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ABSTRACT

In this tutorial paper we give a general introduction
to verification and validation of simulation models,

define the wvarious validation techniques, and present
a recomuended wodel validation procedure,

L. TNLRODUCLION

Simulation models are often used to ald in decision
making and problem-solving. The users of rhese models
arve rightly concerned with whether the models and
information derived from them can be used with confi-
dence. Model developers address this concern through
model verilication and validation. Modcl validation
i3 usually defined to mean ''substantiation that a
computerized model within its dowmain of applicability
passesses a satisfactory range of accuracy consistent
i the intended application of the model'”
|Schlesinger, et al. (1979)] and is the definition
uged here, Model verificavion is frequently defined
as ensuring that the computer program of the compntec—
ized model (i.e. the simulator) asod its implementation
is correct and will be the definition used here. A
related toplic is model credibility or acceptability,
which is developing in the (potential) users ol in-
formatfon from the models {c.g. docision—makers),
sutficient contidence in the information that they

arc willing to usc it.

A wodel should be developed for a specific purpose or
use and its validity determined with respect to that
purpose. Several sets of experimeuntal conditions are
usually required to define the domain of the model's
intended application. A model may be valid for one
set of experimental conditions and be invalid in an—
other. A model is consideved valid tor a scb ol
experimental conditions it its accuracy is within the
acceptable range of accuracy which is defined as the
amount of accuracy required for the model's intended
purpose.

The substantiation that a madel is vatid, 1.e. model
validation, is part uvf the total medel development
process and is itsell a process. This process con—
sists of performing tests and evaluations within the
model development process to determine whether a moadel
is valid or not. Usually it is not feasible to deter-—
mina that a model is absolutely valid over the com—
plete domain of its intended application. Instead,
tests and evaluations are conducted until sufficieal
confidence is obtained that a model can be considered
valid Cor its intended application [Sargent (1982,
1984) and Shannon (1975, 1981) 1.

Recent research [Gass and Thompson (1983), Sargent
(1981, 1982, 1984), and Schlesinger et at. (1979)] has
related modcel validation and verification to speclfie
steps of the model development process, We will
follow the development of [Sargent (1982, 1984)] and

use Tigure 1. The pioblem enfify 1s che system (real
or proposed), idea, situation, policy, ar phenpowmena Lo
be modelled; the concepfuad. moded is che mathemalical/
logical/verbal representation (mimic) of the problem
entity developed for a particular study; and the
computerized medef is the conecptual model implemented
on a computer. The comceptual model is developed
through an anafysis and modelling phase, the computexr—
ized model is developed through a compuler pregramming
and implementation phase, and inferences about the
problem entiry are obtained by conducting computer ex—
periments on the computerized model in the expesdimen-
tation phase.

We rclate validation and verification to this simpli-
Ficd version of the modelling process as shown in
Figure 1. Conceptuat medel vaflidity is defined ae
determining that the theories and assumptions under—
lying the conceptual model are correct and that the
model vepresentation of the problem entity is “'reason-—
ble' for the intended use of the model. Compuferized
medel verificafion is defined as ensuring that rhe
computer programming and implementaticn of the concep-
tual model is correct. Operational validify is de-—
fined as determining that the model's output behavior
has sufficient accuracy for its intended purpose or
use over the domain of the model's intended applica-
tion. Data vallidity is defined as ensuring that the
data necessary for model building, model evaluacion
and testing, and conducting the model experiments ta
solve the problem are adequale and correct.

Several models are usually developed in the wodelling
process prior to obtaining & satlsfactory valid model.
During each model iteration, wodel validation and
verification are pertormed [Sargent (1984)}. A varie-—
ty of (validation) tcchniques are used, which are
deseribed below. Unforrunarely, mo algoxrilchm or pro-~
cedura exists to select which rechniques to use. Some
of their atrributes are discussed in Sargent {1984).

2. VALIDATION TECHNIQUES

This section describes variocus validation techniques
{and tests) used in model verification and validation.
Most of the techniques described here are found in the
literature (see Baleci and Sargent (1980, 1984) and
sargent (1982) for a detalled bibliegraphy], although
they may he described slightly different. They can be
used either subjectively or objectively. (By objec—
tively, we mean using some type of statistical test

or procedure, e.g., hypothesis tests, goodness—of-fit
tests, and confidence intervals.) A combination of
tochniques is usually used. These technlgques arc used
for verifying and validating both the subnodels and
the overall model.

Compiison Lo Othen Models: Various results (e.g.
outputs) of the simulation medel being validated are
compared to results of other (valid) models. For
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cexample, slmple cas a tion model wmay be
compared to known vesults of analytic nodels. (In
some cases, the model being validated may requive

minor wodifications to allow comparisons to be made

botween it and analytic models.)

Degenenate Tests:  The degeneracy of the model's be-
havior is tested by removing portions of the model or
by appropriate selection of the values of the inpat
paramcters.  Uor cxample, does the average number in
the quewe of a single serxver continue to increase wich
respect to time when the arrival rate is larger than
rvice rate.

‘

Event Velidity: The "events" of occurrences of the
simulation model are compared to those of the real
sysvem to devermlne 1f chey are the same, An example
of events are the deaths in a given fire department
sinulation.

Extieme-Condition Tesds: The model structure and out—
put should be plausible for any extreme and unlikely
ceombination of levels of factors in the system, e.g.,
if in-proecess fnventories ave zevro, production out-
put should be zero. Also, the model should hound and
restrict the behavior outside of normal operatring
ranges

Face validity: Face validity is asking people know-
ledgeable about the system whether the model and/or
its behavior reasonable,  This technique can be
used in deterwining if the logilc in the model flow-
chart is correct and, if a model's input-output rela-
tionships are reasonable.

Fixed Vulues: fixed values are used for all nodel
input and internal v This should allow
checking the model results against hand caleulated
values.

ables.

Histonical Data Validation: 1Lf historical data exist
({or if data is collected on a system for building or
tesring the model), part of the data is used to build
the model and the remaining data is used to determine
(test) if the model behaves as the system does.  (This
testing is conducted by driving the simulation model
with ecither Distributions or Traces [Balei and

Sargent
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Historieal Mefhods:  fThree historical methods
idation are Rallonalism, Empiiceism, and Pos
Economics. Retionalism assunes that everyone knows
whether the underlying a ipLions of a model arc true.
Then logie deductions are used from these assunptions
to develop the oo et (vallid) wodel mpiricism re-—
every assuuplion and outcomne to be cmpivically
validated. Positive Lconomics requires only that the
praedict the [uture and Is not con-
umptions or structure (causal re
Jationships or mechanisws).

quires

model be able to
ned with its a

Todernal Vaiddfdy Several replications (runs) of a
stoechastic model are wmade to determine the amount of
internal stochastic variabilicy in the medel. A high
amounr. of wvari iliry {(lack of consisteacy) may cuuse
the model's results to be questionable, and, if byp-
ical of the problem entity, may questicn the appro-
priateness of the policy or system being investigaled,

Multistage Validation: Naylor and Tinger (1967) pro-
posed combining the three historical methods of
Rationalisw, Empiricism, and Positive Fconomics into
a multistage process of validation. This wvalidation
method consists of (1) developing the model's uap-—
tions o theory, ohservarions, general knowledge, and
intuition, (2) valldating the model's assumptions
where possible by empirically testing them, and (3)
comparing (testing) the input-output rvelationships of
tho wodel to the real system.

Operaitional Guaphics |(aaimation): The model's opera-
tiornal behavior is displayed graphically as the nodel
moves through ti ixamples are (i) the graphical
plot of the status of a server as the model moves
through time, i.e., it busy, idle, or blocked, and
(ii) the graphical display of parts moving throuzh a
factory.

Parameten Variab ity - Seasitivity Analysis: This
validation technique consists of changing the values
of the iogput and internal paramecers of a model to
determine the effecl upon the model and its output.
The same relationships should oceur In the model as

1o the real system. Tho parancters which are sensi-
tive, i.e., cause significant changes in the nodel's
behavior, should be made sollfciently accurate prior
to asing the wodel. (This may require Lieraliocus in
model developrent.)

Predictive Validaéion: The model is used te prod
{(forecast) the system behavior and comparisons are
made to determine if the system behavior and the
model's forecast are the same. The system data may
come from an operational system or specific experi-
ments may be perforned, e.g., field tests.

Traces: ‘the behavior of different types of specific
entities in the model are traced (followed) through
the model co determine if the model's logic is correct
and if the necessary accuracy is obtained.

Twuing Tests: People who are knowledgeable about the
operations of a system are asked if they can discrim—
inate between systen and model outputs. (See
{Schruben (1980} ] fur a statisLical procedure [or
Turing Tests.)

3. DATA VALIDITY

Even though daca validity 1s usually nor considered
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attempts to validate a model fail., Basically, data
needed [er these purpo ¢ for bullding the concep-
tuzl wodel, for validating the model, and for perform-
ing experiments with the validated model. To model
tion and validation, we are conceraned only
cypes of data.
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To build & conceptual nodel, we must have suflicient
data about the preblem enbity in order to develop the
and logical relationships in the model
equately represcent the problew enticy for
also highly desirable to have
op theories Chal o i buildieg
1d to test the model's underlying assump-
The sacond tyvpe of data desired is behavior
data on the problem entity to be used in the opera-
tional validity step of comparing the problem entity's
behaviar with the nodel's behavior. {Usually, these
data are system imput/output data.) If these data are
not available, high model-confidence usually caunot be
obtained because sufficient operational validity can-
rot be achleved.

mathamati

1 be used

The concern with <data is that appropriate, accurate
and subficient data are available, and if any data
transformations are made, such as disaggregation, they
are correctly pe Unfortunately, there is not
much that can be done to ensure that the data are
correct. The best that one can do is to develop good
procedures for collecting data; test the collected
data using such rechnigues as ifnternal counslsteauy
checks and scureendng for outliers and determine & any
and develop good pr
tlected data. Tf the
ace should be dovel-

outliers found are correct;
dures to properly mailuntain the o
amount of data ie large, a data
oped and mwaintained.

4. CONCEPTUAL MODEL VALEDATION

Conceptual modael validity is determining that the
theories aund assunptions underlying the couceptual
wodel arve correct and that the model representation of
the problem entity and the model's structure, logic,
and mathematical and causal relationships are "reason-
able"” for the intended use of the wodel. The theories
and assumptions underlying the model should be tested,
ible, using mathematical analysis and statisti-
cal methods on problem entity data. Exawples ol
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rheories and assumptions are lineariky, independence,
stationary, and on arrivals, Fxamples of appli-
cable statistical methods are fitting distributions to
datce, estimaci paragcter values, e.g., mean, vari-
ance, and the correlatioa between data observations,
and pletting dara to see if it is stationary. In addi-
rion, all theories used should be reviewed to ensure
they were applied correctly; for example, if a Markov
chain Is used, ave the states and transition proba-
bilities correct?

Pois

each submodel and the overall wodel must be eval-—
uated o determine if rheir abstractions are reasonable
and correct for the intended use of the model. This
should iuciude determining LI the appyopriate detail
and aggregate relationships have been used for the
model's intended purpose, and if the appropriate
structure, logic, and mathematical and causal relarion-
ships have been used. The primarvy validation tech-
niques usad for these evaluations are face vatidiation
and traces. PFace validation is having an expert or
experts of the problem entity evaluate the conceptual
model to determine if they believe ir is correct and
reasonable for its purpose. This usually means exan—
ining the flowchaort wodel or the set of model equa-
ticns., The use of traces (s the tvacking of entities
through cach subnodel and the overall model to deter—
mine if the logic is correct and the necessary

accuracy is maintained., Tf any errors are found in

the conceptual model, 1t must be revised and concep-
tual model validation performed again.

Next,

3. COMPUTERLIZED MODEL VERIFLCATION

Conputerized model verificacion {s ensuring that the
cowputer programming and implementation of the concep-
tual model is correct. To help ensure that a correct
computer program is obtained, program design and
developrent procedures found in the field of Software
Hngineering should be used in developing and imple~
menting the computer program, These include such
techniques as top~-down design, structured programming
and program modularity. A scparate program wodule
shauld he used for euch submodel, the overall wodel
and for each simulation Function (e.g. time-flow mech-
anism, random number and random variatc generalors,
and lntegration routines) when ing general purpose
higher order languages, e.g. FORTRAN, and where possi-
ble when using simulation languages [Chattergy and
Pooch (1977) 1.

One should be aware that the use of different types of
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computer lanpuages effects the probabiliry of haviog
a corvect program. The use of a special purpose sim~
ulation language, if appropriate, generally will
result in having less errors than if a general purpose
simulation language is used, and using a general pur-—
pose simulation language will generally result in
having less errors than if a general purpose higher
order language is used. Not only does rhe use of si
ulation languages increase the probability of having a
correct program, they also reduce programming time.

Afrer the computer program las beew developed, imple-
mented, and hopefully most of the programming '"bugs”
removed, the pragram must be re d for corrvectness
and accuracy. First, the simulation functions should
be tested to see if they are correct. Usually
straight forward tests can be used here to determine
if they are working properly.  Next, each submodel and
the overall model should he tested to see if they are
correct. Here the testing is much move difficult,
There are two basic approaches to testing: static and
dynamic testing (analysis)[Fairley (1976)}. In static
tesring, the computer program of the computerized
model is analysed to determine if it dis correct by
using such techniques as correctness proofs, struc-—
tured walk-through, and examining the structure prop-
erties of the program. The commonly used structured
walk-through technique consists of each program
developer explaining their computer program code
statement hy statement to other members of rthe model-
ling team until all are convinced it 1s correct (or
Incorrece).

In dynamic testing, the computerized model is execured
under different conditions, and the values obtained
are used to determine Lf the computer program and its
implementations are correct. This includes both the
values obtained during execution and the final values.
There are three different srrategpies to use in dynamic
testing: botrtom—up testing which medans testing the
submodels first and then the overall model; top-down
testing which means testing the overall model [irst
using programming stubs (sets of data) for each of the
submodels and then testing the submodels; and mixed
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testing, which is using a combination of bottom—up and
rop—down testing [Falrvley (1976)]. 'The tachnliques
comumonly used in dynamic testing are traces, investi-
gations of input-output relations using the valids
techniques, internal consistency checks, and repro-
gramming critical compenents to determine 1f the same
results are obtained. If there are a large number of
variables, one might aggregate to reduce the number of
rests needed or use cercaln types of design of exper-
ments [Kleijnen (1974, 1982)1, e.y. factor screening
experiments [Samith and Maure (1982)] rto identify the
key variables, in order to reduce the number of exj
imental conditions that need to be tested.

One must continuously be aware in checking the correct—
ness of the computer program and its implementation,
that errors may be caused by the data, the conceptual
model, the computer program, or the computer implemsn
ration.

6. OPERATIONAL VALIDLTY

Operational validicy is primarily concerned with de-
termining rhat the model's output behavior has the
~cutracy required for the model's intended purpose
over the domain of irs intended application. This Is
where most of the walidation testing and evaluation
takes place The computerized model i3 used in opera-
tional validity and chus any deficlencies found can

be due to an lnadequate conceptual model, an impropec-
1y programmed or lwmplemented conceptual model on the
computer {(e.g., due to programming errors or insuf-
ficient numerical accuracy), or due to invalid data.

All of the validation techniques discussed in section
2 are applicable to operational validity. Which
techniques and whether to use thew objectively or sub-
jecrively, must be decided by the model developer and
other interested parties, The major attribute oflecl-
ing operational validity is whether the problem entiLy
(or system) is observable or nut, where observable
means it is possible to ceollect data on the operallon-
al behavior of the program entity. Figure 2 gives oune
classification of the validation approaches for opera-
tional validity. ‘he "explore model behavier" means
to examine the behavior of the wodel using appropriate
validation techniques for varjous sets of cxperimental

LOO

PROB. OF

ACCEPTING

THE MODEL

AS VALID
(R

i
i
1
t
i
1
1

0 »
VALIDITY MEASURE (A}

4

Figure 4t Operating Characteristic Curves




A Tutordal on Verification and Validation of Simulation Models 119

model's incended

conditions [rou the dow
use.

To obtain a hi
its resulis, comparison of the madel's and system's
input-output behavior for ar lsast two different sets
of experimental ronditions is 1wally reenired. There
are three bhasiec comparison approaches ased: (1) graphs
of the model and system behavior data, (ii) hvpothesis
tests, and (111) confidence intervals.

vgh degree of confidence im o model and

6.1. Graphical Comparison of Data

The nods and sysrtem's hehavior data are plotted on
graphs [or various sers of expevimental conditions to
rmine if the mod s output behavior has suffi-
cient accuracy for its intended purpose. A varfety of
graphs showing different types of measures and rela-
Lionships are required. Examples of measures and
atiouships are (1) time series, means, varlances,
and maximums of each oucpur vardiable, (ii) relaclon—
ships between parameters of each ourput variable, e.g.
weans aud standard deviacions, and (iii) relacionships
beotween different output variables. (See Figure 3

For an example of a graph.) Ir is important that the
appropriate measures and relatlonships be used in
validating a model and that they be determined with
respect to the model's intended purpose. As an exam-
ple of ser of zraphs used in the validacion of a
madel, see Anderson and Sargent (1974).

These graphs arve used in model wvalidatlon in three
ways. First, the model developer can use the graphs
in the model developwent process to make a subjective
judgement on whether the model does or does not pos-
segs sufficlent accuracy for its intended purpose.
Secondly, they can be used in the face validity tech-
nigue where experts are asked to make subjective judg—
ments on whether a model does or does not pos 55
sufficient accuracy for its intended purpose.

Ulhie Wiird way Lhe graphs can be used Ly in Puriay
lests. Sets of data from the model and £rom the sys-
Ltem are plotted on separate graphs. The graphs are
ffled and then experts are asked to determine which
graphe ave f{rom the system and which are from the
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model.  The results [or each measure mnd rvelationship
can be evaluated either subjectively or statistically.
The subjective merhod requires that a subjective de-
ion be made whather the results are satisfactory or
not. The st methed requires that the results
be analyzed 1t istic v. Ses Schruben {(1980) for a
variety of statistical methods for anolyzing the
results of Turing Tests and examples of their use.

e

6.2. Hypothesis lests

Hypothesis can be used in the comparison of
parameters, stributions, and time series of the
output data of a medel and a system for each set of
experimental conditions to determine 1f the model's
output behavior has an acceptable range of accuracy.
An acceptable range of accuracy is the amount of
accuracy that is required of a model to be valid for
irs intended purpose.

e

The first step in hypothesis testing is to state the
hypotheses to be tested:

H : Model is valid for the acceptable range of
accuracy under the sct of experimental condi-
tions, (1)

H,: Model is invalid for the acceptable range of
accuracy under the set of experimental caondi=
tions.

Two types of errors are possible in testing the hy-
pothesis in (1). The first or type T errvor is reject-
ing the validity of a valid wodel; the second or type
IL crror is accepting the validity of an invalid
uodel. The probability of a type error I is called
moded budllder's aisk (a) and the probability of type II
error is called medef wsen's #isf (3). Tn model val-
idation, model user's risk is extremely important and
must be kept small, Thus horh type T and type IT
errors must be considered in using hypothesis tescing
for modul valldation.

The amount of agreement between a model and a system
can be measured by a validity measure, X. The valid—
ity measure is chosen such that the model accuracy or
the amount of agreement hetween the model and the
syetem decreases as the value of the validity measure
inereas The aceeptable range of accuracy ran be

i to dxjterminp an acceptable validity range,
P

The probability of acceptance of z model being valid,
P_, can be examined as a function of rhe validity
measure } hy using an Operating Characteristic Curve
(Miller and Freund (1977)). Figure 4 contains three
different operating characteristic curves to illustrate
how the sample size of observations aflfect P, as a
function of A. As can be seen, an Inaccurate model
has a high probability of being accepted if a small
sample size of obgervations are used and an accurale
model has a low probability of being acceptled if a
large sample size of observations are used. The loca-
tion and shape of the gperating charactevistic curves
is a function of the statisticui*rochnique being used,
the value of o chosen for A=0, ® , and the sample size
of observations. Once the operating characteristie
curves are constructed, the intervals for the model
user's risk #(1) and the mogel builder's risk o can
be determined for a given A" as follows:

& . ' *
«” < model builder's risk o < (1-8)
* (2)
g .

0 < model user's risk p(A)

iA




Thus, there is a direct relationship among buildex's
risk, model user's risk, acceptable validity range,
and sample size of ohservarions. A tradeoff mmong
these must be made in using hypothesis tests in model
validation.

In those cases where the data collection cost is sip—
nificant for either the model or svstem, the data
collection cost should also be considered in perfarm—
ing the tradeoff analysis. A cost model for data
collection should be developed as a function of che
sample sizes of observations for the madel and the
system. An optimization problem can be formulated
and solved to determine the optimum sample sizes for
4 given data collection budget and statistical test to
minimize rhe model user's risk.

Data can be generated for different values of the
tradeoff parameters and placed in schadules which can
be used to genevate two different rypes aof curves to
be uscd in the tradeoff analysis. One type of curve
is the operating characteristic curve shown in Figure
4.  The other type of curve is shown in Figure 5. The
latter curve shows the relationmships among «®, g%, and
the data collection hudget (or sample sizes if data
collection cost is not considered) for a given model
accuracy. these curves can be used by the model de—
veloper, model sponsor, or both to aid in making judg-
ment decisions in regard to determining the appropri-
ate values to use in testing the validity of a model
for a given set of experimental condirions.

Details of the methodology of using Hypothesis fests
in comparing model's and system's output data for
model validavions are given in Balci and Sargent
(1981a). Examples of the application of this me thod—
ology in the testing of output means for model valida—
tion are given In Balcl and Sargent (1982a, 198256,
19832) and in Banks and Carson (1984).

6.3. Confidence Intervals

Confidence intervals (c¢.i.), simultaneous confidence
intervals (s.c.i.), and joint confidence regions
(j.c.r.) can be obtained for the differences between
the population paraneters, e.g. means and variances,
and distributions of the model and system output
variables For each set of experimental conditions.
These ¢.i., s.c.i., and j.c.r. can be used as the
model range of accuracy for model validation.

To construct the model range of accuracy, a statisti-
cal procedure containing a statistical technigue and

a method of data collection must be developed [or each
set of experimental conditions and for each type of
parameters of interest. The statistical techniques
used can be divided into twe groups; (A) univariate
statistical techniques and (B) wultivariate statisti-
cal techniques. The univariate techniques can be used
to develop c.i. and with the use of the Bonferroni
inequality {Law and Kelton (1982)] s.c.i. The multi-
variate techniques can be used to develop s.c.i. and
j.c.r. Both parametric and nonparametvic techniques
can be used.

The method of data collaction used wmust satisfy the
underlying assumptions of the statistical technique
being used. The standard statistical techniques and
data collection methods used in simulation output
analysis can be used for develeoping the model range of
accuracy; namely (1) replication, (2) batch means,

(3) regenerative, (4) spectral,, (5) time series, and
(6) standardized Lime series [Banks and Carson (1984),
Law and Kelton (1982), Law (1983)].
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It L& usually desivable to construct the model range
of accuracy with the leogths of the c.i. and s.c.i.
and the sizes of the j.c.r. as small sible. ‘lhe
shorter the Tengths ar the smaller the sizes, the aore
aseful and meaningful the specification of the wodel
range of accuracy will The lengths and
the sizes of the joint confidenca regions are affected
by the values of confidence levels, variances ol the
model and system response variables, and sample sizes,
The lengths can he shortened or sizes made smaller by
decreasing the confidence levels., Variance reductioa
techniques [Taw and Kelton {(1982)) can be used in some
cases when collecting ohservations from a simulation
medel to decrease the va bililty and thus obtain a
smaller range of accuracy. Ihe lengths can also be
shotrtened or the sirze decreased by increasing the
sauple sizes. A tradeoff analysis needs to be made
among the samnple sizes, confidence levels, and esti-
mates of the leugth or sizes of che wodel range of
accuracy. In those cases where the cost of data
cellection is significant for either the model or
system, the data collection cost should also be con~
sidered in the tradeoff analysis. Details of a
methodology for performing a tradeoff analysis and for
using ¢.i., s.c.i., and j.c.r. can be found in Balci
and Sargent (L981b, 1983b). Law and Kelron (1982)
also discuss the use of c.i. for model validation.

s pa

7. RECOMMENDED MODEL VALLDATLON PROCEDURE

There are currently no algorithms or procedures avall-
able tu Ldentify specific validation techniques, sta-
tistical tests, etc. to use In the validation process.
Various authors suggest (for example, see Shanncn
[1975, p. 29] that as a ninimum the three steps of

(1) Tace Validity, (2) lesting of the Model Assump-
tions, and (3) Testing ol lnpul-Quiput Transforwatious
be made. These recomwendations are wade in general
and are wot related to the steps of the modelling pro
cess discusoed in the Introduction.

This author recowmends that, as a winimum, the [ollow-
ing steps he performed in model validation:

(1) An agreement be made between (1} the modelling
team and (1i) the model spoasors and users (if
possible) on the basic validation approaches and
on a minimux set of specific validation ctechniques
to be used in the validation process prior to de
veloping the model.

(2) The assumptions and theories underlying the model
be tested, 1if possible.
(3) In cach model iteration, at least face validity be

performed on the couceptual model.

(4) Tn each model iteracion, exploration of the
model's behavior be mwade using the computerized
rodel.

(5) In at least the last nodel iteration, comparisons
he made between the model and system hehavior
(output) data for at least two sets of experimen-

tal conditions, if possible.

(6) vValidation discussed in the model documentation.

8. SUMMARY

Model validation is one of the most eritical issues
faced by the simulationist. Unfortunately, there is
no set of specific tests that can be easily applied to
determine the validity of the model. Furthermore, no
algorithm exist to derermine what techniques or
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very new simula
challenge.

praocodures £o usge. n opraject pre-

sents a new and unique

There is a coasliderable literature on verification and
validation {Balci and Sargent (1980, 1984)]. Articles
given in the references can be used as a starting
point for rthering yvour knowledpe on verification
and validation.
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