(n)
(1) ≥ Y(n)

(2) ≥ . . .≥ Y(n)
(m). The procedure

is as follows.

Repeat Evaluate all m solutions one more time.
Until {Y(n)

(b)−Y(n)
(b+1) = r} where r is given by equation

(12) below.
On Termination Select the solutions corresponding to

the observed successes Y(n)
(1) ≥ Y(n)

(2) ≥ . . .≥ Y(n)
(b).

The main difference between the above procedure and
the one from Levin and Robbins (1981) is that we keep
b solutions instead of 1. Also, the value of r used in our
procedure is generally lower than theirs reflecting the im-
proved efficiency associated with the easier goal of keeping
b solutions instead of 1. Note that Levin and Robbins (1981)
generated many results relevant to the GLR procedure here
in recursive proofs associated with their own procedure.
The following Lemma 3 and Theorem 2 establish that the
above GLR method guarantees the achievement of at least a
single acceptable solution (with success probability within
δ of the best among m) with probability greater than P∗.

In the following, we assume without loss of generality
that the binomial systems are arranged in descending order
of success probability such that p1 ≥ p2 ≥ . . .≥ pm. Also,
we denote the probability of selecting a subset containing
the true best solution as pCS .

Lemma 3 There exists a whole number r such that
if the GLR method is applied, pCS ,

pCS ≥
∑

{k1,k2,...,kb−1}∈Ib−1{2,...,m}

(
w1wk1 . . .wkb−1

)r

∑
{i1,i2,...,ib}∈Ib{1,2,...,m}

(
wi1wi2 . . .wib

)r ≥ P∗,

(11)
where {k1,k2, . . . ,kb−1} is a set of integers, Ib{i, i+1, . . . , j}
denotes the integer set space with b unique integers in each
set and each integer belongs to the set {i, i+1, . . . , j}, and
wi = pi

1−pi
.

Proof. First, we derive a formula for the probability of
selecting any specific subset of interest. Let g1 6= g2 6= . . . 6=
gb be integers denoting the indices that refer to a specific
selection, written {g1 6= g2 6= . . . 6= gb}. Levin and Robbins
(1981) proved for any whole number r the GLR procedure
selection probability is:

P(select subset {g1 6= g2 6= . . . 6= gb})≥(
w1wk1 . . .wkb−1

)r

∑
{i1,i2,...,ib}∈Ib{1,2,...,m}

(
wi1wi2 . . .wib

)r ≥ P∗.

Therefore, the probability of selecting a subset that contains
the best population is the summation of all probabilities of
selecting any possible subsets {1,k1,k2, . . . ,kb−1} where
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{k1,k2, . . . ,kb−1} ∈ Ib−1{2,3, . . . ,m}. Summing both sides
gives the inequality (11). 2

Theorem 2 A sufficient condition for the GLR pro-
cedure terminates with at least a single solution with success
probability within δ of the best probability among all m
solutions with probability greater than P∗ is

r =


log

[(m
b −1

) P∗
1−P∗

]
log

(
w1
wa

)
 (12)

where d·e is the ceiling operation and

wa =
p∗0−δ

1− p∗0 +δ
, w1 =

p∗0
1− p∗0

, p∗0 =
1+δ

2

Proof. Levin and Robbins (1981) effectively established
that the least favorable configuration for the GLR procedure
is

p1 = p0, and p2 = p3 = · · ·= pm = p0−δ ,

According to Lemma 3, we have

P∗ ≥

∑
{k1,k2,...,kb−c}∈
Ib−c{c+1,...,m}

(
w1wk1 . . .wkb−1

)r

∑
{i1,...,ib−1}∈
Ib−c{2,...,m}

(
w1wi1 . . .wib−c

)r + ∑
{i1,...,ib}∈
Ib{2,...,m}

(
wi1 . . .wib

)r

=

(
m−1
b−1

)(
wc

1wb−c
a

)r

1

∑
i=0

(
m−1

b−1+ i

)(
wc−1

1 wb−c+1
a

)r
=

1

1+ m−b
b

(
wa
w1

)r .

Minimizing the right-hand side of the above equation
gives p∗0 = 1+δ

2 and r in equation (12), which is the tightest
bound. 2

We also propose the following variant of the GLR
method called the generalized Levin Robbins with Elimi-
nation (GLRE) for improved computational efficiency.

Repeat Evaluate all remaining k solutions one more
time.
If {Y(n)

(b)−Y(n)
(k) = r}, then

Eliminate the solution corresponding to Y(n)
(k) .

Until {k = b} where r is also given by equation (12).

We conjecture that proof that GLRE offers equivalent
guarantees to those associated with GLR will likely be
possible and propose it for future study. Leu and Levin
(1999) developed rigorous proof for b = 1 case.

Table 1 compares the computational performance of
GLR and GLRE method for several cases each involving
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Table 1: GLR and GLRE performance in the LFC based
on 1000 simulations each (m = 20, δ =0.1).

b P∗ r Estim. Avg. # Avg. #
pCS rounds evals

15 0.80 1 0.850 5.7 103.4
15 0.90 3 0.978 75.7 1329.5
15 0.95 5 0.992 225.1 3939.3
10 0.60 2 0.789 32.2 442.3

GLRE 10 0.80 4 0.936 140.1 1925.7
10 0.90 6 0.994 322.0 4415.8
5 0.30 1 0.370 4.6 48.0
5 0.60 4 0.791 116.5 1102.4
5 0.90 9 0.989 568.7 5470.9

15 0.80 1 0.897 6.5 129.6
15 0.90 3 0.997 147.5 2949.1
15 0.95 5 1.000 443.7 8874.9
10 0.60 2 0.950 71.2 1424.4

GLR 10 0.80 4 0.998 337.5 6750.4
10 0.90 6 1.000 765.1 15301.7
5 0.30 1 0.410 6.3 126.0
5 0.60 4 0.977 234.7 4693.3
5 0.90 9 1.000 1256.3 25125.8

the least favorable configuration (LFC) using simulation.
The results show that both methods are fairly conservative in
that the simulated success probability is considerably higher
than P∗. Also, while not yet associated with rigorous claims,
the GLRE method offers a computational advantage over
the GLR method that might be considered important. For
example, in the m = 20,b = 5,δ = 0.1,P∗ = 0.9 case, the
GLRE offers the desired guarantee with less than one fourth
the number of simulation runs.

3.2 The Derivation of SSSEGA for Binomial Populations

Next, we describe all the features of the SSSEGA applied to
supersaturated design generation problems. These features
include the usage of the GLR method and a specific type
of mutation to ensure the convergence conditions. Also,
the usage of Bernoulli cross-over and the GLRE method is
described to achieve good computational performance.

Theorem 2 guarantees that inserting the GLR proce-
dure into the scheme for optimization in Section 2 results
in the achievement of the conditions needed to prove long
run convergence in Theorem 1. These conditions are that
subset selection guarantees at least one solution with suc-
cess probability (objective value) within δ of the best in
the generation is achieved with probability greater than P∗.
Similarly, selecting from all possible solutions with equal
probability guarantees a nonzero probability that an accept-
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able solution will be included in the next population, which
is needed for the conditions of Lemma 1 and Theorem 1.

Considering that the GLR procedure can be conserva-
tive and computationally wasteful, we focus computational
results on the more efficient GLRE procedure. However,
GLRE is an open procedure. Therefore, the expected num-
ber of evaluation rounds may be very large if all the solutions
we are testing are very close to each other or even identical.
To prevent the procedure stalling, we include in the method
a practical stoppage of the subset selection operator when
the number of rounds exceeds 5000. Then, the procedure
takes all the remaining solutions into the elitist subset. Fur-
ther, if the number of left solutions exceeds 30% of the
generation size, we increase the generation size to ten times
of the number of remaining solutions.

Finally, since convergence results do not depend on the
specifics of the in-fill phase, we somewhat arbitrarily selected
the well-known “Bernoulli crossover” for generating new
candidate solutions, which is defined as follows. For any
two solutions xt,i and xt, j in current generation t, generate
two solutions xt+1,k and xt+1,l in according to the following:

xt+1,k(m) =
{

xt,i(m), if Um ≤ θ

xt, j(m), otherwise , and

xt+1,l(m) =
{

xt, j(m), if Um ≤ θ

xt,i(m), otherwise .

Here, x(m) is the mth run in design x, and Um is a
random number drawn from uniform distribution U(0,1).
θ is a user specified number and 0 < θ < 1.

3.3 Application to Supersaturated Design Generation

We shall use the same coding method and simulation frame-
work in Allen and Bernshteyn (2003). In their work, each
design is coded by specifying the index (or position) of
each of its runs in the set of all possible candidate settings
(call this set a candidate set). Thus a design is expressed as
a vector of indices. The criterion pCOV is obtained through
simulation. Following a series of assumptions, one can
generate assumed true models (which includes all linear
terms plus all possible interactions between any two fac-
tors) of the system which the screening design will apply
to. For each assumed true model, stepwise regression is
applied to identify the important factors. If all the important
factors are successfully identified, an indicator function is
given value 1, otherwise 0. And we call this process an
evaluation for the design. After simulating a large number
of assumed true models and average all the values of the
indicator functions, an estimated value of pCOV is obtained.
Readers are referred to Allen and Bernshteyn (2003) for
the details of the simulation.
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4 COMPUTATIONAL COMPARISONS

In this section, the proposed SSSEGA procedure is compared
to Fedorov Exchange Algorithm (FEA) (Fedorov 1969,
Fedorov 1972), which is believed to be the best EA “in
terms of producing ‘good’ designs” (Nguyen and Miller
1992), and CIEGA (Bernshteyn 2001) for the generation of
supersaturated designs.

4.1 Methods Settings

EA was designed for surrogate deterministic optimization
criteria such as D-optimality. To solve the stochastic op-
timization problem in this work, the determination of a
“better” screening design need to be changed instead of
D-efficiency. The modification is, when comparing two
designs, compare the percentage of successes by evaluating
each design k times with different random seeds, where k
is an integer (we call the corresponding procedure k-EA).

To balance the trade-off between the broadness of ex-
ploration and probability of “correctly” select the better
design in each exchange, we study different values of k =
500, 1000 and 5000.

For SSSEGA, although its parameter setting does not
affect its long run convergence to the global optimum, it does
influence the practical performance. We suggest the settings
as in Table 2 because they works well practically. Also
notice that different problems may have different “good”
parameter settings for SSSEGA because of the different
characteristics of the problems. Finding optimal settings
under different cases will be part of the future research.

Table 2: SSSEGA parameter settings used.

N c b u s ε o ∆

100 60 10 20 0.95 0.0001 500 0.1

We test three different supersaturated design problems
from Allen and Bernshteyn (2003) with different number
of factors and runs, which are listed in Table 3 respectively.
Designs with 7 factors, 11 factors and 14 factors are tested to
compare the performances of the alternatives under different
problem sizes. Different runs (6, 10 and 8, respectively) are
tested to compare the performances under different optimal
pCOV . To examine the short and long run performance of each
algorithm, 500000, 2000000 and 8000000 total numbers of
evaluations are used as the stopping criteria for each case
and each algorithm comparing.

For each problem, we run each procedure for 20 repli-
cates. For each replicate, 20000 evaluations are conducted
on the final solution (i.e., the final screening design) to
obtain the accurate value of the pCOV achieved.



Zheng and Allen
4.2 Computational Results

Table 3 shows the computational results under different total
numbers of evaluations. In most cases SSSEGA outperforms
other alternatives or has comparable performance in terms
of average pCOV achieved. For instance, in the 11-factor-
and-10-run case, using 0.5 million evaluations, SSSEGA
can obtain screening designs with pCOV = 0.713, which is
better than what k-EA achieves using 8 million evaluations
(which is 0.627) and comparable to the pCOV CIEGA obtains
using 2 million evaluations (which is 0.704).

SSSEGA also surpasses other methods in terms of sta-
bleness and robustness. In all cases in Table 3, SSSEGA has
smaller or comparable standard deviations of the achieved
pCOV ’s against the other two alternative methods, which
indicates that SSSEGA is more stable than the other proce-
dures. The out-performance of SSSEGA (under the same
setting) in each case also shows its robustness and generality
in dealing with different screening designs. The quality of
the designs (i.e., pCOV ) achieved by SSSEGA continuously
improve with the total number of evaluations increasing,
which supports the long run convergence of SSSEGA. In
contrast, The quality of the designs (i.e., pCOV ) achieved by
k-EAs does not necessarily improve with the total number
of evaluations increasing, which indicates the incapability
of k-EAs to keep the “good” designs they hit.

We use ANOVA followed by Bonferroni’s multiple com-
parisons procedure to statistically justify the performance
of SSSEGA against other alternatives.

For each type of alternatives, (i.e., k-EAs and CIEGA),
we select the ones with the best performance under each stop-
ping total number of evaluations to compete with SSSEGA.
For ANOVA, we use the linear model pCOV = p0 + pi, where
i = k-EA, CIEGA or SSSEGA. The results of the statistical
analysis show that for total number of evaluations = 0.5
million and the case with 11 factors and 10 runs, SSSEGA
achieves significantly better pCOV with total α level 0.05.

5 CONCLUSIONS

In this paper, a framework based on subset selection is
proposed for simulation optimization and conditions for its
convergence are proven. Then, a specific subset selection for
the case of comparing binomial systems and success prob-
abilities is proposed called the generalized Levin-Robbins
(GLR) procedure. Guarantees associated with the proposed
GLR procedure are provided such that the insertion of the
GLR procedure guarantees convergence of the overall opti-
mization framework. A variant of the GLR procedure called
generalized Levin-Robbins with Elimination (GLRE) is also
proposed and its computational benefits are discussed.

The so-called sequential subset selection elitist genetic
algorithm (SSSEGA) is then formally proposed as an exam-
ple of the overall optimization framework building upon the
338
Table 3: Average pCOV (standard deviations) achieved.

Case Algorithm Evaluations (million)
0.5 2 8

500-EA 0.707
(0.043)

0.743
(0.027)

0.749
(0.024)

1000-EA 0.704
(0.039)

0.751
(0.018)

0.765
(0.015)

7 factors 6
runs

5000-EA 0.689
(0.068)

0.730
(0.026)

.751
(0.021)

CIEGA 0.771
(0.012)

0.778
(0.011)

0.794
(0.009)

SSSEGA 0.776
(0.009)

0.787
(0.008)

0.790
(0.009)

500-EA 0.613
(0.029)

0.625
(0.026)

0.613
(0.027)

1000-EA 0.619
(0.038)

0.626
(0.037)

0.627
(0.030)

11 factors
10 runs

5000-EA 0.635
(0.035)

0.643
(0.032)

0.641
(0.030)

CIEGA 0.683
(0.013)

0.704
(0.011)

0.731
(0.019)

SSSEGA 0.713
(0.014)

0.721
(0.014)

0.729
(0.014)

500-EA 0.306
(0.021)

0.296
(0.025)

0.302
(0.021)

1000-EA 0.308
(0.021)

0.300
(0.031)

0.303
(0.022)

14 factors
8 runs

5000-EA 0.317
(0.014)

0.310
(0.021)

0.317
(0.016)

CIEGA 0.344
(0.007)

0.348
(0.004)

0.351
(0.007)

SSSEGA 0.344
(0.008)

0.351
(0.007)

0.354
(0.008)

proposed subset selection methods (GLR and GLRE). The
application of SSSEGA to the generation of supersaturated
experimental designs is then described and computational
results comparing SSSEGA with alternative methods from
the experimental design literature are given. The results
suggest that SSSEGA offers a comparatively promising
approach for generating supersaturated designs from simu-
lation optimization.

Some opportunities for future research were also iden-
tified. First, the rigorous properties of the GLRE method
could be established formally. Also, additional even more
efficient subset selection methods could be designed and
characterized for the case of comparing binomial success
probabilities. In applying GLRE in the context of SSSEGA,
it might be possible to avoid any need for increasing the
subset and/or overall population size. Variable sizes gen-
erally increase the complexity of the methods and might
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not be needed. Finally, although discussed here, genomic
applications of supersaturated designs could be important
for efficient derivation of transcriptional networks. Using
simulation optimization for the derivation of supersaturated
designs could offer the ability to tailor methods to specific
needs in genomic research both in academia and industry.
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