
Proceedings of the 2007 Winter Simulation Conference

S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

FINITE-SAMPLE PERFORMANCE GUARANTEES FOR ONE-DIMENSIONAL STOCHASTIC ROOT FINDING

Samuel M. T. Ehrlichman

Shane G. Henderson

School of Operations Research and Industrial Engineering

Cornell University

Ithaca, NY 14850, U.S.A.
ABSTRACT

We study the one-dimensional root finding problem for

increasing convex functions. We give gradient-free algo-

rithms for both exact and inexact (stochastic) function eval-

uations. For the stochastic case, we supply a probabilistic

convergence guarantee in the spirit of selection-of-the-best

methods. A worst-case bound on the work performed by

the algorithm shows an improvement over naı̈ve stochastic

bisection.

1 INTRODUCTION

Let H = H(m, c) be the set of all functions h : [0,m] → R

which are increasing, convex, continuous at the endpoints,

having left derivative at m bounded above by c < ∞, and

having h(0) < 0 < h(m). In this paper we give algorithms

for computing an approximate zero of h ∈ H under varying

assumptions about the information available about h. More

precisely, our algorithm returns a point x̄ ∈ [0,m] satisfying

|h(x̄)| < δ for some pre-specified δ > 0 in the deterministic

setting, and returns such a point with high probability in

the stochastic setting. We will refer to such an x̄ as a δ-

root. This differs from the usual notion of an approximate

root in numerical analysis, which requires that the interval

bracketing the root be small upon termination of the root

finding algorithm.

Our interest in this form of the stochastic root finding

problem arises from the one-dimensional American option

pricing problem. In pricing American options, one wishes

to know at each decision point in time whether to exercise

an option or continue holding it. One should exercise if the

“exercise value” exceeds the “continuation value.” Under

conditions that ensure monotonicity, the optimal policy is

to exercise if and only if the price of the underlying asset

lies on one side of the root of a certain convex function.

The absolute value of this function at the reported root

is an appropriate measure of the error associated with the

approximation.
3131-4244-1306-0/07/$25.00 ©2007 IEEE
One of the first papers on simulation-based approaches

to American option pricing, Grant, Vora, and Weeks (1996),

proposes an algorithm wherein the root is approximately

computed at each stage of a dynamic program. This pro-

cedure is quite straightforward and intuitive, but the actual

root finding subroutine employed is ad hoc and does not

come with a convergence guarantee.

A standard approach to stochastic root finding is sto-

chastic approximation, which has an enormous literature;

see, e.g., Kushner and Yin (2003). However, stochastic ap-

proximation is fundamentally a search procedure, and does

not provide a probabilistic guarantee. This is also true of

Simultaneous-Perturbation Stochastic Approximation (Spall

2003). Chen and Schmeiser (2001) develop retrospective

root finding algorithms that progressively narrow in on a root,

and, like stochastic approximation, the theory is directed

towards proving convergence in a limiting sense, rather than

offering finite-time performance guarantees. This is also

true of the root finding procedures developed in Pasupathy

and Schmeiser (2003), Pasupathy and Schmeiser (2004).

Our work is related to algorithms developed for the root

finding problem with exact function evaluations, especially

Gross and Johnson (1959), but also of note are Potra (1994),

in which a quadratic rate of convergence is established for a

root finding algorithm applied to a subclass of smooth convex

functions, and Rote (1992), which surveys and analyzes the

sandwich algorithm for shrinking a polygonal envelope of a

convex function. None of the papers we have seen attempt

to identify a δ-root, instead adopting other error measures.

Therefore, the first main contribution of our work,

namely the development and analysis of an algorithm for

δ-root finding with exact function evaluations, shares the

problem context of these papers, but we work with a different

error measure. The second main contribution extends this

algorithm and its analysis to the case of inexact function-

evaluations.

Perhaps the most natural approach for identifying a

δ-root of a monotone function in the deterministic setting is

the bisection algorithm. To apply bisection to our problem,

Ehrlichman and Henderson
we evaluate h at the midpoint of an interval that is known

to contain a root, and the interval is then reduced to the left

half or the right half depending on the sign of the result.

The algorithm terminates once it locates a δ-root x̄. Our

assumptions on h imply that such an x̄ is revealed by the

time the bracket has width less than or equal to 2δ/c. In

that case, the bracket midpoint is guaranteed to be a δ-root.

Here, the “bracket” refers to the smallest interval (a, b) such

that both h(a) and h(b) have been estimated and such that it

is known that h(a) < 0 < h(b). Since the bracket width is

halved with each function evaluation, the maximum number

of function evaluations used in the bisection algorithm is

⌈log2 cm/δ⌉ − 1.
When h cannot be evaluated exactly, the situation is

more complicated. Suppose now that for a given x, we are

only able to obtain an interval estimate that is known to

contain h(x) with a given probability. This is the case in

the American option-pricing setting mentioned above. Our

goal is now to design a procedure that delivers a a δ-root

with high probability.

Bisection can again be made to work for this case. One

ensures that each interval estimate returned for a given x
has size at most δ. If said interval lies wholly above (wholly

below) 0, then one asserts that h(x) > 0 (h(x) < 0), and

the bisection algorithm proceeds as before. If the interval

that is returned contains 0, then the algorithm halts and

asserts that x is a δ-root. Under the assumption that each

interval estimate returned during the procedure does indeed

contain the true function value, this bisection procedure will

return a true δ-root. And since we can predetermine a bound

on the number of points at which the function should be

evaluated in order to obtain an approximate root, one can

design the procedure to have a probabilistic convergence

guarantee. We shall refer to the algorithm just described as

the stochastic bisection algorithm.

Our algorithm is very similar to stochastic bisection;

a sequence of interval estimates, (y−

1 , y+
1), (y−

2 , y+
2), . . ., is

computed such that with high probability, y−

j ≤ h(xj) ≤ y+
j

for each j. The algorithm terminates once it can return a

point which is guaranteed to be a δ-root conditional on the

computed interval estimates containing the corresponding

true function values. Where our algorithm differs from

stochastic bisection is in our construction of the sequence

x1, x2, . . . of points where the function value is sampled. By

exploiting the geometry of convex functions, we compute

a region in which the graph of h is known to lie. We are

then able to choose points more intelligently than bisection,

and consequently can derive a lesser upper bound on the

number of necessary function evaluations.

The remainder of the paper is organized as follows. In

Section 2, we exhibit a particular function for which bisection

is inefficient. We show pictorially how our algorithm works

compared to bisection for this function in the case where

function evaluations are exact. In Section 3, we show how
314
one can compute upper and lower approximations of a

convex function given interval estimates of the function’s

value at finitely many points. Section 4 gives the algorithm

for exact function evaluations and contains our main result,

the bound on the required number of function evaluations.

Section 5 extends the algorithm to the inexact function

evaluation case and provides a probabilistic analog to the

result in Section 4. Section 6 concludes.

2 AN EXAMPLE

In this section, we consider the deterministic case (evalua-

tions of h are exact).

Consider the function hbad ∈ H given by hbad(x) =
[c(x−m)+2δ]+−δ. This function is equal to the constant

−δ on the interval [0,m − 2δ/c], then increases linearly

at rate c on the interval [m − 2δ/c,m]. According to our

definition, the interior of the latter interval is precisely the

set of δ-roots of hbad.

It is easy to see that the bisection algorithm evaluates

hbad(x) at the sequence of points x = m/2, 3m/4, · · · , (2k−
1)m/2k, where k = ⌈log2 cm/δ⌉−1, after which the algo-

rithm terminates. In other words, the theoretical maximum

number of function evaluations is actually required for this

example; see Figure 1.

x

h
b

a
d
(x

)

− δ

0

δ

x1 x2 x3 x4 m

Figure 1: Bisection approach on an example function hbad.

In this example, it is evident that choosing sampling

points to the right of the midpoint of the bracket would result

in fewer total function evaluations; see Figure 2. Of course,

this would not be a sound strategy for general increasing

functions. For example, if the true function were increasing

and concave, such as h̃bad given by h̃bad(x) = −hbad(m−x),
then we would prefer to sample to the left of the midpoint

instead. Indeed, for general monotone, increasing functions,

Ehrlichman and Henderson
it is clear that sampling at the midpoint is optimal in the

minimax sense.

x

h
b

a
d
(x

)

− δ

0

δ

x1 x2 m

Figure 2: Our approach on an example function hbad.

For h ∈ H, it turns out that sampling a particular point,

distinct from the bracket midpoint, is provably superior to

bisection. We make this claim precise in Section 4, but

give a heuristic argument here. Suppose our new sampling

point is strictly to the right of the midpoint. Then if the

new point x has h(x) < 0, the bracket is reduced by a

factor strictly exceeding 1/2, whereas if h(x) > 0, then

convexity implies that a new upper bound c̃ < c on the

slope of h at its root is established. In the latter case, the

algorithm may now terminate upon finding a bracket of

width at most 2δ/c̃ > 2δ/c. The key idea behind the proof

of faster-than-bisection convergence is that one can balance

the impact of these two possibilities.

3 UPPER AND LOWER ENVELOPES

Suppose we have estimated the value of h at

k points x1, . . . , xk, yielding interval estimates

(y−

1 , y+
1), . . . , (y−

k , y+
k) of h(x1), . . . , h(xk). LetHk denote

the set of functions h ∈ H satisfying y−

j ≤ h(xj) ≤ y+
j ,

for j = 1, . . . , k. Define the lower and upper envelope

functions lk and uk by lk(x) = inf{h(x) : h ∈ Hk} and

uk(x) = sup{h(x) : h ∈ Hk}; see Figure 3. The vertical

line segments indicate the intervals (y−

j , y+
j), j = 1, 2, 3.

It turns out that it is straightforward to construct uk

and lk incrementally as additional information about h is

revealed. Details are given in (Ehrlichman and Henderson

2007). Our procedure for updating the envelope functions

is an extension of the “sandwich” approximation for convex

functions (Rote 1992) to the case where function evaluations
315
x

h
(x

)

x[1] = 0 x[2] x[3] = m

Figure 3: Upper and lower envelopes.

are inexact. Figure 4 shows how the envelopes might change

as a result of including a fourth point.

x

h
(x

)

x[1] = 0 x[2] x[3] x[4] = m

Figure 4: Updating the envelope functions. The dashed lines

show the new envelopes after sampling at x[2].

By construction, uk is convex and strictly increasing,

and lk is non-decreasing. We denote by l−1
k the right inverse

of lk, given by l−1
k (y) = sup{x : lk(x) = y}.

The envelopes lk and uk provide information that is

quite useful for locating a δ-root. One observation we may

immediately make is that

x[i] < u−1
k (0) ≤ h−1(0) ≤ l−1

k (0) < x[i+1],

Ehrlichman and Henderson
where x[j] denotes the jth order statistic of {x1, . . . , xk} and

(x[i], x[i+1]) is the current bracket. The above inequality

exhibits an interval strictly contained within the bracket that

is known to contain the root of h. This suggests that our

measure of progress in seeking a δ-root should be related to

the width of this smaller interval, rather than to the bracket

itself.

A more direct way in which the envelopes come into

play is in the algorithm’s stopping criterion. Suppose we

are in a situation where

l−1
k (−δ) < u−1

k (δ). (1)

Then every x ∈ (l−1
k (−δ), u−1

k (δ)) is a δ-root, provided

that the interval estimates defining Hk are accurate. In

particular, this may allow the algorithm to terminate without

ever having sampled at a δ-root. Figure 5 depicts the upper

and lower envelopes in such a case; a box is drawn about

the region in the graph which is known to contain only

δ-roots.

x

h
(x

)

− δ

0

δ

x[1] = 0 x[2] x[3] = m

Figure 5: Stopping condition.

Finally, it turns out that the construction of the lower

envelope lk produces as a byproduct the sequence of intervals

(z−[1], z
+
[1]), . . . , (z

−

[k], z
+
[k]), where for each j = 1, . . . , k,

(z−[j], z
+
[j]) is the union of the subdifferentials at x[j] of all

functions h ∈ Hk. Observe that our order statistic notation is

consistent; that is, if xj < xs, then z−j < z−s and z+
j < z+

s .

Moreover, without sampling h at all, we know from our

assumptions on H that 0 ≤ z−j ≤ z+
j ≤ c for all j.

In the nest section, we will see how these quantities

are used in the algorithm and its analysis.
316
4 EXACT FUNCTION EVALUATIONS

In this section, we derive a rule for selecting the next

point at which to evaluate h and state a bound on the

number of function evaluations which this rule engenders.

We work in the setting where function evaluations are ex-

act. In terms of our existing notation, this means that

we assume h(xj) = lk(xj) = y−

j = y+
j = uk(xj) for all

j = 1, . . . , k. We denote this common quantity by yj . Since

h is non-decreasing, the order statistics of {x1, . . . , xk} and

{y1, . . . , yk} satisfy y[j] = h(x[j]), for j = 1, . . . , k.

Suppose the current bracket is (x[i], x[i+1]), i.e. y[i] <
0 < y[i+1]. As noted at the end of Section 2, the measure

of progress towards locating a δ-root should be a function

of both the size (in some sense) of the search region and

of the maximum possible right derivative at the root.

We measure the size of the search region by the area

of the search triangle Tk, depicted in Figure 6 and defined

by the following three lines,

1. the x-axis,

2. the line joining the points
(

x[i], y[i]

)

and
(

x[i+1], y[i+1]

)

, and

3. the line passing through
(

x[i+1], y[i+1]

)

with slope

z+
[i+1].

We define a quantity qk, which measures the work to find

a δ-root that remains after k steps, to be proportional to the

product of z+
[i+1] and the area of the search triangle,

qk = 2 · z+
[i+1] · area (Tk) =

(

y[i+1]

)2

(

z+
[i+1]

∆
− 1

)

, (2)

where ∆ = (y[i+1] − y[i])/(x[i+1] − x[i]).
We refer to qk as the potential after k steps. The

following proposition shows that qk is a reasonable measure

of the remaining work. The proof, which is elementary and

geometric, is given in (Ehrlichman and Henderson 2007).

Proposition 1. If the bracket is
(

x[i], x[i+1]

)

, then

0 ≤ lk

(

x[i+1] − y[i+1]/z+
[i+1]

)

≤ uk

(

x[i+1] − y[i+1]/z+
[i+1]

)

≤ 1

2

√
qk.

In particular, Proposition 1 implies that the stopping

condition (1) is met when qk ≤ 4δ2; in this case x[i+1] −
y[i+1]/z+

[i+1] is a δ-root.

We now discuss the strategy for selecting the next point

x∗ ∈ (x[i], x[i+1]) at which to evaluate h. Let {x̃j , ỹj , j =

Ehrlichman and Henderson
x

h
(x

)

− δ

0

δ

x[1] = 0 x[2] x[3] = m

Figure 6: Search triangle (shaded), exact function evalua-

tions.

1, . . . , k + 1} denote the information defining Hk+1; let

z̃+
j = sup

⋃

h∈Hk+1
∂h(x̃[j]), j = 1, . . . , k + 1.

Suppose first that h(x∗) < 0, so that the new bracket

is (x̃[i+1], x̃[i+2]) = (x∗, x[i+1]). Let q−k+1 denote the new

potential in this case. Then the only way in which the

terms comprising q−k+1 differ from those in qk is that ∆ is

replaced by

∆̃− =
ỹ[i+2] − ỹ[i+1]

x̃[i+2] − x̃[i+1]
>

y[i+1]

x[i+1] − x∗

.

Therefore,

q−k+1 =
(

ỹ[i+2]

)2
(

z̃+
[i+2]/∆̃− − 1

)

=
(

y[i+1]

)2
(

z+
[i+1]/∆̃− − 1

)

(3)

< y[i+1]

(

z+
[i+1]

(

x[i+1] − x∗

)

− y[i+1]

)

.

A search triangle whose potential dominates that of the new

search triangle T̃k+1 is shown in Figure 7.

Suppose instead that h(x∗) = y∗ > 0. Then the new

potential is given by

q+
k+1 = y2

∗

(

z̃+
[i+1]/∆̃+ − 1

)

,

where

∆̃+ =
ỹ[i+1] − ỹ[i]

x̃[i+1] − x̃[i]
=

y∗ − y[i]

x∗ − x[i]
>

y∗

x∗ −
(

x[i+1] − y[i+1]/∆
)

317
x

h
(x

)

x[2]x*

Figure 7: New search triangle when h(x∗) < 0, exact func-

tion evaluations.

and z̃+
[i+1] = (y[i+1] − y∗)/(x[i+1] − x∗). The result-

ing expression bounding q+
k+1 is maximized when y∗ =

1
2 (y[i+1] − ∆(x[i+1] − x∗)), yielding

q+
k+1 <

1

4
y[i+1]

(

y[i+1] − ∆
(

x[i+1] − x∗

))2

∆
(

x[i+1] − x∗

) . (4)

The dominating search triangle is shown in Figure 8.

The right-hand side of (3) (respectively, of (4)) is

monotone decreasing (respectively, increasing) in x∗ on

the interval (u−1
k (0), l−1

k (0)). Since we must have qk+1 ∈
{q−k+1, q

+
k+1}, it follows that we can minimize the maximum

value qk+1 can attain by equating the right-hand sides of

(3) and (4), then solving for x∗. Accordingly, we get

x∗ = x[i+1] − y[i+1]
1/∆

2
√

z+
[i+1]/∆ − 1

. (5)

We combine (2), (3), and (5) to conclude that

qk+1

qk

<

√

z+
[i+1]/∆ − 1

2z+
[i+1]/∆ +

√

z+
[i+1]/∆ − 1

. (6)

Consider the right-hand side of (6) as a function of

η =
√

z+
[i+1]/∆. From the graph of said function, depicted

in Figure 9, we can see that qk+1/qk ≤ 1/9, with equality

at η = 2. This fact and Proposition 1 suffice to establish

the main result of this section, Theorem 2.

Ehrlichman and Henderson
x

h
(x

)

x[2]x*

Figure 8: New search triangle when h(x∗) > 0, exact func-

tion evaluations.

2 4 6 8 10

η

B
o

u
n

d

1

9

Figure 9: Bound on qk+1/qk as a function of η =
√

z[i+1]/∆.

Theorem 2. Assume y[1] = h(0) < 0 and y[2] = h(m) > 0
are known. Then the convex δ-root finding algorithm re-

quires at most

⌈

log3

√
q2

2δ

⌉

<
⌈

log3

cm

2δ

⌉

(exact) function evaluations.

5 INEXACT FUNCTION EVALUATIONS

Two complications arise when we consider the case in which

function evaluations are inexact. One is that (6) fails to

hold in this setting, so there is some work to be done in

order to get a result analagous to Theorem 2. The other is

the fact that our knowledge about Hk is accurate only with
318
high probability. In this section, we discuss how to address

these two issues.

5.1 An Analagous Convergence Result

Many of the results of the previous section go through with

only minor modifications in our current setting, as long as

we make the assumption that our interval estimates are of

width no greater than δ. Under that assumption, let us now

define the notion of the search triangle Tk to be as in the

previous section except with y[i] and y[i+1] replaced by y+
[i]

and y+
[i+1]. See Figure 10, and compare Figure 6. We abuse

the order statistic notation slightly here, taking (y−

[j], y
+
[j])

to be the interval estimate for h(x[j]), j = 1, . . . , k.

x

h
(x

)

− δ

0

δ

x[1] = 0 x[2] x[3] = m

Figure 10: Search triangle in inexact function evaluation

case.

Our definition of the potential in this setting, analagous

to (2), is

qk = 2 · z[i+1] · area (Tk) =
(

y+
[i+1]

)2
(

z+
[i+1]

∆
− 1

)

, (7)

where ∆ = (y+
[i+1] − y+

[i])/(x[i+1] − x[i]). It turns out that

Proposition 1 holds here with only minimal modification.

Proposition 3. If the bracket is
(

x[i], x[i+1]

)

, then

−δ ≤ lk

(

x[i+1] − y+
[i+1]/z+

[i+1]

)

≤ uk

(

x[i+1] − y+
[i+1]/z+

[i+1]

)

≤ 1

2

√
qk.

Ehrlichman and Henderson
We sample at new points according to the rule

x∗ = x[i+1] − y+
[i+1]

1/∆

2
√

z+
[i+1]/∆ − 1

; (8)

compare with (5). Depending upon the sign of h(x∗), this

gives new search triangles as depicted in Figures 11 and 12.

In the case h(x∗) < 0, we get the same guaranteed reduction

factor as in the previous section. However, if h(x∗) > 0,

the resulting expression bounding the new potential turns

out to be

q+
k+1

qk

<

(

y+
[i+1] + δ

y+
[i+1]

)2
√

z+
[i+1]/∆ − 1

2z+
[i+1]/∆ +

√

z+
[i+1]/∆ − 1

;

compare with (6).

x

h
(x

)

x[2]x*

Figure 11: New search triangle when h(x∗) < 0, inexact

function evaluations.

As long as there is still a lot of work to do, the extra

factor of ((y+
[i+1] + δ)/y+

[i+1])
2 has only modest impact.

Only in the final three steps does the rate of progress slow

significantly. Theorem 4 summarizes this result. The idea

of the proof is to split the analysis of the algorithm up into

two stages. The first stage reduces the potential until it is

less than (19δ)2. This happens at a fixed rate. The second

stage reduces the potential to 4δ2, which requires at most

three more steps. Details are provided in (Ehrlichman and

Henderson 2007).
319
x

h
(x

)

x[2]x*

Figure 12: New search triangle when h(x∗) > 0, inexact

function evaluations.

Theorem 4. Assume y−

j , y+
j are known, j = 1, 2. Then the

convex δ-root finding algorithm requires at most

⌈

logθ

√
q2

19δ

⌉

+ 3 <

⌈

logθ

cm + δ

19δ

⌉

+ 3

(inexact) function evaluations, where each evaluation gives

an interval estimate of width less than or equal to δ. Here, θ
is a constant satisfying θ > 2.73.

5.2 Providing a Probabilistic Guarantee

So far we have assumed that all intervals are guaranteed to

enclose the true function values. In the context of stochastic

root finding, however the best that one can hope for is that

a given interval covers the true function value with high

probability. This is certainly the case when the intervals

are confidence intervals as constructed through a central-

limit theorem procedure, or through the use of Chebyshev-

type inequalities as on pp.21-22 of Fishman (1996). By

carefully choosing the confidence levels of such intervals, we

can construct a probabilistic guarantee for our root finding

procedure. More precisely, we can make the statement:

For given constants δ and α ∈ (0, 1), the

probability that the (random) point our

algorithm returns is indeed a δ-root is at

least 1 − α.

This statement is similar in principle to the probability-

of-correct-selection guarantees that come with ranking and

selection procedures; see Kim and Nelson (2006).

Ehrlichman and Henderson
A straightforward approach to obtaining a probabilistic

guarantee was outlined in the introduction. A key point is

that we have a bound (Theorem 4) on the number of intervals

that need to be generated before we can stop the algorithm.

We then use Bonferroni’s inequality to set the confidence

level associated with each interval so that the probability

that all intervals contain their respective function values is

at least 1− α. For example, if we want 1− α = 0.95, and

the bound on the number of intervals required is 5, then we

can set the confidence level associated with each individual

interval to be 0.99.

This somewhat brute-force approach to designing the

overall root finding procedure ignores the information con-

tained in the intervals that are successively obtained. In

particular, it requires that each interval have a uniformly

high probability that it covers the true value, and since the

intervals need to have width at most δ, large simulation

run-lengths may be necessary at each x value.

An improvement is to use a method we call adaptive

α-spending that still ensures that the algorithm has an α-

guarantee, but will, in many cases, reduce the simulation

run-lengths required to obtain the intervals. The key idea

is that, at each step of the algorithm, we re-evaluate a new

bound on the number of steps that remain, and adjust the

coverage probabilities of the remaining intervals accordingly.

Continuing the example above, the first interval may have

confidence level 0.99, but if we subsequently find that we

will need at most 2 more intervals (via Theorem 4), then

the confidence level of the second interval can be chosen

to be 0.98.

It can be rigorously shown (Ehrlichman and Henderson

2007) that adaptive α-spending still gives a 1−α approxima-

tion, and that it is guaranteed to require less computational

effort than the brute-force approach sketched above. Un-

fortunately, no such adaptive strategy is available for the

stochastic bisection method because the bound on the num-

ber of intervals required to stop never reduces by more than

one at each step.

6 CONCLUSION

We conclude by examining the performance of our algorithm

on the function hbad of Section 2. Assume that hbad has

already been sampled at the endpoints, and that these interval

estimates are centered at the true values hbad(0) = −δ and

hbad(m) = δ. Our earlier discussion of hbad showed that

the theoretical maximum number of function evaluations is

actually required for stochastic bisection to produce a δ-root.

Table 1 compares this quanitity (column “SB”) both with

the theoretical maximum number of evaluations required by

our procedure according to Theorem 4 (column “Bound”),

and the realized number of evaluations assuming symmetric

confidence intervals about the true function values (column
320
“Realized”). We take δ = .01, c = 1, and vary the scale of

the problem by varying m.

Table 1: Performance on hbad.

m SB Bound Realized

102 13 5 2

104 19 8 3

106 26 10 3

108 33 12 4

1010 39 14 4

Of course, our algorithm does not necessarily out-

perform stochastic bisection in practice on every possible

function h ∈ H. (Just consider a function in which the

midpoint of the initial bracket is itself the root.) But it

does provide small-sample performance guarantees which

are nearly always an improvement.

ACKNOWLEDGMENTS

This research was partially supported by NSF Grant

DMI 0400287.

REFERENCES

Chen, H., and B. Schmeiser. 2001. Stochastic root finding

via retrospective approximation. IIE Transactions 33

(3): 259–275.

Ehrlichman, S. M. T., and S. G. Henderson. 2007. Stochastic

root finding in one dimension for increasing convex

functions. Working paper, Cornell University Dept. of

ORIE.

Fishman, G. 1996. Monte Carlo: concepts, algorithms, and

applications. Springer New York.

Grant, D., G. Vora, and D. Weeks. 1996. Simulation and the

Early-Exercise Option Problem. Journal of Financial

Engineering 5 (3): 211–227.

Gross, O., and S. Johnson. 1959. Sequential Minimax Search

for a Zero of a Convex Function. Mathematical Tables

and Other Aids to Computation 13 (65): 44–51.

Kim, S.-H., and B. L. Nelson. 2006. Selecting the best

system. In Simulation, Volume 13 of Handbooks in

Operations Research and Management Science. Ams-

terdam: Elsevier.

Kushner, H., and G. Yin. 2003. Stochastic approximation

algorithms and applications. second ed. Springer.

Pasupathy, R., and B. W. Schmeiser. 2003. Some issues in

multivariate stochastic root finding. In Proceedings of

the 2003 Winter Simulation Conference, ed. S. Chick,

P. Sanchez, D. Ferrin, and D. Morrice. Piscataway, New

Jersey: Institute of Electrical and Electronics Engineers,

Inc.

Ehrlichman and Henderson
Pasupathy, R., and B. W. Schmeiser. 2004. Retrospective

approximation algorithms for the multidimensional sto-

chastic root-finding problem. In Proceedings of the 2004

Winter Simulation Conference, ed. R. Ingalls, M. Ros-

setti, J. Smith, and B. Peters. Piscataway, New Jersey:

Institute of Electrical and Electronics Engineers, Inc.

Potra, F. 1994. Efficient hybrid algorithms for finding zeros

of convex functions. Journal of Complexity 10 (2): 199–

215.

Rote, G. 1992. The convergence rate of the sandwich al-

gorithm for approximating convex functions. Comput-

ing 48 (3): 337–361.

Spall, J. 2003. Introduction to Stochastic Search and Op-

timization. John Wiley & Sons, Inc. New York, NY,

USA.

AUTHOR BIOGRAPHIES

SAMUEL M. T. EHRLICHMAN is a Ph.D. student

in the School of Operations Research and Information

Engineering at Cornell University. His interests in-

clude simulation-optimization, with emphasis on applica-

tions in financial engineering. He received a John Mc-

Mullen Graduate Fellowship from Cornell and an ND-

SEG Fellowship. His web page can be found via

<http://www.orie.cornell.edu>.

SHANE G. HENDERSON is an associate professor in

the School of Operations Research and Information Engi-

neering at Cornell University. He is the simulation area

editor at Operations Research, and an associate editor for

the ACM Transactions on Modeling and Computer Simula-

tion and Operations Research Letters. He co-edited the

handbook Simulation as part of Elsevier’s series of Hand-

books in Operations Research and Management Science,

and also co-edited the Proceedings of the 2007 Winter Sim-

ulation Conference. He likes cats but is allergic to them.

His research interests include discrete-event simulation and

simulation optimization, and he has worked for some time

with emergency services. His web page can be found via

<http://www.orie.cornell.edu>.
321

http://www.orie.cornell.edu
http://www.orie.cornell.edu

	INTRODUCTION
	AN EXAMPLE
	UPPER AND LOWER ENVELOPES
	EXACT FUNCTION EVALUATIONS
	INEXACT FUNCTION EVALUATIONS
	An Analagous Convergence Result
	Providing a Probabilistic Guarantee

	CONCLUSION

