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ABSTRACT

We provide asymptotic expressions for the expected value
and variance of the replicated batch means variance estimator
when the stochastic process being simulated has an additive
initial transient. These expressions explicitly show how the
initial transient and the autocorrelation in the data affect
the performance of the estimator. We apply our results to
study how many replications will minimize the asymptotic
bias of the variance estimator for a simple example.

1 INTRODUCTION

In simulation studies, it is often of interest to construct a
confidence interval on the steady-state mean u of a stationary
output process {X;}° , (e.g., customer waiting times in a
queueing system). The usual point estimator for u is the
sample mean based on n observations, X, = Y}_, Xi/n.
The more-challenging task in constructing a confidence
interval is estimating the variance of the sample mean, or
equivalently, nVar(X, ). When the number of observations
is large, then the experimenter can instead estimate the
variance parameter 62 = lim,_...nVar(X,).

Two of the most popular methods for estimating &2
are the methods of independent replications (IR) and batch
means (BM) (see, e.g., Fishman 2001). With the IR method,
r independent runs are conducted, which are used in cal-
culating r replicate sample means, each based on, say, m
observations. Then, 67 is estimated by m times the sample
variance of the replicate means. With the BM method, on
the other hand, a single, long run is conducted, which is
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divided into b contiguous batches, each of length, say, m.
Then, the resulting batch sample means are computed and
o2 is estimated by m times the sample variance of the batch
means. In both cases, an asymptotically valid confidence
interval on the steady-state mean ( can be constructed by
using the sample mean X, and the sample variance of the
replicate/batch means.

The trade-off between making a single long run (as in
the BM method) and many independent replications (as in
the IR method) has been studied by many authors in the
simulation literature (see, e.g., Alexopoulos and Goldsman
2004, Argon and Andradéttir 2006, and references therein).
An advantage of IR is that the replication means are inde-
pendent; however, it may suffer from the presence of an
initial transient at the beginning of each of the r runs, thus
resulting in highly biased estimators for u and 62. On the
other hand, with the BM method, initialization bias often
exists only in the first batch of observations; however, the
batch means are usually correlated. Most of the studies in
the literature comparing these two methods conclude that
the initial transient problem often renders IR too dangerous
to use in steady-state simulations.

To combine the advantages of the BM and IR methods,
Argon and Andradéttir (2006) propose a compromise — the
method of replicated batch means (RBM) — in which a few
independent replications are run, each containing the same
number of batches. They point out that an added advantage
in using multiple replications (as in IR and RBM) is that the
individual replications can be started in different initial states,
which can be used to ensure that observations from various
different parts of the state space of the underlying process
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will be generated. This is especially important in the analysis
of stochastic processes that have nearly decomposable state
spaces. The analytical results by Argon and Andradéttir
(2006) show that RBM typically has asymptotic performance
characteristics which, not surprisingly, fall between those
of IR and BM for stationary processes. However, their
numerical results for non-stationary processes suggest that
the RBM method, implemented with a good choice of
initialization method and a small number of replications,
provides confidence interval coverages (for ) that range
from being similar to those of BM to being substantially
better.

In a follow-up paper, the authors of this paper extend the
analytical results obtained by Argon and Andradéttir (2006)
to non-stationary stochastic processes with additive transient
processes (see Alexopoulos et al. 2006). In particular, we
obtain analytical results on the asymptotic performance of the
RBM mean and variance estimators for stochastic processes
that possess both stationary and transient components, with
the transient components fading away as the number of
observations grows. The current paper provides a review
of the main results of Alexopoulos et al. (2006) and our
ongoing work on this topic.

The outline of this paper is as follows. Section 2
provides definitions, assumptions, and results that we use
in the remainder of the paper. Section 3 summarizes our
main results for the mean and variance of the RBM variance
estimator when the underlying stochastic process has an
additive initial transient. Section 4 provides the main results
of Alexopoulos et al. (2006), which are special cases of
the results provided in Section 3. In Section 5, we provide
an example to show how the results presented in Sections
3 and 4 can be used to obtain insights on the selection
of the best number of replications for the replicated batch
means method when the sample size is large. We provide
our concluding remarks in Section 6. Since the proofs of
our results are lengthy, they are omitted in this paper.

2 PRELIMINARIES

In this section, we state some definitions and assumptions.

Definitions. We conduct r independent replications of the
process {X;}, each containing n observations in addition
to the initial state. Each replication is divided into b non-
overlapping batches of m observations (we assume that
n =mb and exclude the initial states of the replications
from the batch means). Hence, the total number of batches
is rb, and we assume throughout that rb > 2. Let X,
denote observation k from replication 7, for i =1,2,...,r
and k=0,1,2,...,n (so that X; o denotes the initial state of
replication 7). The jth batch mean from the ith replication
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is denoted by

_ 1 & . .
Xijm = = Y Xi(jtymrks i=12,....n j=12,....b;
mi=
the ith replicate mean is
i, 1 & R
X, = BZX,,,’," ==Y Xy, i=12,....n
=1 =]
J
and the overall sample mean is Xgpm(r,n) = Y/ Xin/r.

Finally, we define the replicated batch means estimator for

o2 as

VRBM(",b, m)

m r b B )
1 ZZ i.jm — XrBM(1,1))”.
i=1j=1

Now suppose that {Sy} is a stationary process. Follow-
ing Billingsley (1968), let ///flz (¢1 < £) denote the sigma
field generated by {Sk}iigl. We say that {S;} is ¢-mixing
if for all j,/ > 1 and any events A € .’ _ and B € e
we have |P(B|A) — P(B)| < ¢y, where ¢y — 0 as £ — oo and,
without loss of generality, the ¢, are nonincreasing.

Let v = (vy,...,v) be a vector of dimension k > 1,
f:R¥ = R be a function, and g : R* — R* be a positive
function. Throughout the paper, the notation f(v) = o(g(v))
means that f(v)/g(v) — 0 as vy — oo forall £ € {1,... k}.
We also define the relevant quantity y= —2 Z;":l JR;, where
R;=Cov(S1,S14;) (j > 1) is the autocovariance function
(see, e.g., Song and Schmeiser 1995).

We shall henceforth consider the following model and
standing assumptions.

Assumption 1 The simulation output
{Xix}r_, from replication i =1,2,...
in the form

process
,F can be represented

Xk = Six+Aix, (D

k=1,2,..., where {S; s }x> is stationary and ¢-mixing with
E[Sllﬂ <ocoand ¢y = O(¢~?), and {A; +} is an initial transient
process. Without loss of generality, we take E[S; ;] = 0 for
all i=1,2,...,r. (Of course, Assumption 1 accommodates
the stationary case if all of the A;;’s equal 0.)

With model (1) in mind, the stationary and transient
portions of the jth batch mean from replication i, where
i=1,2,....,rand j=1,2,...,b, are

S\-‘

m m
Z J(j—1D)m+k and Al Jm = Z Ai,(jfl)erkv
k=1 mi3
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respectively; the stationary and transient portions of the ith
replicate mean, where i =1,2,...,r, are

1

S‘z)n E

HM@

@' \

b
SJJ" and Ai., = Z i,jms

respectively; and the stationary and transient portions of the
overall sample mean are S(r,n) =Y/, S;,/r and A(r,n) =
Y/ Ain/r, respectively.

We will also need the following two assumptions.

Assumption 2 The transient processes {A;}i>1
are independent of the stationary processes {Sy}i>1 for
all i,¢ =1,2,...,r. Furthermore, the transient processes
{A;x}i>1 are independent and stochastically equivalent for
all i=1,2,...,r, and similarly, the stationary processes
{Six}k>1 are independent and stochastically equivalent for
alli=1,2,...,r

Assumption 3 For all i = 1,2,...,r,
maxjefio,.., }E[( Aijm —Ain)?’] = 0 as m — oo and
b — oo, and E[(Aiy —A(r,n))*] — 0 as n — oo,

The following proposition provides sufficient conditions
under which Assumption 3 is satisfied.

Proposition 1~ Assumption 3 is satisfied if E[A?,,] —
0 as n — oo and E[A?. ] — 0 as m — oo, uniformly with

i,j,m

respect to j, forall i=1,2,...,r
3 MAIN RESULTS
In this section, we provide results on the expected value and

variance of the RBM estimator of the variance parameter
62 in the presence of a (stochastic) initial transient.

Theorem 1 Under Assumptions 1 and 2, we have
Een(rbm)] = o4 DY
REMAS T B (rb—1)bm

*y;TléiE[Oh¢m—A( ))}+o< ) by

as m — oo, where the o(1/m) term is uniform with respect
to b.

Theorem 2 Under Assumptions 1-3, we have

rbVar(?RBM(r,b,m))

4r2h 2 b
= 20+ (rrb_n1102 e [(Arjm—Arm))’]

r m b 2
R
@meﬁmmf)+dD, ©)

as m — oo and b — oo,

4 A SPECIAL TRANSIENT PROCESS

In this section, we consider an interesting special case
of our general model (1) where A;; = aa; for all k =
1,2,...,nand i=1,2,...,r, {ax} is a sequence of scalars
satisfying a; — 0 as k — oo, and « is the deterministic
initial state of the process. Hence, the transient process
is assumed to be the same in all replications, and it is a
deterministic sequence that converges to zero as the length of
the simulation run increases. This special transient process
(with o = 1) was used by Alexopoulos and Goldsman (2004)
and Alexopoulos et al. (2006) to compare the batch means
and independent replications methods, and to study the
replicated batch means method, respectively. It models
situations where all replications are started in the same
initial state.

We first define some notation. For j=1,2,...,b, let
ajm= ):'li'z(jil)mﬂ ag/m, and @, = Y}_, ax/n. It is easy to
see that the transient process {A;} under consideration in
this section satisfies Assumption 3 (see Proposition 1). We

can now rewrite the results of Theorems 1 and 2 as follows:
E oo (b)) = 02+ L =LY
REMAL I (rb—1)bm

rmo? &

1
+rb— 1 jzzi(dj,mﬁn)2+0<m> , as m— oo, (4)

and

rbVar (Vg (r, b, m))

4r’bmo?a? &
= 2G4+Wz(djm_dn)2+0(l)’ (5)
j=1

as m — oo and b — oo, under Assumptions 1 and 2. Equations
(4) and (5) are proved in Theorems 1 and 2, respectively,
in Alexopoulos et al. (2006), for the case where a = 1.

5 AN EXAMPLE

In this section, we study a specific case of the transient
process considered in Section 4 to determine the number
of replications that minimizes the absolute asymptotic bias
of the variance estimator when the total number of batches
B =rb is fixed. More specifically, we consider an expo-
nentially decaying sequence, for which a;, = a* for some
—1 < a < 1. Exponentially fast convergence to steady state
holds for many stochastic processes as noted in Glynn and
Heidelberger (1991). For example, autoregressive sequences
and irreducible, finite-state, continuous-time Markov chains
exhibit exponential convergence to steady state.
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It is easy to see that for this exponentially decaying
transient process, we have

_ a n 1
aim=-———-——+o0|— | asm— oo,
b (1—a)ym m

It is also easy to see that dj, = o(1/m) as m — oo for
Jj=2,3,...,b. Plugging these expressions and also b = B/r
into Equation (4), we obtain

1 a*a?
B(B—1)m [_ (1—a)?

E[Vkem(r,B/r,m)] = o>+ r

a*Bo?
* ( (1—a)?
From Equation (6), we can see that the most dominant term
in the bias of the variance estimator is a concave function
of r, and hence the minimizer of the absolute asymptotic
bias of the variance estimator either will be around one of
the roots or the extreme point of this function, or will be
equal to 1 or B. This implies that depending on the values
of a, B, a, and ¥, r =1 (as in the BM method), r = B (as in
the IR method), or 1 < r < B (as in the strict RBM method)
may minimize the absolute bias of the variance estimator.

To illustrate, we next study a numerical example in
which we set B =32 and consider r € {1,2,4,8,16,32}.
Suppose that the stationary portion of the process is
a first-order autoregressive process, AR(1), defined by
Sk = @Sk—1 + & for k > 1, where Sy ~ N(0,1), the {&}i>1
are independent N (0,1 — ¢?) random variables that are in-
dependent of Sy, and —1 < ¢ < 1. (Note that this AR(1)
process is stationary with Sy ~ N(0,1) for all kK > 1.) The
AR(1) process {S;} has covariance function R; = ok for
all k=0,+1,%£2,..., so that 62> = (14+¢)/(1 —¢) and
y=—2¢/(1—¢)?%; see, e.g., Sargent et al. (1992).

Suppose also that for the transient portion of the process
{Ag}i>1, we have a = ¢. Then, we have

77)r+327} +o0 (};) ;asm— oo (6)

Xi =Ap+ S = QA1+ 0Si—1 + & = O X1 + &,

where Ag = . This shows that {X} };>1 is a (non-stationary)
AR(1) process, where Xy ~ N(ot,1). For such a process,
we next determine the best number of replications that
minimizes the absolute asymptotic bias of the variance
estimator (see Equation (6)) for various values of o and ¢.

From Table 1, we observe that as ¢ increases (so that
the transient decays at a slower rate), we should decrease
the number of replications even though the autocorrelation
among the data intensifies with an increasing value of ¢.
Table 1 also shows that the best number of replications
also depends heavily on the initial state of the process. In
particular, if we have a rough idea as to what the mean
of the process is (such as in the case where o = 1), then
we should consider making more replications. Our ongoing
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research focuses on obtaining additional insights into how
the number of replications r should be chosen (e.g., for
other transient processes with different convergence rates).

Table 1: The value of r that minimizes the absolute bias
of the RBM variance estimator for large m under a non-
stationary AR(1) process.

[ ¢ Ja=1]a=5]a=10]

0.1 32 16 8
0.2 16 16 4
0.3 16 16 2
0.4 16 8 2
0.5 16 8 1
0.6 16 4 1
0.7 16 4 1
0.8 16 4 1
0.9 16 4 1

6 CONCLUSIONS

We studied the replicated batch means (RBM) method ap-
plied to steady-state simulations of stochastic processes with
additive transient components. In particular, we provided
asymptotic expressions for the expected value and vari-
ance of the RBM variance estimator for large sample sizes.
Finally, we used a simple example in which the transient
decays at an exponential rate to demonstrate how our results
can be used to obtain insights on the selection of the best
number of replications in steady-state simulations.
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