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ABSTRACT 

in this tutorial paper we give a a general introduction 
to veri f icat ion and validation of simulation models, 
define the various val idation techniques, and present 
a a recommended model val idation procedure. 

i. i. INTRODUCTION 

Simulation models are often used to aid in decision 
making and problem-soIving. The users of these models 
are rightly concerned with whether the models and 
information derived from them can be used with confi- 
dence. Model developers address this concern through 
model veri f icat ion and validation. Model val idat ion 
is usually defined to mean "substantiation that a a 
computerized modei within its domain of applicabil i ty 
possesses a a satisfactory range of accuracy consistent 
with the intended application of the model" 
[Schlesinger, et al. al. (1979)] and is the definit ion 
used here. Model veri f icat ion is frequently defined 
as ensuring that the computer program of the computer- 
ized model (i.e. the simulator) and its implementation 
is correct and will be the definit ion used here. A A 
related topic is model credibil i ty or acceptability, 
which is developing in the (potential) users of in- 
formation from the models (e.g. decision-makers), 
sufficient confidence in tile tile information that they 
are wi l l ing to use :it. 

A A model should be developed for a a specific purpose or 
use and its val idi ty determined with respect to that 
purpose. Several sets of experimental conditions are 
usually required to define the domain of the model's 
intended application. A A model may be valid for one 
set of experimental conditions and be invalid in an- 
other. A A model is considered valid for a a set of 
experimental conditions if its accuracy is within the 
acceptable range of accuracy which is defined as the 
amount of accuracy required for the model's intended 
purpose. 

The substantiat ion that a a model is is valid, i.e. mode] 
w~lidation, is part of the total model development 
process and is itself a a process. This process con- 
sists of performing tests and evaluations within the 
model development process to determine whether a a model 
is valid or not. Usually it is not feasible to deter- 
mine that a a model is a a bsolutell!valid over the com- 
plete domain of its intended application. Instead, 
tests and evaluations are conducted until sufficient 
confidence is obtained that a a model can be considered 
valid for its :intended :intended application [Sargent (1982, 
1984) and Shannon (1975, 1981)]. 

Recent research [Gass and Thompson (1983), Sargent 
(1981, 1982, 1984), and Schlesinger et al. al. (1979)] has 
related model val idation and veri f icat ion to specific 
steps of the model development process. We wi l l  
foi low the development ef [Sargent (1982, 1984)] and 

use Figure i. i. The p&0blem e ~ 6 £ y  is the system (real 
or proposed), idea, situation, policy, or phenomena to 
be modelled; the c0~ceptua~ mode/ is the mathematical/ 
logical/verbal representation (mimic) of the problem 
entity developed for a a particular study; and the 
compuJ~erized mod~ is the conceptual model implemented 
on a a computer. The conceptual model is developed 
through an analys~ analys~ and modU.~ng modU.~ng ph~e, the computer- 
ized model is developed through a a COmpu£~6 prog#~Lg 
and implemev~a~on implemev~a~on pha~e, and inferences about the 
problem entity are obtained by conducting computer ex- 
periments on the computerized model in the expeT~en-  
~ o n  phase. phase. 

We relate validation and verif ication to this simpli- 
fied version of the modelling process as shown in 
Figure i. C 0 n c e p t u ~  model model v~d2~y is defined as 
determining that the theories and assumptions under- 
lying the conceptual model are correct and that the 
model representation of the problem entity is "reason- 
ble" for the intended use of the model. C0mpcc~e~zed 
mode/ v ~ f i c a ~ . 0 ~  is defined as ensuring that the 
computer progran~ing and implementation of the concep- 
tual model is correct. 0 p ~ a ~ 0 n c ~  v a r i e t y  is de- 
fined as determining that the model's output behavior 
has sufficient accuracy for its intended purpose or 
use over the domain of the model's intended applica- 
tion. Dcc~ v a ~ d ~ y  is is defined as ensuring that the 
data necessary for model building, model evaiuation 
and testing, and conducting the model experiments to 
solve the problem are adequate and correct. 

Several models are usually developed in the modell ing 
process prior to obtaining a a satisfactory valid model. 
During each model iteration, model validation and 
verif ication are performed [Sargent (1984)]. A A varie- 
ty of (validation) techniques are used, which are 
described below. Unfortunately, no algorithm or pro- 
cedure exists to select which techniques to use. Some 
of their attributes are discussed in Sargent (1984). 

2. VALIDATION TECHNIQUES 

This section describes various validation techniques 
(and tests) used in model verif ication and validation. 
Most of the techniques described here are found in the 
literature (see Balci and Sargent (1980, 1984) and 
Sargent (1982) (1982) for a a detailed bibliography], although 
they may be described slightly different. They can be 
used either subjectively or objectively. (By objec- 
tively, we mean using some type of statistical test 
or procedure, e.g., hypothesis tests, goodness-of-f it 
tests, and confidence intervals.) A A combination of 
techniques is usually used. These techniques are used 
for verifying and validating both the submodels and 
the overall model. 

Compcu~(son to Other Other Mode: Various results (e.g. (e.g. 
outputs) of the simulation model being validated are 
compared to results of other (valid) models. For 
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example, s imple cases of a a simulat ion m o d e l  may be  
compared to knuwn results of anaLyt:ic, anaLyt:ic, models. (In 
some cases, the model being va[i.dated may require 
minor modi f icat ions to al low compari.sous to be made 
between :it aud ana]ytlic mede]s.) 

De gemgm~t:e gemgm~t:e Te.st~: Te.st~: The degeneracy of the moc[el's be- 
havior  is tested by remeving port ions elf the medel or 
by appropr ia te select ion of tile tile values o[ tile tile input 
parameters. For example, does the average number i.n 
the queue o[ a a single server cont inue to increase with 
respect to t]nle when tile tile arrival rate is ].alger ].alger than 
the service rate. 

[Ve.VI]C V&Q~'~dity: The "events" of occurrences of the 
s imulat ion model  are compared to those ef the real 
system to determine if they are the same. An example 
of events are the deaths in a a given fire department 
simuI at]on. 

E.'c'(ylem¢.-Co;lc[~(.~6o;'t T<,~5.f~: T<,~5.f~: The m o d e l  s t r u c t u r e  a n d  o u t -  
put should be plausible for any extreme and unl ikely 
combinat ion of levels of factors in the system, e.g., 
if in-process inventor ies are zero, product ion out- 
put should be zero. Also, the mode] should bound and 
restr ict  tile tile behavior  outside of normal[ normal[ operat ing 
ranges. 

Face. Face. vccUdi~y: Face val id i ty is asking people know- 
ledgeabl.e about the system whether the model and/or 
its behavior is reasonable. This technique can be 
used [n determin ing if the logic :in the model f low- 
chart  is correct  and, :if a a model 's input-output rela- 
tionsh:ips are reasonable. 

Fized Vccgue~5: Vccgue~5: Fixed values are used for all model 
input and internal variables. This should a l low 
checking the model  results against hand calculated 
values. 

H~&go~l.gccc£ Da.ga Da.ga V~g6da~tgon: If h is tor ical  data exist 
(or if data is col lected on a a system for bui ld ing or 
test ing the model) ,  part of the data is used to bui ld 
tile model and the remaining data is used to determine 
(test) if the model behaves as the system does. (This 
test ing is conducted by dr iv ing tile s i m u l a t i o n  model 
w i th  either Dis t r ibut ions or Traces [Balci and 

Sargent (]982a, 1982b, 1983a)]). 

H.66£0%.6C6C£ ,tl~t/40~: ,tl~t/40~: Three histor ical  m(~thods of va]- 
idatien are R~.~oylm~,OSfll, [~l]p.<,z~c~.Sfll, and P0S~(~T.£v£ 
Ecovtofl~(.cS. Rat ional ism assumes that everyone knows 
whether the under ly ing assumptions of a a mode[ are true. 
Then logic deduct ions are used from these assumpt ions 
to develop the correct (w]l.[d) (w]l.[d) mode].. mode].. Empir ic ism re- 
quires every assumpt ion and outcome to be empir ica l ly  
val idated. Posit ive Economics requires only that the 
model be able to predict the future and is not con- 
ccrned with its assumpt ions or structure (causal re- 
lat ionships or mechanisms). 

I;'bt@YI.~tG.[ VG~O(dg[£y: VG~O(dg[£y: Several repl icat ions (runs) of a a 
stochast ic nlodel are made to determine tile tile amount of 
internal stochast ic var iabi l i ty  in the model. A A high 
amount of wlriabi]:ity (lack of consistency) may cause 
the model 's results to be quest ionable, and, if typ- 
ical of the problem entity, flay quest ion the appro- 
pr iateness of the pol icy or system being invest igated. 

~.lu~/60~.tctge. Wct[.6dcc:O6oyt: Naylor and Finger (1.967) pro- 
posed combining the three histor ical  methods of 
Rational ism, Empir icism, and Posit:five Posit:five Economics into 
a a mult istage process ef val idat ion. This va l idat ion 
method consists of (]) (]) developing tile tile model 's assump- 
tions on theory, observat ions, genera] knowledge, and 
intuit ion, (2) (2) wl ] idat ing the model 's assumpt ions 
where possible by empir ical ly  testing them, and (3) (3) 
comparing (testing) tile input-output re lat ionships of 
the nlodei nlodei to the real system. 

Opqsa;tJ.oaa.[ G/tapfi.(o~ ((Im£m(~(0n) ((Im£m(~(0n) : : The model.' model.' s s opera- 
tional behavior is displayed graphical ly  as tile model 
moves through time. Examples are (i) (i) the graphical 
plot of the status of a a server as the model moves 
through time, i.e., is it busy, idle, or blocked, and 
(ii) the graphical  display of parts nloving through a a 
factory. 

P~[ameteet Vc~Labif~y - - Se~I~Lv.£ty Analys.O~: This 
va l idat ion technique consists of changing the values 
of the input and internal parameters of a a model to 
determine the effect upon the model  and its output. 
Tile Tile same relat ionships should occur in the model as 
in tile tile real[ system. Those parameters which are sensi- 
tive, i.e., cause signi f icant changes in the model 's 
behavior, should be made suff ic ient ly accurate prior 
to usin Z Z the model. (This may require i terat ions in 
model development.) 

Pred~,~kve Valid<tLon: The model is used to predict 
(forecast) the system behavior and comparisons are 
made to determine if the system behavior and tile 
model 's forecast are the same. £he system data may 
come frc)m an operat ional  system or specif ic experi-  
ments may be performed, e.g., field tests. 

/]zaceeS: The behavior of di f ferent types of specif ic 
ent i t ies in the model  are traced (followed) through 
the model to determine if the model 's logic is correct 
and if the necessary accuracy is obtained. 

T~ing Tes£~: People who are knowledgeable about tile 
operat ions of a a system are asked if they can discr im- 
inate between system and model  outputs. (See 
[Schruben (1980)] for a a stat ist ical  procedure for 
Turing l'ests.) l'ests.) 

3. 3. DATA VALIDII~ 

Even though data val id i ty  is usual ly not consiciered 

<<!<iii~i;~i~i, 
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part of model verification and validatioa, we discuss 
it because it is usually difficult, time consuming, 
and costly to obtain sufficient, accurate and appro- 
priate data, and is is frequently the the reason that initial 
attempts to validate a a model fail. fail. Basically, data is is 
needed for these purposes: for building the concep- 
tual model, for validating the model, and for perform- 
ing experiments with the validated model. In model 
verification and validation, we are concerned only 
with the first two types of data. 

To build a a conceptual model, we must have sufficient 
data about the problem entity in order to to develop tile 
mathematical and  logical relationships in the model 
for it to adequately represent the the problem entity for 
its intended use. use. It It is also highly desirable to to have 
data to to develop theories that can be used in building 
the model and to to test the model's underlying assump- 
tions. tions. The second type of of data desired is behavior 
data on the problem entity to be used in the opera- 
tional validity step of comparing the problem eatity's 
behavior with the model's behavior. (Usually, d m s e  
data are system input/output data.) If If these data are 
not available, high model-confidence usually cannot be 
obtained because sufficient operational validity can- 
not be achieved. 

The concern with data is is that appropriate, accurate 
and sufficient data are available, and if if any data 
transformations are made, such as as disaggregation, they 
are correctly performed. Unfortunately, there is is not 
much that can be done to ensure that the the data are 
correct. Tile best that one carl carl do is to develop good 
procedures for collecting data; test the collected 
data using such techniques as internal consisteucy 
checks and screening for outliers and determine i[ i[ a n y  
outliers found[ found[ are correct; and develop good proce- 
dures to to properly maintain the c.ollected c.ollected data. Iif the 
amount of data is large, large, a a data base should be devel- 
oped and maintained. 

4. CONCEPTUAI, MOI)EL MOI)EL VALIDATION 

Conceptual model validity is determining that the 
theories and assumptions underlying the conceptual 
mode], are correct and that the model representation of 
the the problem entity and the model's structure, logic, 
and mathematical and causal relationships are "reason- 
able" for the intended use of the model. The theories 
and assumptions underlying the model should be tested, 
if if possible, using mathematical analysis and statisti- 
cal methods on problem entity data. Examples of 

theories and assumptions are liaearity, independence, 
stationary, and Poisson arrivals. Examples of appli- 
cable statistical methods are fitting distr ibutions to to 
date, estimating parameter values, e.g., mean, vari- 
ance, and the correlation between data observations, 
and plotting data to to see if it :is stationary. In addi- 
tion, all theories used should be reviewed to to ensure 
they were applied correctly; for example, if a a Markov 
chain is is used, are the states and transit ion proba- 
bilities correct? 

Next, each submode] and the overall model nmst be eval- 
uated to to determine if if their abstractions are reasonable 
and correct for the the intended use of the model. This 
should include determining if if the appropriate detail 
and aggregate relationships have been used for the 
model's intended purpose, and if if the appropriate 
structure, logic, and mathematical and causal relation- 
ships have been used. '['tle primary val idation tech- 
niques used for these ewllaations are face validiation 
and traces. Face validation is having an expert or 
experts of the problem entity evaluate the conceptual 
model to determine if if they believe it it is correct and 
reasonable :for its purpose. This usually means exam- 
ining the flowchart model or the set of model equa- 
tions. The use of traces :ks the tracking of entities 
through each submodel and the overall model to to deter- 
mine if if the the logic is is c o r r e c t  and t h e  necessary 
accuracy is is maintained. [f any errors are found in 
the conceptual model, it must be revised and concep- 
tual model wLl.idation wLl.idation performed again. 

5. 5. COMPUTERIZED MODEl, MODEl, VERIFICATION 

Computerized model verification is ensuring that the the 
computer programming and implementation of tile tile concep- 
tual model is correct. To help ensure that a a correct 
computer program is obtained, program design and 
development procedures found in the field of Software 
Engineering should be used in in developing and imple- 
menting the computer program. These include such 
techniques as top-down design, structured programming 
and program modularity. A A separate program module 
should be used for each submodel, the overall model, 
and for each simulation function (e.g. (e.g. t ime-flow mech- 
anism~ random number and random variate generators, 
and integration routines) when using general purpose 
higher order languages, e.g. FORTRAN, and where possi- 
ble when using simulation languages [Chattergy and 

Pooch (1977)]. (1977)]. 

One should be aware that tile tile use of different types of 

SUBJECTIVE 
APPROACH 

OBJECTIVE 
APPROACH 

OBSERVABLE NON-OBSERVABLE 
SYSTEM SYSTEM 

• • COMPARISON OF OF DATA USING 
GRAPHICAL DISPLAYS 

. . EXPLORE MODEL BEHAVIOR 

• • EXPLORE MODEL BEHAVIOR 

• • COMPARISON TO OTHER 
MODELS 

• • COMPARISON OF DATA USING 
STATISTICAL TESTS AND 
PROCEDURES 

• • COMPARISON TO TO OTHER 
MODELS USING STATISTICAL 
TESTS AND PROCEDURES 

Figure 2: Operational Val idi ty Classification 
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computer languages effects the probability of having 
a a correct program. The use of a a special pa£pose sim- 
ulation language, i f  appropriate, generally wiIi 
result in having less errors than if if a a general[ purpose 
simulation language is used, and using a a general pur- 
pose simulation language will generally result in 
having less errors than if if a a general purpose higher 
order language is used. Not only does the use of sim- 
ulation ].anguages ].anguages increase the probability of having a a 
correct program, they also reduce programming time. time. 

After the computer program has been developed, imple- 
mented, and hopeful ly most of the prograimning prograimning "bugs" 
removed, the program must be tested for correctness 
and accuracy. First, the simulation functions should 
be tested to see if they are correct. Usually 
straight forward tests can be used here to to determine 
if if they are working properly. Next, each submodel and 
the overall model should be tested to to see if if they are 
correct. Here the testing is much more difficult. 
There are two basic approaches to testing: static and 
dynamic testing (analysis)[Fa[rley (1976)]. In static 
testing, the computer program of the computerized 
model is analysed to to determine if it it is is correct by 
using such techniques as correctness proofs, struc- 
tured walk-through, and examining the structure prop- 
erties of the program. The commonly used structured 
walk-through technique consists of each program 
developer explaining the:i.r computer program code 
statement by statement to to other members of the model- 
ling team until, until, all are coavi.need coavi.need it is is correct (or (or 
inco rrec t t ). 

In dynamic testing, the computerized model is is executed 
under different conditions, and the values obtained 
are used to to determine if if the computer program and :its 
implementations are correct. This includes both the 
values obtained during execution and the final values. 
There are three different strategies to to use in dynamic 
testing: bottom-up testing which means testing the 
submode[s first and then the overall model; top-down 
testing which means testing the overall model first 
using programming stubs (sets of data) for each of the 
submodels and then testing the submodels; and mixed 
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testing, which is using a a combination of bottom-up and 

Lop-down testing [Fairley (1976)]. The techniques 
commonly used in dynamic testing are traces, investi- 
gations of input-output relations using the validation 
techniques, internal consistency checks, and repro- 
gramming critical[ critical[ components to to determine if the same 
results are obtained. If there are a a large number of 
variables, one might aggregate to reduce the number of 
tests needed or use certain types of design of exper- 
meats [Kleijnen (1974, (1974, 1982)], e.g. factor screening 
experiments [Smith and Mauro (1982)] to to identify the 
key variables, in order to reduce the number of exper- 
imental conditions that need to to be tested. 

One must continuously be aware in checking the the correct- 
ness of the computer program and its implementation, 
that errors may be caused by the data, the conceptual 
model, the computer program, or the computer implemen- 

tation. 

6. 6. OPERATIONAL VALIDITY 

Operational valid:ity valid:ity is is primarily concerned with de- 
termining that the model's o u t p u t  behavior has t h e  

accuracy required for the model's intended purpose 
over the domain of its intended application. This is 
where most of the validation testing and evaluation 
takes place. The computerized model is used in opera- 
tional validity and thus any deficiencies found can 
be due to an inadequate conceptual mode], an improper- 
ly programmed or implemented conceptual mode] on the 
computer (e.g., (e.g., due to to programming errors or insuf- 
f:icient f:icient numerical accuracy), or due to invalid data. 

All of the validation techniques discussed in section 
2 2 are applicable to operational validity. Which 
techniques and whether to to use them objectively or sub- 
jectively, must be decided by the model developer and 
other interested parties. The major attribute effect- 
ing operational validity is whether the problem entity 
(or system) is observable or not, where observable 
means it is possible to to collect data oa the operation- 
al behavior of the program entity. Figure 2 2 gives one 
c].assification of the validation approaches for opera- 
tional validity. The "explore model behavior" means 
to examine the behavior of the model using appropriate 
validation techniques [or various sets of experimental 
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condi t ions from the domain of the model 's intended 

use, 

To obta in a a j.SLgll degree of conf idence in a a model  and 
its results, compar ison of the model 's and system's 
input-output  behavior for at ]east two di f ferent  sets 
of exper imenta l  condit ions is usual ly required. There 
are three basic comparison approaches used: (i) (i) graphs 
of the model  and system behavior data, (ii) hypothesis  
tests, and (iii) conf idence intervals. 

6.[[. 6.[[. Graph ica l  Compar ison of Data 

The model 's  and system's behavior  data are plot ted on 
graphs for var ious sets of experimental  condi t ions to to 
determine if the model 's  output behavior has suf f i -  
c ient accuracy for :its intended purpose. A A var ie ty  of 
graphs showing di f ferent  types of measures and rel.a- rel.a- 
t ionships are required. Examples of measures and 
re la t ionships are (i) (i) time series, means, variances, 
and maximums of each output variable, (ii) re lat ion-  
ships be tween parameters of each output var iable, e.g. 
means and standard deviations, and (iii) re lat ionships 
between d i f ferent  output var:iables. (See Figure 3 3 
for an example of a a graph.) It is important that the 
appropr ia te  measnres and relat ionships be used in 
w~l idat ing a a model  an([ that they be determined wi th  
respect  to tile model 's intended purpose. As an exam- 
p].e p].e of a a set of graphs used in the val idat ion of a a 
model, see Anderson and Sargent (1974). 

These graphs are used in mode], mode], va l idat ion in three 
ways. First,  the model developer can use the graphs 
in the model  development process to make a a subject ive 
judgement  on whether the model does or does not pos- 
sess suf f ic ient  accuracy for its intended purpose. 
Second]y, they can be used in the face va l id i ty  tech- 
nique where  exper ts  are asked to make subject ive judg- 
ments on  whether  a a mode] does or does ]lot possess 
suf f ic ient  accuracy for its intended purpose. 

The third way the graphs can be used is in Tur ing 
Tests. Sets of data from the model and from the sys- 
tem ace plot ted on separate graphs. The graphs are 
shuf f led and then experts are asked to determine which 
graphs are from the system and which are from the 
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mode]. Tile results for each measure and  re lat ionship 
can be evaluated either subject ively or  stat ist ical ly.  
The subject ive method requires that a a sub jec t i ve  de- 
c is ion be made whether the results a r e  sa t is fac tory  or 
not. The stat ist ical  method reqLlires that  the results 
be analyzed statistically. See S c h r u b e n  (1980) for a a 
var ie ty  of stat ist ical methods for a n a l y z i n g  the 
resul ts of Turing Tests and examples of thei r  use. 

6.2. Hypothesis Tests 

Hypothesis tests can be used in the c o m p a r i s o n  of 
parameters, distr ibutions, and time se r i es  of the 
output data of a a model and a a system for  each  set of 
exper imenta l  condit ions to determine if the model 's 
output behavior has an acceptable range  of accuracy. 
An acceptable range of accuracy is is the  amount  of 
accuracy that i.s required of a a model  to be val id for 
its intended purpose. 

Tile first step in hypothesis test ing is to state the 
hypotheses to be tested: 

Ho: Model :is val id for the accep tab le  range of 
accuracy under the set of e x p e r i m e n t a l  condi- 

tions. (i) (i) 

H]: Model i.s invalid for the a c c e p t a b l e  range of 
accuracy under the set of e x p e r i m e n t a l  condi- 
tions. 

'[~o '[~o types of errors are possible in t es t i ng  the hy- 
pothesis in (i). The first or type I I e r ro r  is reject- 
[ng the val id i ty of a a valid model; the  second or type 
I] er ror  is accept ing the val idi ty o f  an  inwl l id 
model. The probabi l i ty of a a type e r r o r  I I :is cal led 
m0dg,£ m0dg,£ 6 t ~ d ~ s  ;uc6k (a) and the probability probability of type II 
error is cal led mode£ u~e~L's u~e~L's ~f~k (~). In mode] val- 
idation, model user 's risk is ex t reme ly  :important and 
must be kept small. Thus bP~Ji bP~Ji type [ [ and  type If 
errors must be considered in using h y p o t h e s i s  testing 
for model val idat ion. 

The amount of agreement between a a m o d e l  and a a system 
can be measured by a a VggL~gty me, lu te ,  ~. The val id- 
ity measure is chosen such that the model, accuracy or 
the amount of agreement between the m o d e l  and the 
system decreases as the value of the v a l i d i t y  measure 
increase. The acceptable range of a c c u r a c y  can be 
used to determine an acceptable va l i d i t y  range, 

0 0 < < Z Z < < ~*. 

The probabi l i ty  of acceptance of a a m o d e l  being valid, 
Pa, can be examined as a a function of the val id i ty  
measure I I by using an Operating Cha rac te r i s t i c  Curve 
(Mii].er (Mii].er and Freund (1977)). Figure 4 4 con ta ins  three 
di f ferent operat ing characterist ic c u r v e s  to i l lustrate 
how the sample size of observat ions a f f e c t  Pa as a a 
funct ion of I. As can be seen, an i n a c c u r a t e  model 
has a a high probabi l i ty  of being accep ted  if a a small 
sample size of observat ions are used and  an accurate 
model  has a a low probabi l i ty of being accep ted  if a a 
large sample size of observations are  used.  The loca- 
t ion and shape of the operating cha rac te r i s t i c  curves 
is a a funct ion of the statistical, t echn ique  being used, 
tile valne of ~ ~ chosen for ~=0, e e , , a n d  the sample size 
of observat ions. Once the operat ing charac te r i s t i c  
curves are constructed, the intervals fo r  the model  
user 's  r isk ~(I) and the model bu i l de r ' s  r i sk  ~ ~ can 
be determined for a a given I* as fo l lows:  

* * i-~* < < model bui lder 's risk ~ ~ < < ( ( ) ) 
, , (2)  

0 0 < < mode l  u s e r ' s  r i s k  B(~) < < ~ ~ . . 
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Thus, there is a a direct re lat ionship among bui lder 's 
risk, model  user 's  risk, acceptab le  va l id i ty  range, 
and sample size of observat ions. A A tradeoff  among 

these must be made in using hypothes is  tests in model 
val idat ion. 

In those cases where tile tile data co l lect ion cost :is sig- 
n i f icant  for e i ther the model or system, the data 
col lect ion cost should also be considered in perform- 
ing the tradeoff  analysis. A A cost model for data 
co l lect ion should be developed as a a funct ion of the 
sample sizes of observat ions for the model and the 
system. An opt imizat ion  prob lem can be formulated 
and solved to determine the opt imum sample sizes for 

a a given data co l lec t ion budget and stat ist ical  test to 
minimize the mode l  user 's risk. 

Data can be generated for d i f ferent  values of the 
tradeoff  parameters and placed in schedules which can 
be used to generate two di f ferent  types of curves to 
be used in the tradeoff  analysis. One type of cnrve 
is the operat ing character is t ic  curve shown in Figure 
4. 4. The other type of curve :is shown in Figure 5. 5. The 
lat ter curve shows the re lat ionships among ~*, ~*, and 
the data co l lec t ion  budget (or sample sizes if data 
co l lect ion cost is not considered) for a a given model 
accuracy. These curves can be used by the model  de- 
veloper,  model  sponsor, or both to aid in making judg- 
ment  decis ions in regard to determining the appropri-  

ate values to use in test ing the val id i ty of a a model 
for a a given set of exper imenta l  condit ions. 

Detai ls of the methodology of using Hypothesis Tests 
in compar ing model 's  and system's output data for 
model  va l idat ions are given in Balci and Sargent 

(1981a). Examples of the appl icat ion of this method- 
ology in the test ing of output means for model val ida- 

. . t ion are given in Balci and Sargent (1982a, 1982b, 
1983a) and in Banks and Carson (1984). 

6.3. Conf idence Intervals 

Conf idence intervals (c.i.), s imul taneous conf idence 
intervals (s.c.i.), and joint conf idence regions 
(j.c.r.) can be obta ined for the di f ferences between 
the populat ion parameters, e.g. means and variances, 
and d is t r ibut ions of the model and system output 
var iables for each set of exper imenta l  condit ions. 
These c.i., s.c.i . ,  and j.c.r, call be used as the 
model  range of accuracy for model  val idat ion. 

To construct  the model range of accuracy, a a stat ist i -  
cal procedure conta in ing a a stat ist ical  technique and 
a a method of data col lect ion must be developed for each 
set of exper imenta l  condi t ions and for each type of 
parameters of interest. The stat is t ica l  techniques 
used can be div ided into two groups; (A) (A) univar iate 
stat is t ical  techniques and (B) (B) mul t ivar ia te stat ist i -  
cal techniques. The univar ia te techniques can be used 
to develop c.i. and wi th  the use of the Bonferroni  
inequal i ty  [Law and Kel ton (1982)] s.c.i. The mult i -  
var iate techniques can be used to develop s.c.i, and 
j.c.r. Both parametr ic  and nonparametr ic  techniques 
can be used. 

The method of data col lect ion used must sat is fy the 
under ly ing assumpt ions of the stat is t ical  technique 
be ing used. The standard stat is t ical  techniques and 
data col lect ion methods used in s imulat ion output 
analysis can be used for developing the model  range of 
accuracy; namely (i) (i) repl icat ion, (2) (2) batch means, 
(3) (3) regenerat ive, (4) (4) spectral,,  (5) (5) t ime series, and 
(6) (6) standardized time series [Banks and Carson (]984), 
Law and Kel ton (1982)~ Law (1983)]. 

Sargent 

It is usual ly desirable to constrnet the model range 
of accuracy with the lengths o[ tile tile c.i. and s.c.i. 
and the sizes of the j.c.r, as small as possible. The 
shorter the lengths or tile tile smaller tile tile sizes, the more 
useful and meaningfu l  the speci f icat ion of the model  
range of accuracy wi l l  usual ly be. The lengths and 
the sizes of the joint conf idence regions are af fected 
by the values of conf idence levels, var iances of the 
mode] and system response var iables, and sample sizes. 
The lengths can be shortened or sizes made smaller by 
decreasing the con[ idence levels. Variance reduct ion 
techniques [Law and Kelton (1982)] can be used in some 
cases when col lect ing observat ions from a a s imulat ion 
model  to decrease the var iab i l i ty  and thus obtain a a 
smaller range of accuracy. The lengths can also be 
shortened or the size decreased by increasing the 
sample sizes. A A tradeoff analysis needs to be made 
among the sample sizes, conf idence levels, and est i -  
mates of the length or sizes of the mode] range of 
accuracy. In those cases where tile tile cost of data 
col lect ion is s igni f icant for either the model or 
system, the data col lect ion cost should also be con- 
sidered in the tradeoff analysis. Detai ls of a a 
methodology for per forming a a tradeoff analysis and for 
using c.i., s.c.i., and j.c.r, can be found in Balci  
and Sargent (1981b, 1983b). I,aw and Kel ton (1982) 
a]so discuss the use of c.i. for model val idat ion. 

7. RECO>~MENDED MODEL VALIDATION PROCEDURE 

There are current ly no algor i thms or procedures avai l -  
able to ident i fy specif ic va l idat ion techniques, sta- 
t ist ical tests, etc. to use in the val idat ion process. 
Various authors suggest (for example, see Shannon 
[1975, p. 29] that as a a min imum the three steps of 
(i) (i) Face Val idi ty, (2) (2) Test ing of the Model Assump- 
tions, and (3) (3) Test ing of Input-Output Transformat ions 
be made. These recommendat ions are made in general  
and are not related to the steps of tile tile model l ing pro- 
cess discussed in the Introduction. 

This author recommends that, as a a minimum, the fol low- 
ing steps be performed in model val idat ion: 

(i) (i) An agreement be made between (i) (i) the model l ing 
team a:nd (ii) the model  sponsors and users (if 
possible) on the basic val idat ion approaches and 
on a a min:imum set of specif ic val idat ion techniques 
to be used in tile tile va l idat ion process prior to de- 
veloping the model. 

(2) (2) The assumpt ions and theories under ly ing tile tile model 
be tested, if possible. 

(3) (3) In each model i teration, at least face val id i ty  be 
per formed on the conceptual  model. 

(4) (4) In each model  i teration, explorat ion of the 
model 's  behavior  be made using the computer ized 
model. 

(5) (5) In at least the last model  iteration, comparisons 
be made between the model  and system behavior  
(output) data for at least two sets of exper imen- 
tal condit ions, if possible. 

(6) (6) Val idat ion d iscussed in the model documentat ion. 

8. 8. SUMMARY 

Model  va l idat ion is one of the most cr i t ical  issues 
faced by the simulat ionist .  Unfortunately,  there is 
no set of specif ic tests that can be easi ly appl ied to 
determine the val id i ty  of the model. Furthermore, no 
algor i thm exist to determine what techniques or 
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procedures to use. Every new simulation project pre- 
sents a a new and nn]que challenge. 

There is a a considerable literature on verification and 
validation [Balci and Sargent (1980, (1980, 1984)]. 1984)]. Articles 
given in the references can be used as a a starting 
point for furthering your knowledge on verification 
and validation. 
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