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ABSTRACT 

General Motors (GM) has developed a first proof-of-
concept simulation model to explore impacts of various 
fire events in automotive paint shop operations. The ap-
proach uses a chronological event tree structure to assess 
effectiveness of various fire protection options to reduce 
the potential for significant property damage and loss of 
production capability. For confidentiality purposes, GM 
has disguised the numerical data presented in this case 
study. GM is seeking advice from the simulation commu-
nity on modeling questions related to input distribution 
modeling, and correlation structure among input random 
variables.  

1 INTRODUCTION 

Fire hazards are inherent to many automotive manufactur-
ing processes such as atomized electrostatic vehicle paint-
ing, robotic welding, and metal cutting and grinding. Even 
small fires can significantly disrupt production by causing 
non-thermal (e.g., acidic smoke residue) damage to sensi-
tive and critical computer controlled manufacturing 
equipment and processes. Adoption of lean manufacturing 
practices has minimized the inventory cushion and excess 
capacity available to buffer against such disruptions. Fur-
ther, insurance does not eliminate this risk, primarily due 
to the high deductibles that many automotive manufactur-
ers and tier-1 automotive suppliers typically carry.  
 GM business leaders recognize that fires are a signifi-
cant risk to global operations. GM Manufacturing, Facili-
ties and Risk Financing executives challenged the model-
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ing team to find or develop tools and methods that would 
help GM better quantify and manage fire risks across its 
global network of manufacturing operations. 
 LaFleur (2007) conducted an extensive literature re-
view on quantitative fire risk analysis methods, and found 
that while there is a considerable amount of work in the 
open literature, there are no models that directly apply to 
heavy manufacturing that (1) permit enterprise “roll-up” of 
risk measurement from the within plant manufacturing 
process level and (2) capture multi-facility / supply chain 
network interdependencies in measurement of impact. Ac-
tuarial models and financial risk portfolio approaches do 
not permit “drill down” from enterprise level to manufac-
turing process level risk measurements. Thus, the GM team 
chose to pursue a simulation modeling approach to assess 
annual risk of fires occurring in paint shop operations. 
Note: the GM team defines risk as a probability distribu-
tion on total annual losses (property damage + equivalent 
value of lost production) caused by fire events disrupting 
paint shop operations. 

2 AUTOMOTIVE INDUSTRY FIRE DATA 

The GM team is fortunate to have a wealth of internal fire 
data available for simulation modeling and analysis. Each 
fire incident is reported in a global loss reporting database 
developed to comply with the Sarbanes-Oxley Act of 2002. 
For each fire incident, the following data is collected: date 
and time of the fire, fire origin mapped down to the manu-
facturing process level, cause of ignition if known, fuels or 
materials involved, fire suppression modes used, amount of 
production downtime (if any), and estimated cost of prop-
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erty damage including equipment repairs or replacement 
costs. Using the last four years of empirical data, GM is 
able to assess frequency of fires for various manufacturing 
processes, and severity of fires based on property damage 
and production downtime. For paint shop operations spe-
cifically, GM has more than 50 complete fire incidents re-
corded. GM also has historical data of large paint shop fire 
insurance claims, but this data may not be totally relevant, 
given the major adoption of computer aided manufacturing 
and more complex manufacturing equipment and control 
system from the mid 1980’s onward. 
 In addition, GM uses a qualitative Fire Risk Index to 
characterize potential for a fire to become a severe or 
catastrophic fire. The Fire Risk Index is a relative risk 
scoring method to assess manufacturing plants on six haz-
ard categories related to fire severity including currently 
applicable fire protection: building and roof construction 
materials, supervision (fire alarms, security staff, 24-hour 
operations, etc.), automatic sprinklers, available water sup-
ply, exposure (presence of hazards immediately adjacent to 
the plant such as other manufacturing facilities, ware-
houses, and bulk flammable liquid storage tanks), and 
other special hazards (e.g., electrostatic painting, welding, 
or heat treatment operations).  
 GM also has blueprint plans for construction of new 
paint shops in emerging, low cost markets. Local construc-
tion codes and regulations for fire protection equipment of-
ten differ from more restrictive U.S. building codes and 
standards. In particular, some countries do not require 
building level automatic sprinklers for paint shops, as long 
as process level (within paint shop booths) automatic 
sprinklers are used. GM leadership is interested in better 
understanding how complying with different fire protection 
codes might impact annual fire risk. This modeling ap-
proach will hopefully permit the team to respond to such 
policy questions by characterizing risk and comparing op-
tions based on probability distributions. 

3 EVENT TREE MODEL STRUCTURE 

The GM team worked with GM subject matter experts 
(98+ years of combined industrial fire protection engineer-
ing experience) to develop a time-based event tree that de-
fines paint shop fire scenarios of interest and captures 
process level details of fire protection equipment, similar 
to the methodology described by Barry (2002). Figure 1 
shows an example event tree that enumerates ten paint 
shop fire scenarios of interest.  
 Each fork in the event tree is determined by whether or 
not the specified fire protection option succeeds or fails. 
The probability of success or failure of each fire protection 
option is determined from equipment specifications, fault 
tree reliability estimates, or expert opinion. The event tree 
structure yields a discrete distribution for likelihood of oc-
currence of each outcome scenario. 
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Figure 1: Scenario enumeration including process level fire 
protection details in a time-based event tree. 
 
 Figure 2 shows the summary results that are obtained 
from the event tree model shown in Figure 1. Each of the 
ten scenarios has a likelihood of occurring (calculated by 
multiplying probabilities within the event tree), and a short 
summary description of how the subject experts character-
ize such a fire event including the resulting property dam-
age and lost production (in terms of downtime), based on 
success or failure of the fire protection options deployed. 
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Figure 2: Example event tree scenario outcomes. 

4 APPROXIMATING TOTAL ANNUAL PAINT 
SHOP FIRE EVENT LOSSES USING MONTE 
CARLO SIMULATION 

The modeling team used a collective risk model to obtain a 
simple first approximation for total annual losses in a paint 
shop caused by fire events. Total annual loss Li for year i is 
defined by 
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Here Ni is the number of paint shop fire events that occur 
each year i, Xj is the cost of property damage per fire, and 
Yj is the financial value of lost production (equivalent fi-
nancial value of the lost downtime Dj) caused by the fire 
event. The equivalent value of lost production is given by 
 
 Yj = Dj * JPH * Average Net Profit per Vehicle.  (2) 
 
JPH is the average jobs per hour for the paint process, i.e., 
the process throughput rate. This calculation gives a delib-
erately simple estimate of the lost opportunity to use manu-
facturing capacity, labor, and other resources to add value 
by painting a vehicle. For more information on collective 
risk models, the interested reader should consult Embrechts 
et al. (1997), Klugman et al. (1998), Rolski et al. (1999), or 
Mikosch (2004). 
 The modeling team used the empirical fire incident 
data and Goodness of Fit testing to check that it is reason-
able to assume that fires occur in paint shop operations ac-
cording to a Poisson process (i.e., Ni is a Poisson random 
variable). Assuming that distributions for property damage 
Xj and value of lost production Yj can be determined (to be 
discussed in a later section), it is straightforward to simu-
late total annual loss Li for each year i. 
 
Simple Monte Carlo Simulation Algorithm for Total 
Annual Loss from Paint Shop Fire Events: 
1. Determine the number of years i to run the simulation 
(100 year, 500 year, 10,000 year, etc.). 
2. For each year i, sample Ni ~ Poisson random variable for 
number of paint shop fires that occur in year i. 
3. For each fire j = 1, 2… Ni,  
 a. sample from the discrete event tree derived distribu-
tion to determine which of ten fire scenarios occur. 
 b. sample from the property damage distribution to ob-
tain a value of property damage Xj. 
 c. sample from the downtime distribution to obtain a 
downtime value Dj. Convert the downtime value to an 
equivalent value of Yj, the financial value of lost produc-
tion. See equation (2). 
4. For each year i, calculate the total annual loss Li as given 
by (1) above. 
5. Repeat steps 2-4 for i = 1 to number of years determined 
in step 1. (e.g., i = 1 to 10,000). 
6. Given the simulated values of Li, plot the empirical dis-
tribution P{Li ≤ x} for total annual losses caused by fire 
events in a paint shop, or the related empirical probability 
density function. 
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5 PROPERTY DAMAGE AND DOWNTIME 
DISTRIBUTION MODELING  

Since there were only 50+ data points (complete detailed 
paint shop fire incident reports), the team analyzed the data 
as a single set, obtained a single property damage distribu-
tion, then determined a method to relate the event tree sce-
nario determined in Algorithm Step 3a to the value sam-
pled from the property damage distribution in Algorithm 
Step 3b. The remainder of this section describes this proc-
ess. A similar approach is applied to obtain and sample 
from the downtime distribution.  
 Note that no extreme or catastrophic fires were ob-
served in the data; thus the modeling team decided to treat 
modeling of the right tail of the distribution separate from 
the “main body” of the distribution. For the “main body” 
of the distribution, the team selected the lognormal distri-
bution as a reasonable fit of the property damage data, 
based on Goodness of Fit testing. Figure 3 shows an exam-
ple fit of a property damage distribution and emphasizes 
the “main body” and right tail of the distribution. As a side 
note, a lognormal distribution is often used in practice to 
model property damage loss amounts in property-casualty 
insurance.  

Figure 3: Example property damage distribution fit treating 
the “main body” separate from the right tail. 
 
 Since the team had no quantitative fire incident data to 
model the right tail of the distribution, the team leveraged 
subject matter domain knowledge about total cost and time 
to recover or replace a paint shop given a catastrophic fire 
(e.g., Maximum Foreseeable Loss (MFL) Scenario). The 
team modeled the right tail using a triangular distribution 
based on input parameters from subject matter experts. Fu-
ture modeling work could include evaluating impact of 
heavier tail distributions such as Extreme Value or Pareto 
distributions. The team including subject matter experts de-
fined minimum, maximum and most likely values of prop-
erty damage, assuming that the catastrophic MFL scenario 
occurs. The subject experts used the Fire Risk Index and 
blueprint plans described in Section 2 to calibrate estima-
tions of worst case scenarios. The modeling team also col-
lected some publicly available benchmark data on other 
automotive paint shop fires to help experts with estimating 
property damage values and downtimes (Industrial Fire 
World Magazine, 2006).  
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 Once the two distribution pieces are obtained, they are 
“patched” together to cover the domain of the property 
damage random variable (see Figure 4 below). Referring 
back to Figure 2, where the discrete probability distribution 
on scenarios is obtained for the example event tree, note 
that the worst case maximum foreseeable loss (MFL) sce-
nario has a probability of 0.00001. Observe that the total 
probability estimate for a MFL scenario is approximately 
0.00002 (since there are 2 MFL scenarios, 1 in the top half 
of the event tree when the detection system works, and the 
other in the bottom half of the event tree when the detec-
tion system fails). Using this probability value, we rescale 
the area under the right tail in the triangular distribution 
piece to be 0.00002, and the area under the “main body” 
distribution to be 0.99998.  
 
 

 
Figure 4: Patching together distribution pieces to cover the 
domain of the property damage random variable. 
 

At this point, the team has obtained a single property 
damage distribution (as a special case of a mixture distri-
bution), but needed a way to make sure that based on the 
scenario outcome that occurs, the correct domain of the 
random variable is sampled from. The modeling team and 
experts agreed that a really simple way would be to trun-
cate the domain for the different scenarios (as shown in 
Figure 5). Thus, given that a specific scenario occurs, the 
associated random variable is sampled from the appropri-
ate portion of the distribution, by constraining the random 
variable (using acceptance – rejection) to have a value fal-
ling within the lower and upper limits of the section of the 
domain assigned to the scenario. 
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Figure 5: Assigning scenario domain limits within the fit-
ted property damage distribution. 

 
Each related pair of scenario outcomes in the top half 

or the bottom half of the event tree is assumed to have the 
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same distribution and domain bounds on potential property 
damage. However, the event tree itself does have slightly 
different probabilities on the top and bottom half of the 
event tree, which do change the scenario likelihood of oc-
currence probabilities slightly. Our reason for doing this is 
to keep the model inputs simple. The automated detection 
system is defined as infrared camera detection, or visual 
human detection of flame within 2 minutes. If either detec-
tor (camera or human) is successful, the emergency control 
system can be deployed. The emergency control system 
includes automatic shutoffs of power, conveyor, paint and 
thinner pumps, and automatic paint system equipment in-
terlocks. Note that there is a very short time window of 2 
minutes before process level automatic fire suppression is 
engaged. Due to this short time window, we felt that there 
would only be minor differences (that could be ignored in a 
first rough model) in the probability distributions for prop-
erty damage and downtime, depending on success or fail-
ure of each suppression option deployed.  

6 QUESTIONS FOR THE SIMULATION 
COMMUNITY 

Question 1: Can the expert community suggest any other 
methods to relate a specific event scenario outcome to 
property damage and downtime distribution sampling? Is 
there a better way to break up or divide the domain in the 
property damage distribution (and similarly for the down-
time domain) rather than the approach used in Figure 5? In 
particular, the modeling team would like the expert re-
viewers to comment on advisability of using a similar ap-
proach to defining sampling distributions, but allowing the 
scenario domain bounds to perhaps overlap. The modeling 
team thinks that the hard bounds on the random variable 
domains are unnecessarily causing multiple peaks to ap-
pear in the example output density function plots shown in 
Figures 6 and 7. 
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Figure 6: Empirical probability density overlay graph 
comparing total annual costs of paint shop fires.  
 

As expected, lost production is less probable, but can 
dwarf property damage in value if it occurs. 
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Figure 7: Empirical probability density function for total 
annual losses caused by fires in a paint shop 
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Figure 8: Plot of positive random correlation between 
property damage and downtimes for each year i. 
 

Question 2: Is there a better way to introduce correla-
tion between the two key random variables of property 
damage and downtime (and related value of lost produc-
tion)? Is there a methodology such that we can specify (and 
control) the amount of correlation as an input parameter to 
the simulation? 
 GM subject experts commented that for paint shop 
fires, if there is large property damage, there will often be 
long associated downtimes. The modeling team did explore 
the empirical data, and found no correlation between prop-
erty damage and downtimes for the reported paint shop 
fires (many of which fall in the best case minimum prop-
erty damage, short downtime scenarios). Note that in other 
manufacturing processes that the team intends to model for 
next steps, it is possible to have large property damage and 
minimal downtime, and conversely, minimal property 
damage but long downtime.  
 Response to Comments from one of the Simulation 
Expert Reviewers: We agree with one of the reviewers 
that by sampling the property damage and downtime dis-
tributions with domain bounds defined by scenario occur-
rence, we have included positive correlation between these 
two random variables. We believe for paint shop fires, low 
property damage loss values should be associated with 
short downtimes (and thus low values of lost production), 
and conversely high property damage loss values will be 
associated with long downtimes (and high values of lost 
production). Figure 8 shows that there is clearly positive 
254
but random correlation for each year i, between the sam-
pled property damage values (Xj’s) and the sampled down-
time values (Dj’s).  Based on these considerations, we ask 
Question 3, as follows: 

Question 3:  Is there a better way to represent the 
variables and their correlation? Is there an easier way to 
implement this procedure and understand the annual loss 
exposure from property damage vs. enterprise value of lost 
production? 

7 COMMENTS BY BAHAR BILLER 

First I comment on the derivation of the probability density 
function in Figure 4 and then suggest an alternative repre-
sentation via the use of a flexible family of distributions for 
event tree scenario outcomes in Figure 2. Then I talk about 
incorporating correlation between two different random 
variables, i.e., property damage and downtime, with arbi-
trary marginal distributions.  
 The team chooses marginal distributions for property 
damage and downtime using historical data drawn from 
50+ detailed incident reports. Using the stochastic input-
modeling tools, the team identifies the lognormal distribu-
tion as a good fit for the stochastic process underlying the 
property damage (Figure 4). Due to the lack of any catas-
trophic events in the historical data set, the team collects 
expert opinion on the value of the property damage in the 
form of minimum, most likely, and maximum values of the 
random variable of interest and incorporates the collected 
expert opinion into the right-tail of the fitted lognormal 
distribution in the form of a triangular distribution to repre-
sent the maximum foreseeable loss (Figure 3 and Figure 4).  
 A close look at the existing stochastic input-modeling 
literature shows that expert opinion on the value of the 
maximum foreseeable loss can be obtained using the fol-
lowing two methods: (a) mean and variability method and 
(b) breakpoints method. The former method requires the 
specification of a lower bound, an upper bound, a value for 
mean, and a value for variability. Thus, it fails to translate 
any expert opinion into asymmetric distributional shapes 
with arbitrary tail characteristics. On the other hand, the 
breakpoints method is particularly useful for modeling 
quantities with a large number of possible outcomes, ena-
bling the use of as many breakpoints as can be confidently 
obtained especially near the extremes. What the GM team 
describes in Figure 4 is a special application of the latter 
method where the break points correspond to the minimum, 
most likely, and maximum values of the random variable 
of interest. The triangular distribution is clearly a natural 
selection. An alternative selection for the underlying prob-
ability distribution is the pert (beta) distribution that is con-
structed with the information set identical to that of the tri-
angular distribution and is typically used to model the 
activity times in project management problems (see Figure 
9 for the example plots of triangular and pert distributions). 
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The reason I recommend the pert distribution as alternative 
to the triangular distribution is its ability to provide 
smoother representation for the extreme tails.  
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Figure 9:  Triangular and pert distributions 

 
 Now I switch my attention to Figure 5, in which the 
team assigns scenario domain limits within the fitted prop-
erty damage distribution using the scenario likelihoods in 
Figure 2 and samples values for the property damage from 
the portion of the probability distribution associated with 
the specific scenario. Since the team samples a value for 
the property damage and a value for the downtime depend-
ing on the scenario of interest, my recommendation is that 
the team designs its experiments in a way that a specific 
marginal distribution is chosen for each scenario from a 
flexible family of distributions. In other words, an alterna-
tive to patching together distribution pieces to cover the 
domain of the property damage random variable might be 
the scenario-dependent use of a flexible family of distribu-
tions with the ability of capturing a wide variety of distri-
butional shapes. One such flexible family, which has been 
used in a variety of simulation applications, is the Johnson 
translation system (Johnson 1949a; Johnson, Kotz, and 
Balakrishnan 1994). The team might especially find the 
use of the Johnson bounded distribution very beneficial as 
it would provide the team great deal of flexibility in defin-
ing scenario-dependent distributional properties. More spe-
cifically, the Johnson bounded distribution is a four-
parameter distribution whose two (location and scale) pa-
rameters define the lower bound and the upper bound for 
the values of the random variable of interest, i.e., level of 
variability, and whose two shape parameters define the 
level of skewness in the shape of the marginal distribution. 
Thus, by using the same functional form, but with different 
parameters, for each scenario of interest, the team can 
study the impact of scenario-dependent variability and sce-
nario-dependent skewness on the output performance 
measures. Notice that the scenario domains limits within 
the fitted property damage distribution as illustrated in 
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Figure 5 makes it difficult for the team to change the dis-
tributional properties of different scenarios independent of 
each other, further complicating the execution of a com-
prehensive sensitivity analysis. This difficulty is overcome 
via the use of a flexible distribution for each scenario of 
interest.  
 The identification of a marginal distribution from the 
Johnson translation system for the scenarios characterized 
in Figure 2 would be a straightforward task if there existed 
data sets large enough to utilize the stochastic input-
modeling tools to the fullest extent. A good reference for 
fitting Johnson marginal distributions to independent data 
is Swain et al. (1988). Recall that the historical data of the 
GM team is composed of 50+ detailed incident reports. 
Therefore, the construction of the input models for the sce-
nario outcomes characterized in Figure 2 requires the wide 
use of the opinion of subject matter experts. It might also 
be possible to start the construction of the scenario-
dependent Johnson marginal distributions with the prob-
ability density function provided in Figure 5. By control-
ling the level of variability and the level of weight in the 
tails separately, the scenario-dependent portions of the fit-
ted property damage distribution can be matched as closely 
as possible by a series of distributions from the Johnson 
bounded family. This might additionally allow the GM 
team to have overlapping scenario domain bounds.  
 Finally, I recommend the use of the Normal-To-
Anything (NORTA) process designed specifically for ran-
dom vectors (Cario and Nelson 1997) to represent sce-
nario-dependent correlations between property damage and 
downtime. More specifically, the values of property dam-
age and downtime of any specific scenario can be sampled 
with a correlation prespecified by the team by simply 
transforming a multivariate normal base random vector 
into the desired process via the use of the inverse cumula-
tive distribution function. The team can find the implemen-
tation details of this process in the survey paper on multi-
variate input processes (Biller and Ghosh 2006) as well as 
background on the extension of the univariate Johnson 
bounded distribution to the two-dimensional Johnson dis-
tribution in Johnson (1949b), Johnson, Kotz, and 
Balakrishnan (1994), and Biller and Nelson (2003). 

8 COMMENTS BY JAMES R. WILSON 

The GM authors pose some very interesting questions 
about how to perform simulation input modeling when 
relatively limited data must be supplemented by expert 
knowledge of the application domain so as to build an ade-
quate probabilistic model of the process by which an 
automotive paint shop fire results in a pair of performance 
measures [X, D], where X denotes the dollar value of the 
associated property damage and D denotes the correspond-
ing lost downtime.  There are five different scenarios for 
which we must model the joint distribution of [X, D] and 
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specify an algorithm for generating random samples from 
that distribution.  In each scenario, the authors also seek a 
method for systematically investigating the effects of vary-
ing levels of stochastic dependence between X and D, rang-
ing from the case in which X and D are independent to the 
case in which X and D exhibit a strong degree of depend-
ence.   

In this reply to Elkins, LaFleur, Foster, and Tew, I will 
propose a hybrid approach to input modeling in which both 
data and expert knowledge are used to build a rough em-
pirical model of the random vector [X, D] that can be read-
ily incorporated into the authors’ simulation model of 
automotive paint shop fires. 

8.1 Reply to Question 1 

The authors have records on about 50 fires in GM’s paint 
shops, and they use this data set to fit lognormal probabil-
ity density functions (p.d.f.’s) to the marginal distributions 
of X and D separately.  For simplicity we focus first on the 
marginal p.d.f. of X; a similar discussion will also apply to 
the marginal p.d.f. of D.   

The authors state that scenario 5 is a catastrophic fire 
or maximum foreseeable loss (MFL); and the probability is 
0.00002 that a given fire will evolve according to scenario 
5.  For the other four scenarios, the authors partition the 
interval [0, 0.99998x ) (that is, the range of possible values 
of property damage from $0 up to but not including the 
MFL, or the 0.99998 quantile of X) into subintervals corre-
sponding to scenarios 1, 2, 3, and 4, respectively.  For the 
conditional marginal p.d.f. of X given that scenario 5 has 
occurred, the authors fitted a triangular distribution to ex-
pert estimates (knowledge or opinion) of the minimum, 
maximum, and most likely (modal) values of property 
damage when a catastrophic fire occurs.  For scenario k 
(where 1, , ,k K= … and K denotes the total number of po-
tentially different distributions that may be required for dif-
ferent scenarios), let [ , )k ka b  denote the range of possible 
values for X when scenario k occurs.  Currently the authors 
are assuming that 5,K =  and that  

 
 1 1 2 2 3 4 5 50 ;a b a b a b a b= < = < = < < = < <∞" (3) 
 
and the authors ask first if there is a better way to divide 
the space of possible values of X to allow, for example, 
some overlap of the subintervals corresponding to different 
scenarios. 

As the starting point for my response to the authors’ 
first question, I want to reexamine the authors’ method for 
handling scenario 5.  If 5m  denotes the modal dollar value 
(most likely value) of the property damage due to a catas-
trophic fire, then the authors propose using a triangular dis-
tribution with minimum 5a , mode 5m , and maximum 5b  
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as their model for the conditional distribution of X given a 
catastrophic fire.  For the reasons detailed in the input-
modeling tutorial for this conference (Kuhl et al. 2007), I 
suggest that an attractive alternative input model in this 
situation is the generalized beta distribution with minimum 

5a , maximum 5b , and shape parameters  
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If C denotes the scenario number, which is also a random 
variable on each replication of the authors’ simulation, 
then I propose the following generalized beta conditional 
p.d.f. for X given 5 :C =  
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where  
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( , ) (1 ) for 0, 0B z z dzθ θθ θ θ θ− −= − > >∫  (7) 

 
is the beta function.   

For the other four scenarios, I suggest an approach 
similar to Equations (4)–(7), possibly adapted to take into 
account other sample information or expert knowledge.  
Suppose that in scenario k, the fire expert selects (i) a 
lower limit ka  for X which may overlap with scenario 

1k −  in the sense that we may have 1k ka b −< ; and (ii) an 
upper limit kb for X which may overlap with scenario 

1k +  in the sense that we may have 1k ka b+ < .  Such over-
lapping is impossible with the authors’ partition (3) of the 
space of possible values of a single lognormal distribution; 
but if we model the conditional p.d.f. | ( | )X Cf x k  as a gen-
eralized beta p.d.f. on the interval [ , ]k ka b , then the only 
remaining issue is how to specify the shape parameters 1θ  
and 2θ .   

If the mode km is specified by the expert, then Equa-
tions (4) and (5) may be used.  If we have available the 
sample mean X  and sample variance 2S  for a reasonable 
number of observations of X in scenario ,C k=  then a 
moment-matching approach to modeling the conditional 
p.d.f. of X given C k=  is to take 
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in Equation (4), where  
 

 1 2
( )
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k
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 (9) 

 
This approach would give the authors the flexibility to al-
low overlapping subintervals defining the space of X for 
different scenarios while also enabling the authors to ex-
ploit the full flexibility of the generalized beta distribution 
to model the main features of the conditional p.d.f. 

| ( | )X Cf x k  for 1, ,k K= … .   
This approach can be adapted to other combinations of 

sample information and expert knowledge.  For example, if 
the mode km and the sample mean X are to be used to 
specify the p.d.f., then we can solve Equations (4) and (5) 
of Kuhl et al. (2007) simultaneously for the shape parame-
ters 1θ  and 2θ .  From this discussion, the advantages of us-
ing the generalized beta distribution for rapid input model-
ing of X for each scenario should be clear. 

If greater flexibility is needed to represent adequately 
the shape of the conditional p.d.f. of X given C k=  for 
some scenario k, then I suggest the authors consider using 
the Johnson translation system of distributions or the Bé-
zier distribution family; see Kuhl et al. (2007).  All of the 
above comments also apply to the conditional marginal 
p.d.f. of D given C k=  for 1, , .k K= …   In the next sub-
section, I will address the problem of modeling the condi-
tional joint distribution of the random vector [ , ]X D  

As a final remark about the authors’ Question 1, I 
should add that the multimodal character of the overall un-
conditional marginal distributions of X and D is mainly due 
to the mixture of the conditional marginal p.d.f.’s,  

 

 |
1

( ) Pr{ } ( | ),
K

X X C
k

f x C k f x k
=

= = ⋅∑  (10) 

 
that results from summing over all possible scenarios.  I 
believe that the multimodality of the unconditional mar-
ginal p.d.f.’s of X and D will be one of the main features of 
these p.d.f.’s no matter what models are used for the condi-
tional marginal p.d.f.’s of X and D. 

8.2 Reply to Question 2 

The authors’ second question concerns how to model sto-
chastic dependence between the components of the random 
vector [ , ]X D .  Although the authors state that they ob-
served no such dependence in the scenarios involving 
minimal property damage or short downtimes, they seek to 
take account of the experts’ assertion that in fires involving 
substantial property damage, the associated downtimes will 
also be substantial.  Because the setup described in the 
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previous subsection uses a separate input model for each 
scenario, we will  be able to reconcile the authors’ observa-
tions about the lack of dependence between X and D in 
light-damage scenarios with the expert’s knowledge about 
the nonnegligible dependence between X and D  that is 
present in heavy-damage scenarios. 

To model the random vector [ , ]X D  with dependent 
components, I propose taking the opposite approach from 
that taken in Section 4.2 of Wilson (1997).  We will start 
with a bivariate standard normal random vector 1 2[ , ]Z Z  
whose components have correlation ρ ; see Section 3 of 
Wilson (1997).  Reversing the usual procedure in which we 
seek a normalizing translation (transformation) that yields 

1 2[ , ]Z Z , in the current situation we seek an (inverse) trans-
formation of 1 2[ , ]Z Z  that yields a bivariate beta random 
vector [ , ]X D , 

 
 { } { }1 1

| 1 | 2[ , ] ( ) , ( ) ,X C D CX D F Z k F Z k− −⎡ ⎤= Φ Φ⎢ ⎥⎣ ⎦  (11) 
 

where: (i) the generalized beta marginal cumulative distri-
bution functions (c.d.f.’s) | ( | )X CF x k  and | ( | )D CF d c  have 
inverses that can be readily approximated using, for exam-
ple, Equation 26.5.22 of Abramowitz and Stegun (1965); 
(ii) the standard normal c.d.f., 
  

 ( )21( ) exp 2 for all ,
2

z

z t dt z
π −∞

Φ = −∫  (12) 

 
is readily approximated using, for example, Equation 
26.2.19 of Abramowitz and Stegun (1965); and (iii) the 
bivariate standard normal random vector 1 2[ , ]Z Z  with cor-
relation ρ  has joint p.d.f. 
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2 2
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 (13) 

 
for all 1z  and 2z .   

The only thing remaining to complete our specifica-
tion of the procedure for generating the random vector 
[ , ]X D  is to specify the method for generating the standard 
normal random vector 1 2[ , ]Z Z .  Virtually every simulation 
language has a mechanism for generating independent 
standard normal random variables; and this is used to gen-
erate 1 (0,1)Z N∼ .  Then by the method of conditional dis-
tributions, 2Z is generated from a normal distribution with 
mean 1Zρ  and variance 21 ρ− ; and the resulting random 
vector 1 2[ , ]Z Z  is fed into Equation (11) to yield the ran-
dom vector [ , ]X D . 
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The conditional correlation ( )XD kρ  between the com-

ponents of [ , ]X D  given scenario C k=  may be evaluated 
from 

 

( ) { } { }1 1
| 1 | 2Cov , ( ) ( )X C D CX D C k F z k F z k

+∞+∞
− −

−∞−∞

= = Φ Φ∫ ∫  

( )
1 2 1 2 1 2, ;Z Z z z dz dzϕ ρ⋅  

 E EX C k D C k⎡ ⎤ ⎡ ⎤− = ⋅ =⎣ ⎦ ⎣ ⎦  (14) 
and 
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To evaluate systematically the effects of increasing the 

conditional correlation ( )XD kρ between the components of 
the random vector [ , ]X D  given scenario ,C k=  I suggest 
tabulating and plotting ( )XD kρ  as a function of the parame-
ter ρ  for, say, 0,ρ =  0.05,±  0.10,±  ,…  0.95± .  This 
will reveal the range of possible correlations between X 
and D in scenario k that can be achieved with the modeling 
and simulation approach detailed in Equations (11)–(15).  
Moreover by linear interpolation in this plot, we can esti-
mate the levels of ρ  that are required to run scenario k 
with the following prespecified levels of correlation be-
tween X and D: 

 
 ( ) 0, 0.05, 0.10, , 0.95,XD kρ = ± ± ±…  (16) 
 
where it must be recognized that not all the values listed in 
Equation (16) may be achievable.  By performing multiple 
replications of scenario k using the achievable levels of 

( )XD kρ  specified in Equation (16), the authors should be 
able to obtain a clear idea of the effect of correlation be-
tween X and D on their risk analyses for each scenario 
separately as well as for the overall unconditional joint dis-
tribution of X and D taken over all scenarios.   

I hope that these remarks have been responsive to the 
authors’ questions and that some of these suggestions will 
prove to be useful in the application at hand. 

ACKNOWLEDGEMENTS 

The GM authors would like to thank the following subject 
matter experts for their many valuable insights on this 
problem: Thomas P. Hunter and P. Kyle Weddle, GM Cor-
porate Risk Management, J. William (Bill) Sheppard, Wal-
lie D. Williams, Michael D. Throop, GM Global Security 
Fire Protection, and Dr. Arvind Atreya, University of 
Michigan, Department of Mechanical Engineering  
258
REFERENCES 

Abramowitz, M., and I. A. Stegun.  1965.  Handbook of 
mathematical functions.  New York: Dover Publica-
tions. 

Barry, T.F. 2002. Risk-informed, performance-based in-
dustrial fire protection: an alternative to prescriptive 
codes. TFBarry Publications. Available via 
<www.fireriskforum.com> [accessed May 1, 
2007]. 

Biller, B., and S. Ghosh. 2006. Multivariate input proc-
esses. In Handbooks in Operations Research and 
Management Science: Simulation, ed. B. L. Nelson 
and S. G. Henderson . Amsterdam: Elsevier Science. 

Biller, B., and B. L. Nelson. 2003. Modeling and generat-
ing multivariate time-series input processes using a 
vector autoregressive technique. ACM Transactions on 
Modeling and Computer Simulation 13: 1–27. 

Cario, M. C., and B. L. Nelson. 1997. Modeling and gener-
ating random vectors with arbitrary marginal distribu-
tions and correlation matrix. Working Paper, Depart-
ment of Industrial Engineering and Management 
Sciences, Northwestern University, Evanston, IL. 

Embrechts, P., Kluppelberg, C., and T. Mikosch. 1997. 
Modelling extremal events for insurance and finance. 
Springer Verlag. 

Industrial Fire World Magazine. Online Incident Logs Da-
tabase. Available via <www.fireworld.com> [ac-
cessed January 2006]. 

Johnson, N. L. 1949a. Systems of frequency curves gener-
ated by methods of translation. Biometrika 36: 149–
176. 

Johnson, N. L. 1949b. Bivariate distributions based on 
simple translation systems. Biometrika 36: 297–304. 

Johnson, N. L., S. Kotz, and N. Balakrishnan. 1994. Con-
tinuous multivariate distributions, volumes I and II. 
New York: John Wiley and Sons. 

Klugman, S., Panjer, H., and G. Willmot. 1998. Loss mod-
els: from data to decisions. John Wiley & Sons. 

Kuhl, M. E., E. K. Lada, N. M. Steiger, M. A. Wagner, and 
J. R. Wilson.  2007.  Introduction to modeling and 
generating probabilistic input processes for simulation.  
In Proceedings of the 2007 Winter Simulation Confer-
ence, ed. S. G. Henderson, B. Biller, M.-H. Hsieh, J. 
Shortle, J. D. Tew, and R. R. Barton, to appear. Pis-
cataway, New Jersey: Institute of Electrical and Elec-
tronics Engineers.  Available online via 
<www.ise.ncsu.edu/jwilson/files/ 
kuhl07wsc.pdf> [accessed September 9, 2007]. 

LaFleur, Chris. April 2007. Enterprise-level industrial fire 
risk modeling and analysis for automobile manufactur-
ing facilities. D. Eng. Thesis, University of Michigan, 
Ann Arbor, Michigan. 

Mikosch, T. 2004. Non-life insurance mathematics: an in-
troduction with stochastic processes. Springer. 



Elkins, LaFleur, Foster, Tew, Biller, and Wilson 

 

Rolski, T., Schmidli, H., Schmidt, V., and J. Teugels. 1999. 
Stochastic processes for insurance and finance. John 
Wiley & Sons.  

Swain, J. J., S. Venkatraman, and J. R. Wilson. 1988. 
Least-squares estimation of distribution functions in 
Johnson’s translation system. Journal of Statistical 
Computation and Simulation 29: 271–297. 

Wilson, J. R.  1997.  Modeling dependencies in simulation 
inputs.  In Proceedings of the 1997 Winter Simulation 
Conference, ed. S. Andradóttir, K. J. Healy, D. H. 
Withers, and B. L. Nelson, 47–52.  Available online 
via <www.informs-sim.org/wsc97papers/ 
0047.PDF> [accessed September 9, 2007]. 

AUTHOR BIOGRAPHIES 

DEBRA ELKINS, PH.D. is a Staff Researcher with ex-
pertise in Enterprise Risk Modeling at the General Motors 
R&D Center in Warren, Michigan. Her research interests 
include risk modeling for enterprise operations, manufac-
turing and supply chain vulnerability analysis and disrup-
tion consequence modeling, applied probability/stochastic 
processes, statistics, and enterprise scale simulation. Debra 
has served as an industry technical expert on enterprise risk 
for non financial services for the Department of Homeland 
Security, the National Academies, and the Internal Reve-
nue Service. She is also serving as a North Carolina State 
Enterprise Risk Management Initiative 2006-2007 Industry 
Fellow. Most recently, Debra was appointed to serve a 
three year term on the National Academies Board on 
Mathematical Sciences and its Applications. Debra can be 
contacted at <debraelkins@wowway.com> 

A. CHRISTINE LAFLEUR, D.ENG., P.E. is the Re-
gional Risk Manager for Europe, Africa, and the Middle 
East, for General Motors Corporate Risk Management. 
Chris recently completed her D. Eng. in Manufacturing at 
the University of Michigan. She also holds a M.S. in Fire 
Protection Engineering from the University of Maryland, 
and a B.S. in GeoMechanical Engineering from the Uni-
versity of Rochester. Chris is a registered Professional En-
gineer in Virginia and Michigan She is a Member of Na-
tional Fire Protection Association and the Society of Fire 
Protection Engineers (National and Metro Detroit Chap-
ters), and a Principal Committee Member on NFPA-13, 
Sprinkler Discharge Criteria Committee. Her current re-
search interests are performance based industrial fire pro-
tection and modeling and analysis to support enterprise fire 
risk management. Chris can be contacted at 
<Chris.Lafleur@de.gm.com>. 

EARNEST FOSTER, PH.D is a Senior Researcher with 
General Motors Research and Development Center in War-
ren, Michigan. His interests include the General Motors 
Global Manufacturing System (GM-GMS), multivariate 
259
statistical process control, statistical process control for 
time variables, and process-oriented approaches to varia-
tion reduction. He also serves as the Membership Chair for 
General Motors Research and Development Center Chap-
ter of the Sigma Xi Scientific Research Society.  Earnest 
attended the University of Michigan, Ann Arbor and re-
ceived the B.S. and M.S.E degrees in Industrial and Opera-
tions Engineering. He holds a Ph.D. in Industrial Engineer-
ing from the Pennsylvania State University. Earnest can be 
contacted at <Earnest.Foster@gm.com>. 

JEFFREY TEW, PH.D. is a GM Technical Fellow and 
Group Manager of the Manufacturing Enterprise Modeling 
Group in the Manufacturing Systems Research Lab at 
General Motors' R&D Center in Warren, MI. Currently, Dr. 
Tew is an Adjunct Professor of Supply Chain Management 
at the Georgia Institute of Technology and a Visiting Pro-
fessor of Industrial Engineering at Tsinghua University in 
Beijing. He was Coeditor of the Proceedings of the 1994 
Winter Simulation Conference and is a past President of 
the INFORMS College on Simulation. He is the General 
Chair of the 2007 Winter Simulation Conference. He re-
ceived a B.S. in mathematics from Purdue University in 
1979, an M.S. in statistics from Purdue University in 1981, 
and a Ph.D. in industrial engineering from Purdue Univer-
sity in 1986. His current interests include the application of 
operations research and information technology tools to 
large-scale logistics (supply chain) systems and e-
commerce. He is a member of Alpha Pi Mu, ACM, ASA, 
IIE, The Institute for Mathematical Statistics, INFORMS, 
SCS, and Sigma Xi. He can be reached via e-mail at 
<jefftew2002@yahoo.com>. 

BAHAR BILLER is an assistant professor in the Tepper 
School of Business at Carnegie Mellon University. Her re-
search interest lies in the area of computer simulation ex-
periments for stochastic systems and more specifically, in 
the simulation methodology for dependent input processes 
with applications to financial markets, global supply chains, 
and telecommunication systems. Her web page can be 
found via <www.tepper.cmu.edu>. 

JAMES R. WILSON is a professor in the Edward P. Fitts 
Department of Industrial and Systems Engineering at 
North Carolina State University.  He is a member of 
AAUW, ACM, and ASA; and he is a Fellow of IIE and 
INFORMS.  His e-mail address is 
<jwilson@ncsu.edu>, and his Web page is 
<www.ise.ncsu.edu/jwilson>. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


