
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

CONTROLLED SEQUENTIAL BIFURCATION FOR SOFTWARE RELIABILITY STUDY

Jun Xu
Feng Yang

Industrial and Management Systems Engineering Dept.
West Virginia University

Morgantown, WV 26506, U.S.A

Hong Wan

Industrial Engineering Department
Purdue University

West Lafayette, IN 47907-2023, U.S.A.
ABSTRACT

Computer simulation is an appealing approach for the re-
liability analysis of structure-based software systems as it
can accommodate important complexities present in realistic
systems. When the system is complicated, a screening ex-
periment to quickly identify important factors (components)
can significantly improve the efficiency of analysis. The
challenge is to guarantee the correctness of the screening
results with stochastic simulation responses. Control Se-
quential Bifurcation (CSB) is a new screening methods for
simulation experiments. With appropriate hypothesis test-
ing procedures, CSB can simultaneously control the Type
I error and power. The past research, however, has focused
on responses with normal distributions. This paper proposes
a CSB procedure with binary responses for software relia-
bility analysis. A conditional sequential test for equality of
two proportions is implemented to guarantee the the desired
error control.

1 INTRODUCTION

Increased research in structure-based software reliability
analysis is needed with the advent of component-based
software development paradigm. In the literature, both ana-
lytic models (such as discrete time Markov chain (DTMC),
continuous time Markov chain (CTMC), and semi-Markov
process (SMP)) and discrete-event simulation models have
been developed to address the problem of quantifying soft-
ware reliability. The former relies heavily on simplified
assumptions of software systems to ensure analytical solu-
tions, but is subject to the problem of intractably large state
space; The latter offers an attractive alternative to analytical
models since they are able to accommodate important com-
plexities present in realistic systems. However, the current
use of simulation for sensitivity analysis of software relia-
bility calls for more sophisticated design of experiments and
statistical methodologies to improve the computational effi-
ciency of simulation and to ensure the validity of the output
2811-4244-1306-0/07/$25.00 ©2007 IEEE
analysis. The prevalent and “naive” method of assessing the
impact of factors on software reliability by varying one factor
at a time could be neither efficient nor effective, especially
when we are interested in the effects of large number of
factors potentially influencing the system’s performance. In
this research, a sequential ratio test-based factor-screening
procedure was proposed for efficient sensitivity analysis of
software reliability.

The structure of a software application may be defined
as a collection of components comprising the application
and the interactions among the components (Gokhale and
Trivedi 2002). The application is executed in such a way
that components are invoked sequentially and stay active
for a specific duration of time performing the requested
functionalities. Suppose that a terminating application is
considered which consists of a finite number of compo-
nents, the software reliability is defined as the probability
of successful execution of a software application.

Once a simulation model is built, simulation experi-
ments can be performed to estimate the software reliabil-
ity under certain input factor settings. Input factors may
include component reliability (or other parameters of indi-
vidual components), intercomponent transition probabilities
(user operational profile of the software), etc. The output
response of a simulation run is represented by a binary
random variable with two possible outcomes, success and
failure of the software execution. To evaluate the impact
of various factors upon the system reliability, experiments
will be designed to carry out simulation at different factor
settings. For complicated systems, however, the number
of factors (i.e., the number of components) is large and
the traditional design of experiments may require too many
design points (i.e., too many simulation runs). In addition,
usually there are only a few critical components, thus evenly
spreading the computational efforts on each settings will
be suboptimal. In these scenarios, a screening experiment
should be conducted to eliminate the unimportant factors
quickly, and therefore more effort can be saved for studying
important factors. The experiment will be very useful in

Xu, Yang, and Wan
assessing the importance of each software component and
creating a plan detailing what tasks will be performed to
achieve the best system performance. For example, if it is
determined that the reliability of a specific component has
the most impact on the system reliability, then it is critical
for the software testing-team to investigate the failure behav-
ior of that component more thoroughly or to allocate more
resources for this component for its reliability improvement.
In addition, conducting sensitivity studies provides a way to
assess the uncertainty in software reliability estimates. Sys-
tem parameters such as transition probabilities are estimated
using the field data obtained during operational usage of the
software, and they rarely can be estimated accurately. By
varying the parameters subject to error, we can estimate the
amount of uncertainty involved in the reliability estimates.

This paper proposes a screening framework for simu-
lation study of the software reliability. We select Control
Sequential Bifurcation (CSB) as the main algorithm (Wan
et al. 2006, 2007). CSB extends the basic Sequential Bi-
furcation (SB) procedure (Bettonvil 1995; Bettonvil and
Kleijnen 1997; Cheng 1997) to provide error control for
random responses. Factors are grouped and the aggregated
group effects are tested. If the group effects are classified as
important, the group will be split into two smaller groups
for further testing. If the group effects are classified as
unimportant, on the other hand, all factors in the group will
be classified as unimportant and no further testing will be
needed. It is obvious that the method requires (1) main
effects model is sufficient to model the data and (2) all
factors’ effects are with the same signs so no cancelation
will happen. When only a small fraction of factors are im-
portant, CSB can eliminate unimportant factors in groups
and hence ends up requiring significantly less computa-
tional efforts than traditional methods. By incorporating
a multi-stage hypothesis-testing approach into sequential
bifurcation, CSB is the first screening strategy to simulta-
neously control the Type I error for each factor and power
for each bifurcation step under heterogeneous variance con-
ditions. The methodology is easy to implement and is more
efficient than traditional designs in many scenarios, which
makes it attractive for many simulation applications (Wan
et al. 2006, 2007).

We extend the current CSB procedure to handle bi-
nary responses. The previous hypothesis testing procedure
developed for CSB with the specific error controls (which
determine the error control property of the CSB procedure)
are all for normal responses while the response of our cur-
rent problem is binary (success (1) vs. failure(0)). A direct
way to apply the current procedure is to define the re-
sponse as the average of n simulated calling results, which
is approximately normally distributed if n is sufficiently
large. An obvious disadvantage of this approach, however,
is that it takes n simulation runs to generate one observation
for analysis, which could be computational intensive. In
282
this paper, we propose to embed the conditional sequential
tests proposed in Meeker (1981) in CSB to allow for the
performance of factor screening for systems with binary
output. The reason we choose this one over the well-known
Wald’s algorithm (Wald 1947) is because that Wald’s tests
only utilize the “untied” (i.e, one system fails and another
does not) observations while Meeker’s test utilizes all the
observations. The superiority of Meeker’s test over Wald’s
test has been discussed in Meeker (1981). We show that
the CSB procedure with the Meeker’s test is appropriate for
detecting critical factors for software reliability problem.

2 RESPONSE MODEL

Suppose that there are K independent factors in the simula-
tion experiment: x = (x1,x2, . . . ,xK). The simulation output
of interest Y is a binary random variable with distribution
parameter p, i.e.,

Y =
{

1, with probability p ;
0, with probability 1− p . (1)

We assume that the relationship between the success
probability p and factors x can be represented by a logistic
regression model:

p(x,β)
1− p(x,β)

= exp(β0 +β1x1 +β2x2 + · · ·+βKxK) (2)

where β = (β0,β1, . . . ,βK) are the unknown coefficients. It
is assumed in model (2) that the dependence of p on x oc-
curs through the linear combination β0 +β1x1 +β2x2 + · · ·+
βKxK , namely no interaction among the factors x are consid-
ered. General linear models such as (2) play an important
role in both applied and theoretical work (McCullagh and
Nelder 1989). Wan et al. (2005) pointed out two situations
in which main-effects models are appropriate: when there
is little prior knowledge about the system and a gross level
of screening is desired; or when the goal of screening is
to identify which factors have important local effects. Our
procedure is appropriate for both types of screening, but
our presentation will focus on the latter application, that is,
one form of sensitivity analysis.

The odds ratio p(x,β)/(1− p(x,β)) is a continuous
and monotonically increasing function of the response prob-
ability p. For reasons that will be apparent in Section 4, we
will treat the odds ratio as the primary response parameter
of interest, and assume that the user is able to evaluate the
practical importance of probability improvement in terms
of odds ratio. Thus the impact of factor xk is measured in
the unit of exp(βk): the effect of a unit change in xk is to
increase the odds ratio by an amount of exp(βk).

Without loss of generality, it is assumed in our model
that the level settings x are deterministic and coded either 0 or

Xu, Yang, and Wan
1. The system/process is currently operating at a nominal
level, say x0 = 0K×1 (a K-dimensional zero-vector). We
evaluate the effect of changing a factor by introducing a small
disturbance to the nominal level, that is, by increasing the
factor level from 0 (nominal level) to 1 (perturbation level).
However, in practice the amount of disturbance introduced
to each factor in its actual units should be determined in such
a way that the effect of factor changes are comparable. Wan
et al. (2006) proposed a cost model which determines the
actual factor settings based on the required cost of changing a
factor to produce an improvement in the output performance.
We adapted their method for factor-level determination in
our logistic model. Let ck be the cost per unit change of
factor k for k = 1,2, . . . ,K, and c∗ = maxk=1,2,...,K ck. Define
the following thresholds of importance:

• t0: the minimum change in the odds ratio for which
we would be willing to spend c∗; and

• t1: the change in the odds ratio that we would not
want to miss if it could be achieved for only a cost
of c∗.

The perturbation level for each factor can then be easily
calculated (for details, see Wan et al. 2006). The integration
of cost and thresholds of importance into the factor scaling
provides a general way to determine the levels for each
factor prior to the running of simulation. If, on the other
hand, the experimenter already knows the thresholds of
importance as well as the factor levels, then they do not
need to use the cost model.

The objective of our procedure is to classify the factors
considered into two groups: those that are unimportant,
which we take to mean exp(βk) ≤ t0, and those that are
important, meaning exp(βk) ≥ t1. For factors with effects
≤ t0, we control the Type I Error of declaring them important
to be ≤ α; and for factors with effects ≥ t1, we require the
power for identifying them as important to be ≥ γ . Those
factors whose effects fall between t0 and t1 are considered
important and we want to have reasonable, although not
guaranteed, power to identify them.

3 CSB PROCEDURE REVIEW

In this section, we will review the CSB procedure proposed
by Wan, Ankenman and Nelson (2006). Suppose that there
are a total of K indexed factors and we use xi to represents the
setting of factor i in an experiment. In the screening experi-
ment setting, we assume each factor has two levels, low level
(coded as 0) and high level (coded as 1). An experiment at
level k has the factor setting x(k) = (x1(k),x2(k), . . . ,xK(k))
with xi(k) defined as

xi(k) =
{

1, i = 1,2, . . . ,k
0, i = k +1,k +2, . . . ,K.
28
Initialization: Create an empty LIFO queue for
groups. Add the group {1,2, . . . ,K} to the LIFO
queue.

While queue is not empty, do
Remove: Remove a group from the queue.

Test:
Unimportant: If the group is unimpor-

tant, then classify all factors in the group
as unimportant.

Important (size = 1): If the group is
important and of size 1, then classify
the factor as important.

Important (size > 1): If the group is
important and size is greater than 1,
then split it into two subgroups such
that all factors in the first subgroup have
smaller index than those in the second
subgroup. Add each subgroup to the
LIFO queue.

End Test
End While

Figure 1: Structure of CSB (Wan et al. 2006, 2007).

In other words, Experiment at level k is to set the factors
1,2, . . . ,k at their high levels and the remaining at their low
levels. Further define nk as the number of observations at
level k.

CSB is a series of steps. At each step, the cumulated
group effect is tested. If the group effects are classified
as unimportant, then all factors within the group will be
classified as unimportant. No further tests are needed. If
the group effects are classified as important, the group will
be split to smaller groups for further testing. For cases
with large number of factors and only a small percentage
of them are important, CSB can eliminate many of the
unimportant factors in groups, therefore saves computational
efforts required for screening. On the other hand, CSB
procedure requires known directions of factors’ effects to
avoid cancelation. Complicated interaction structures may
also give misleading results (Wan et al. 2006).

An overview description of CSB is shown in Figure 1.
The figure illustrates how groups are created, manipulated,
tested and classified, but does not specify how data are
generated or what tests are performed (which is discussed
in the next section).

Suppose the group removed from the queue contains
factors {k1 +1,k1 +2, . . . ,k2} with k1 < k2. The Test step
in Figure 1 tests the following hypothesis to determine if
a group might contain important factors:

H0 : e(∑
k2
i=k1+1 βi) ≤ t0 vs. H1 : e

(
∑

k2
i=k1+1 βi

)
≥ t1.
3

Xu, Yang, and Wan
Incorporating appropriate hypothesis testing procedure,
CSB is the first screening method that provides simultaneous
control of Type I error and power. Many research has been
done to improve the original CSB procedure, which we do
not discuss in this paper. Interested readers are referred to
Wan et al. (2007), Sanchez et al. (2006) and Shen and Wan
(2005, 2006).

The hypothesis testing procedure given in Section 4
guarantees that the probability of Type I error is ≤ α

when exp
(

∑
k2
i=k1+1 βi

)
≤ t0, and the power is ≥ γ if

exp
(

∑
k2
i=k1+1 βi

)
≥ t1.

4 HYPOTHESIS TESTING PROCEDURE

Previous research on appropriate hypothesis tests for CSB
has been focused on responses with normal distributions.
For the binary responses, we adopt the conditional sequential
tests proposed by Meeker (1981) which gives the desired
error control (i.e., a qualified test).

Following Meeker’s notations, we define the relative
superiority measure for two different factor settings x(k1)
and x(k2) as follows:

t =
p(x(k2)/(1− p(x(k2)))
p(x(k1)/(1− p(x(k1)))

(3)

The hypothesis test to determine if group (k1,k2) might
contain important factors is given as

H0 : t ≤ t0 vs. H1 : t ≥ t1. (4)

If t = 1, the two factor settings are equally good, and if
t > 1, x(k2) is superior to x(k1). Two user-specified values
of t, t0 and t1 (1 < t0 < t1), need to be selected such that the
rejection of H0 is considered an error of practical importance
whenever the true value of t is less than or equal to t0 ,
and the acceptance of H0 is considered an error of practical
importance whenever the true value of t is greater than or
equal to t1. Type I error α is the probability of rejecting
H0 when t ≤ t0, and type II error 1− γ is the probability of
accepting H0 when t ≥ t1.

The required procedure is demonstrated in Figure 2 and
necessary notation is given below:

• α : Required Type I Error
• γ : Required power
• a = ln{(γ)/α}
• b = ln{(1− γ)/(1−α)}
• ym(k) : the mth observation at level k. ym(k) = 1

(success) or 0 (failure)
• n : number of current observations used in the

hypothesis test (for both level k1 and k2, n can be
smaller than nk1 or nk2)
284
Test Initialization n = 1,x1 = 0,x2 = 0,r = 0, Finish
= 0

While f inish < 1 AND n < n0, do

If nk1 < n: Take one observation at level
k1,nk1 = n

Endif
x1 = x1 + yn(k1)

If nk2 < n: Take one observation at level
k2,nk2 = n

Endif
x2 = x2 + yn(k2)

r = x1 + x2

Unimportant: If x2 < cL(r,n), classify the
group as unimportant, Finish =1.

Important: ElseIf x2 > cU (r,n) then classify
the group as important. Finish=1.

Endif

n = n+1;
End While
If n = n0

Unimportant: If x2 ≤ cL(r,n0), classify the
group as unimportant.

Important: ElseIf x2 ≥ cL(r,n0) + 1 then
classify the group as important.

Endif

Figure 2: Fully sequential test.

• n0 : maximum number of observations allowed for
the hypothesis test (for level k1 and k2 individually)

• x2 = ∑
n
i=1 yi(k2), the number of success at level k2

• x1 = ∑
n
i=1 yi(k1) the number of success at level k1

• r = x1 + x2
• cL(r,n) = b{b+F(t1)−F(t0)}/ln(t1/t0)c
• cL(r,n) = b{a+F(t1)−F(t0)}/ln(t1/t0)c+1
• F(t) = F(r,n, t) is a function of r, n, and t:

F(r,n, t) = ln

(
t

∑
j=l

(
n
j

)(
n

r− j

)
t j

)

• cL(r,n0) = b{ν +F(t1)−F(t0)/ln(t1/t0)}c
• ν = (a+b)/2
• cU (r,n0) = cL(r,n0)+1

For the discussion of the performance guarantee and
implementation issues, please see Meeker (1981). It should
be noticed that even cL(r,n0) and cU (r,n0) can be defined
for small n0, setting n0 too small can lead to deteriorate
results.

Xu, Yang, and Wan
5 PERFORMANCE OF CSB WITH THE
CONDITIONAL SEQUENTIAL TEST

The above hypothesis test can be proved with the following
error control properties (Meeker 1981):

Pr
{

Declare group effect important
∣∣∣∣e(∑

k2
i=k1+1 βi

)
≤ t0

}
≤ α,

and

Pr
{

Declare group effect important
∣∣∣∣e(∑

k2
i=k1+1 βi

)
≥ t1

}
≥ γ.

Given the specific hypothesis testing procedure, we can
prove the following two theorems for CSB (Wan et al.
2006):

Theorem 1 CSB guarantees that Pr{Declare factor
i important}|βi ≤ ∆0} ≤ α for each factor i individually.

Theorem 2 CSB guarantees that Pr{Declare a
group effect important}|exp(βi) ≥ t1} ≥ γ for each group
tested.

6 EMPIRICAL EVALUATION

In this section, we evaluate the performance of the factor-
screening procedure proposed in Section 3. Before employ
system simulation models to test the effectiveness of the
factor screening procedure, we chose to generate data from
a logistic regression model in which we are able to fully
control the size of the effects by setting the coefficients of
the factors being considered.

Specifically, binary random response Y are generated
from the Bernoulli distribution with parameter p(x,β), and
p(x,β) is a function of the settings of K factors:

p(x,β)
1− p(x,β)

= exp(β0 +β1x1 +β2x2 + · · ·+βKxK) (5)

Suppose that the level settings x are deterministic and
coded either 0 or 1. The factors are evaluated in terms of their
effects on the odds ratio. The hypothesis test performed to
judge that whether or not factor k is important is as follows:

H0 : t = exp(βk) ≤ t0 vs. H1 : t = exp(βk2) ≥ t1. (6)

The parameters for the experiments are set as in Table 1,
and we consider two different settings for factor effects which
is discussed next.
285
Table 1: Parameters for experiments based on logistic re-
gression models.

Parameter Value
K 10
t0 1.15
t1 1.30
α 0.05
γ 0.05

Table 2: Factor effects in case 1.
Coefficients βi Value exp(βi) Value

β1 0.01 exp(β1) 1.01
β2 0.05 exp(β2) 1.05
β3 0.10 exp(β3) 1.11
β4 0.15 exp(β4) 1.16
β5 0.20 exp(β5) 1.22
β6 0.25 exp(β6) 1.28
β7 0.30 exp(β7) 1.35
β8 0.35 exp(β8) 1.42
β9 0.40 exp(β9) 1.49
β10 0.45 exp(β10) 1.57

Case 1
The effect of each factor i depends on its coefficient
βi., and we set the coefficients β as in Table (2).
According to (6), the factors with exp(βi) < t0 are
considered as unimportant, and the factors with
exp(βi) > t1 are considered as critical. In this
case, as can be seen from Table (2), factors 1, 2
and 3 are unimportant, and the observed frequency
that either one of them is declared important should
be smaller than the prespecified type I error, 0.05;
Factors 7, 8, 9 and 10 are critical, and the observed
frequency of declaring them as important should be
near 0.95. Define P(DI) as the “probability of being
declared important”. Figure 3 plots P(DI) against
effect size exp(βi) based on 1000 replications with
each replication using a different random stream.
It is shown in Figure 3 that the desired type I
error and power level have been achieved in this
experiments.

Case 2
We set (β0,β1, . . . ,β10) = (0.1,0.1, . . . ,0.1)1×10, so
that exp(βi) < t0 for all the 10 factors. This set
is designed to study the control of Type I error
for the proposed procedure. The other parameters
are the same as in the previous case. Out of 1000
replications, the frequency of being declared as
important is below 1% for all factors.

Xu, Yang, and Wan
t1 t0

exp(�)

Figure 3: Case 1.

7 CASE STUDY

In this section, we demonstrate the potential of using
simulation-based factor screening procedure to identify im-
portant factors that have a large impact on software reliabil-
ity. We use the application reported by Cheung (1981) as
an example, which has been used extensively to illustrate
structure-based reliability assessment techniques (Gokhale
and Trivedi 2002, Goseva-Popstojanova and Kamavaram
2003, and Lo et al. 2002).

7.1 Software Architecture

The structure of the application (Cheung 1981) is shown in
Figure 4. The state-based approach, which uses the control
flow graph to represent software architecture, is used to build
the architecture-based software reliability model (Cheung
1981) as shown in Figure 4. The states represent active
components 1, 2, . . ., and 10. The arcs represent the
intercomponent transitions, and the transition probability
pi j represents the probability that component j is executed
upon the completion of component i (i, j = 1,2, . . . ,10).
The non-zero transition probabilities among the components
are given in Table 3. In practice, the parameters pi j are
estimated from the user operational profiles reflecting the
usage of different components when the software application
is being executed. According to Figure 4, the software
system consists of 10 components, and the execution of the
application always starts with component 1 and ends with
component 10. Furthermore, we assume that the application
spends 1 time unit at each component per visit. Hence,
the software execution process illustrated in Figure 4 can
be modeled as discrete time Markov chain (DTMC) with
transition probability matrix P = (pi j)10×10.

7.2 Failure Behavior

We first consider the failure behavior of components, i.e.,
the reliability of each component. A component can fail
during its execution period, which is assumed to be 1
286
Figure 4: Structure of an example application.

Table 3: Intercomponent transition probabilities for the soft-
ware example.

Comp. Transition Probabilities
1 p1,2 = 0.60, p1,3 = 0.20, p1,4 = 0.20.
2 p2,3 = 0.70, p2,5 = 0.30.
3 p3,5 = 1.00.
4 p4,5 = 0.40, p4,6 = 0.60.
5 p5,7 = 0.40, p5,8 = 0.60.
6 p6,3 = 0.30, p6,7 = 0.30, p6,8 = 0.10,

p6,9 = 0.30.
7 p7,2 = 0.50, p7,9 = 0.50.
8 p8,4 = 0.25, p8,10 = 0.75.
9 p9,8 = 0.10, p9,10 = 0.90.

unit of time. We define the reliability of a component
as the probability that the component performs its function
correctly without a failure when being executed. Failures of
different components occur independently from each other.
The application process is considered a failure if any of the
components called during the execution fails.

Given that the model described in Figure 4 is a DTMC,
we can analytically derive the expression for system reliabil-
ity as a function of transition probabilities and component re-
liabilities. In our experiments, we assume that the transition
probabilities are fixed known values, and try to evaluate the
impact of component reliabilites upon the system reliability.
Let Ri denote the reliability of component i (i = 1,2, . . . ,10),
and Rs the reliability of the software system. The functional
relationship between Rs and {Ri, i = 1,2, . . . ,10},

Rs = f (R1,R2, . . . ,R10), (7)

can be derived based on the DTMC, and hence the effect
of improving Ri on Rs can be evaluated. In the remainder

Xu, Yang, and Wan
of this section, we will explain how the proposed CSB
procedure is applied on the software model, and compare
the results obtained from simulation experiments with the
analytical ones obtained from DTMC.

7.3 Application of CSB on the Software Model

Our objective is to classify the software components into two
groups, important and unimportant, based on how sensitive
the system reliability is to the reliability of each compo-
nent. The factors being considered are x = (x1,x2, . . . ,x10) =
(R1,R2, . . . ,R10). For the consistency of notation, we will
continue to use x to represent the factor setting vector.
The output of a simulation run of the software model is
a Bernoulli random variable Y with distribution parameter
p = Rs. The hypothesis tests (4) performed in the CSB
procedure is to compare p(x(k1)) and p(x(k2)).

We define a sample path as the sequence of compo-
nents visited by a application execution. In other words, a
sample path represents a calling sequence of the compo-
nents when the software is being executed by users. Let
S = {S1,S2,S3, . . .} denote the set of all the possible sample
paths, and we have

p(x) = ES[p(x,S)] (8)

where p(x,S) represents the system reliability following
sample path S, and ES denotes expectation with respect
to S. Further, we denote Y (x,S) as the random output at
factor setting x for given sample path S, and Y (x,S) follows
Bernoulli distribution with parameter p(x,S).

In light of the fact that reliability p(x,S) could differ
markedly depending on the particular sample path S, in the
sequential simulation, we set up the experiments in such
a way that simulation replications at factor settings x(k1)
and x(k2) are performed at the same randomly selected
sample paths. Specifically, we store all the sample paths,
say S1,S2, . . . ,Sn, independently generated so far in the
procedure. When comparing two factor settings x(k1) and
x(k2), random outputs Y (x(k1),Si) and Y (x(k2),Si) are taken
sequentially with i increasing from 1 to n. If more than n
runs are needed for the test, then a new sample path Sn+1 will
be generated and stored, and observations Y (x(k1),Sn+1)
and Y (x(k2),Sn+1) will be collected.

With the simulation strategy described above, the only
dynamic simulation, which is usually very time consuming,
that needs to be carried out is to independently simulate
a number of sample paths which will be used to generate
random outputs for any factor settings. For a given sample
path S, the output Y (x,S) can simply be generated by Monte
Carlo Simulation as follows. Let ci be the number of times
that component i is visited by sample path S, then the
287
Table 4: Nominal factor settings for component reliabilities.

x1 x2 x3 x4 x5
0.986 0.985 0.985 0.97 0.95

x6 x7 x8 x9 x10
0.98 0.986 0.945 0.975 0.975

Table 5: Parameters for software reliability experiments.

Parameter Value
K 10
t0 1.08
t1 1.11
α 0.01
γ 0.01

reliability p(x,S) is given as

p(x,S) =
10

∏
i=1

xci
i (9)

Thus, the output Y (x,S) can be generated by drawing a ran-
dom variable from the Bernoulli distribution with parameter
p(x,S). The computational savings from this approach al-
lows for the generation of large number of sample paths.

In our experiments, nominal factor settings are given
in Table 4, and the factor increment is set as 0.013. The
CSB parameters for the experiments are given in Table 5,
and the CSB procedure with conditional sequential test
(Meeker’s test) is applied on the software system represented
in Figure 4. The procedure identifies components 5, 8 and
10 as important components, which is consistent with the
analytical results obtained from DTMC analysis.

8 FUTURE RESEARCH

We will further test the methods with different cases. The
future research will be focused on the following two areas.
First, for highly reliable softwares systems, failures can
be considered as rare events. Evaluating the impact of
various factors on the probability of the occurrence of rare
events is challenging. We plan to incorporate importance
sampling or other rare event simulation techniques with the
factor screening procedure to stress these cases. Second,
current CSB requires strong assumptions which are not
necessarily fulfilled in practice. In this study, we do not
consider the transition probabilities as factors. If we do,
then the directions of these factors’ effects will be hard
to predict beforehand. Also, the interactions between the
components in many scenarios cannot be ignored, especially
for large software with many components and complex
calling sequences. We will seek to improve the existing
versions of CSB work (Wan et al. 2007) as well as other
screening strategies to relax these assumptions.

Xu, Yang, and Wan
ACKNOWLEDGMENTS

This research is partially supported by the NASA OSMA
Software Assurance Research Program (SARP) managed
through the NASA IV & V Facility, Fairmont, West Virginia.

REFERENCES

Gokhale S., and K. S. Trivedi. 2002. Reliability prediction
and sensitivity analysis based on software architecture.
In Proceedings of the 13th International Symposium on
Software Reliability Engineering, 64–78.

Goseva-Popstojanova K., and S. Kamavaram. 2003. As-
sessing uncertainty in reliability of component-based
software systems. In Proceedings of the 14th Interna-
tional Symposium on Software Reliability Engineering,
307–320.

Lo J., S. Kuo, M. R. Lyu, and C. Huang. 2002. Op-
timal resource allocation and reliability analysis for
component-based software applications. In Proceed-
ings of the 26th Annual International Computer Soft-
ware and Applications Conference, 7–12.

Meeker, W. Q. 1981. A Conditional Sequential Test for
the Equality of Two Binomial Proportions. Applied
Statistics 30 (2): 109–115.

McCullagh, P., and J. A. Nelder. 1989. Generalized linear
models. 2 Ed. New York: Chapman and Hall.

Sanchez, S. M., H. Wan and T. W. Lucas. 2005. A two-phase
screening procedure for simulation experiments. In
Proceeding of the 2005 Winter Simulation Conference,
ed. M. E. Kuhl, N. M. Steiger, F. B. Armstrong, and J. A.
Joines, Piscataway, New Jersey: Institute of Electrical
and Electronics Engineers. 223–230

Shen, H. and H.Wan. 2005. Controlled Sequential Factorial
Design for Simulation Factor Screening. In Proceeding
of the 2005 Winter Simulation Conference, ed. M. E.
Kuhl, N. M. Steiger, F. B. Armstrong, and J. A. Joines,
Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers. 467–474

Shen, H. and H. Wan. 2006. A hybrid method for simulation
factor screening. In Proceeding of the 2006 Winter
Simulation Conference, ed. L. F. Perrone, B. Lawson, J.
Liu and F. P. Wieland, Piscataway, New Jersey: Institute
of Electrical and Electronics Engineers. 376–381

Wald, A. 1947. Sequential Analysis. New York: John
Wiley.

Wan, H., B. E. Ankenman, and B. L. Nelson. 2006. Con-
trolled Sequential Bifurcation: A New Factor-Screening
Method for Discrete-Event Simulation. Operations Re-
search 54 (4): 743–755.

Wan, H., B. E. Ankenman, and B. L. Nelson. 2007. Ex-
tended Controlled Sequential Bifurcation for Simula-
tion Factor Screening in the Presence of Interactions.
Working paper. School of IE, Purdue University.
288
AUTHOR BIOGRAPHIES

JUN XU is a PhD student in the Industrial and Man-
agement Systems Engineering Department at West
Virginia University. His research work has been focused
on discrete event simulation. His e-mail address is
<jxu2@mix.wvu.edu>.

FENG YANG is an assistant professor in the Indus-
trial and Management Systems Engineering Department
at West Virginia University. Her research interests
include simulation and metamodeling, design of ex-
periments, and applied statistics. Her e-mail and web
addresses are <feng.yang@mail.wvu.edu> and
<http://www2.cemr.wvu.edu/˜yang/>.

HONG WAN is an Assistant Professor in the School of In-
dustrial Engineering at Purdue University. Her research
interests include design and analysis of simulation ex-
periments, simulation optimization; simulation of manu-
facturing, healthcare and financial systems; quality con-
trol and applied statistics. She has taught a variety of
courses and is a member of INFORMS and ASA. Her e-
mail and web addresses are <hwan@purdue.edu> and
<http://web.ics.purdue.edu/˜hwan>.

mailto:jxu2@mix.wvu.edu
mailto:feng.yang@mail.wvu.edu
http://www2.cemr.wvu.edu/~yang/
mailto:hwan@purdue.edu
http://web.ics.purdue.edu/~hwan

	INTRODUCTION
	RESPONSE MODEL
	CSB PROCEDURE REVIEW
	HYPOTHESIS TESTING PROCEDURE
	PERFORMANCE OF CSB WITH THECONDITIONAL SEQUENTIAL TEST
	EMPIRICAL EVALUATION
	CASE STUDY
	Software Architecture
	Failure Behavior
	Application of CSB on the Software Model

	FUTURE RESEARCH

