
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

SIMULATION 101 SOFTWARE: WORKSHOP AND BEYOND

Barry Lawson

Department of Mathematics and Computer Science
University of Richmond

Richmond, VA 23173-0001, U.S.A.

Lawrence Leemis

Department of Mathematics
College of William & Mary

Williamsburg, VA 23187-8795, U.S.A.
ABSTRACT

The C source code associated with the Simulation 101 pre-
conference workshop (offered at the 2006 and 2007 Winter
Simulation Conferences) is presented here. This paper be-
gins with general instructions for downloading, compiling,
and executing the software. This is followed by sections on
four groups of the software, categorized by functionality:
libraries, Monte Carlo simulations, discrete-event simula-
tions, and utilities. The libraries contain code to generate
random numbers, code to generate random variates, and
code to evaluate probability density functions, cumulative
distribution functions, and inverse distribution functions.
The Monte Carlo simulations consist of six programs that
estimate various probabilities associated with simple prob-
ability problems, some with known analytic solutions and
others without analytic solutions. The discrete-event sim-
ulations consist of various applications from queueing and
inventory systems. Finally, the utilities are used to calculate
various point and interval estimators from data sets.

1 INTRODUCTION

This paper discusses the use of the simulation software
provided with the Simulation 101 workshop and associated
with the introductory simulation textbook by Leemis and
Park (2006).

2 SOFTWARE INSTALLATION AND EXECUTION

This section describes where to obtain and how to compile
and execute the simulation software. Note that more specifics
about execution of individual programs will be discussed
on a program-by-program basis in Section 3.

2.1 Obtaining the Software

The software is freely available from http://math.
wm.edu/∼leemis/Sim101 SourceCode.zip as a
2331-4244-1306-0/07/$25.00 ©2007 IEEE
Windows-friendly zip file or via http://math.wm.
edu/∼leemis/Sim101 SourceCode.tgz as a GNU-
zip tarfile. Download the file corresponding to the archive
type of your choice.

To extract the contents of the zip version, use any stan-
dard zip utility (e.g., WinZip for Windows, Stuffit Expander
for Mac OS X, zip for Unix/Linux). To extract the contents
of the GNU-zip tar file, execute the following command:

tar -xzvf Sim101_SourceCode.tgz

The source code will be placed into a subdirectory named
Sim101 SourceCode/ within the directory from which
you initiate the extraction process.

2.2 Compiling and Executing

The software is ANSI C compliant, and so may be compiled
by any compiler or development environment that supports
ANSI C compilation.

We recommend using the GNU gcc compiler, which
in the Makefile provided with the software is assumed to
be the default compiler. If you use gcc and the associated
make utility, following are commands of interest.

• make: Compiles and links all software, creating
any of the executables that do not exist and executa-
bles for any of the source files that were modified
since the last compile. The make utility creates
executable files having the same names as the asso-
ciated source files (e.g., the source filegalileo.c
results in the executable file galileo).

• make clean: Removes all executable and object
files.

• make programName: Compiles and links only
those files necessary for programName.

If you are not using make, then you will need to
configure your compiler to appropriately link and compile
the necessary software. When compiling any of the provided

http://math.wm.edu/~leemis/Sim101_SourceCode.zip
http://math.wm.edu/~leemis/Sim101_SourceCode.zip
http://math.wm.edu/~leemis/Sim101_SourceCode.tgz
http://math.wm.edu/~leemis/Sim101_SourceCode.tgz

Lawson and Leemis
source files that include local versions of header (.h) file(s),
you will need to include the corresponding .c file(s) in
the compilation and linking process. For example, ssq4.c
includes both rngs.h and rvgs.h and so the compilation
and linking process must include rngs.c and rvgs.c:

gcc -o ssq4 ssq4.c rngs.c rvgs.c -lm

When compiling any source file (e.g., ssq4.c) that includes
the math library header file math.h, you may need to
explicitly signify to the compiler to include the math library
in the linking process, typically with a -lm flag (see the
example above).

To execute any of the programs, simply provide the
name of the executable as a command, e.g., ./ssq4. (Note
that certain of the source files are to be used as libraries
and not to directly create an executable—see Section 3.1.)

3 SOFTWARE OVERVIEW

The Simulation 101 software is easily categorized into four
basic groups: libraries, Monte Carlo simulations, discrete-
event simulations, and utilities. We also provide an overview
of the capabilities and uses of each of the programs. The
programs are listed in alphabetical order within each of the
groups.

3.1 Libraries

The programs in this group are to be used as libraries for
other simulation programs (e.g., the Monte Carlo or discrete-
event simulation programs in the next two subsections, or
any simulation program you may create from scratch). The
libraries provide a multiple-stream Lehmer random number
generator (rngs), a collection of functions to generate
random variates from various distributions (rvgs), and
utility functions associated with each of the distributions
(rvms). These are described in more detail below.

rngs: This library implements the functions for a
good Lehmer random number generator with capability for
multiple (255 by default) streams of random numbers, one
per stochastic component of a simulation program. The
primary functions of interest provided by this library are as
follows:

• double Random(): returns a pseudo-random
number uniformly distributed between 0.0 and 1.0.
The period of the generator is (m− 1) distinct
random numbers, where m = 231−1. The smallest
and largest possible values are 1/m and and (m−
1)/m respectively. More details are provided in
Park and Miller (1988).

• void PlantSeeds(long x): initializes the
state of each of the streams. Typically, this func-
23
tion is called once, at the beginning of the simu-
lation program prior to any calls to Random().
The value x is used to initialize the state of the
default stream, and then all remaining streams are
initialized appropriately. If x is positive, x is the
state; if x is negative, the state is obtained using the
system clock; if x is 0, the state is to be supplied
interactively.

• void SelectStream(int index): sets the
current random number generator stream, i.e., the
stream from which the next random number will
come. A unique stream (i.e., value for index)
should be used for each distinct stochastic com-
ponent of a simulation program.

Note that certain applications (though none of the ones
presented in the workshop) may have more stringent re-
quirements or need a larger period than the given generator
can provide. In those cases, you should consider a different
random number generator—see, e.g., L’Ecuyer (1999).

rvgs: This library provides functions for gen-
erating random variates from six discrete distrib-
utions: Bernoulli(p), Binomial(n, p), Equilikely(a,b)
[also known as Discrete Uniform], Geometric(p),
Pascal(n, p) [also known as Negative Binomial], and
Poisson(µ). The library also provides functions for
generating random variates from seven continuous dis-
tributions: Uniform(a,b), Exponential(µ), Erlang(n,b),
Normal(µ,σ), Lognormal(a,b), Chisquare(n), and
Student(n). Refer to the comments in rvgs.c for a char-
acterization of the function parameters.

rvms: This library provides functions to evaluate
the probability density functions, cumulative distribution
functions, and inverse distribution functions (used in the
commonly-known probability integral transformation) for
the six discrete and seven continuous random variable models
provided in rvgs. Refer to the comments in rvms.c for
a characterization of the function parameters.

3.2 Monte Carlo Simulations

This group of programs provides various examples of the
power of Monte Carlo simulation, estimating one or more
probabilities using the functions provided in the random
number generator libraries discussed above. Note that,
except for san, the corresponding Monte Carlo simulation
programs provided with the textbook by (Leemis and Park
2006) use a simpler, single-stream version of rngs. For
simplicity, all programs provided for the workshop rely only
rngs.

After compiling (see Section 2), any of these Monte
Carlo simulations may be executed by using the program
name, e.g., ./buffon. The number of replications used,
initial seed input, etc. may be changed by modifying the
4

Lawson and Leemis
corresponding source code and then recompiling. Refer to
Leemis and Park (2006) for more details and, for those of
the problems analytically tractable, corresponding analytical
solutions.

buffon: produces an estimate of the probability that
a needle of length r > 0 will cross at least one line when
dropped at random onto a plane of infinitely many vertical
lines, each infinitely long and spaced one unit apart.

craps: produces an estimate of the probability of
winning the simple dice game Craps played with two fair
dice.

det: produces an estimate of the probability that the
determinant of a 3× 3 matrix of random numbers having
a particular sign pattern is positive. The number of repli-
cations is uncharacteristically large for this simulation, so
the execution time will be significantly longer than for the
other simulations in the software suite.

galileo: produces an estimate of the probability of
each sum 3,4, . . . ,18 obtained when rolling three fair dice.

hat: produces an estimate of the probability that a
hat check girl will return all n hats to the wrong owners
when she returns n hats at random.

san: produces an estimate of the mean time to com-
plete a stochastic activity network, a classic problem that
arises in project management.

3.3 Discrete-Event Simulations

This group of programs provides examples of discrete-
event simulation models, specifically focusing on queuing
(ssq and msq), inventory systems (sis), and machine
shop (ssms) models. For pedagogical reasons, the inven-
tory systems and queueing model programs are numbered
according to increasing complexity. These programs also
provide excellent examples of the use of the rngs and
rvgs library capabilities. Discrete-event simulation dif-
fers fundamentally from Monte Carlo simulation in that the
passage of time plays a significant role.

After compiling (see Section 2), any of these simulation
programs may be executed by using the program name, e.g.,
./msq. The number of replications used, initial seed input,
etc. may be changed by modifying the corresponding source
code and then recompiling.

msq: implements a next-event simulation of a
multiple-server, single-queue queuing model. This program
relies on the rngs library.

sis{1,2,3,4}: implement progressively more complex
versions of a simple inventory system model. sis1 uses a
process-interaction world view implementation and is trace-
driven (no use of random numbers), requiring the trace file
sis1.dat. sis2 is a modification of sis1 to use the
rngs library. sis3 uses a next-event implementation and
adds backlogging and delivery lag to the inventory system
235
model. sis4 is a modification of sis3 to use a more
realistic Exponential/Geometric demand model.

ssms: an extension of ssq2 (see below), this pro-
gram implements a single-server machine shop model using
a process-interaction world view, with Exponentially dis-
tributed failure times, Uniformly distributed service times,
and a FIFO service queue. This program relies on the rngs
library.

ssq{1,2,3,4}: implement progressively more com-
plex versions of a single-server FIFO service node. ssq1
uses a process-interaction world view implementation and
the arrival and service processes are trace-driven, requiring
the trace file ssq1.dat. ssq2 is a modification of ssq1
to use the rngs library, implementing Exponentially dis-
tributed interarrival times and Uniformly distributed service
times (i.e., an M/U/1 queue). ssq3 is a next-event imple-
mentation of the same M/U/1 queue from ssq2. ssq4
is a modification of ssq3 to use a more realistic Erlang
service-time model.

ttr: implements a next-event simulation of a think-
type-receive timesharing system. The main purpose of
this program is to facilitate evaluating the effectiveness of
different event-list implementations. This program relies on
the rngs library.

3.4 Utilities

The following collection of utility programs are provided
mainly to aid in analyzing the output of a simulation pro-
gram. The utilities, however, can be used in a more general
context—e.g., uvs may be used to compute the mean, stan-
dard deviation, minimum, and maximum for any general
set of data. After compiling (see Section 2), any of these
utilities may be executed by using the program name, e.g.,
./uvs.

acs: computes autocorrelation statistics for a given set
of data using a one-pass algorithm. More specifically, for a
given sample this utility computes the sample autocorrelation
for the first k autocorrelation lags (k should be much smaller
than the sample size). This program is designed to be used
with redirection, whether piping the standard output of a
simulation program directly to acs, e.g.,

./generateOutput | ./acs

or by redirecting the contents of an existing output file, e.g.,

./acs < outputFile

where the program output or the output file contains one data
point per line. A sample data file acs.dat is provided.

bvs: computes bivariate statistics for a given set
of data. More specifically, this utility reads bivariate data
(assumed to be two values per line, with the data values on
each line separated by one or more spaces) and computes the

Lawson and Leemis
mean, standard deviation, minimum, maximum, correlation
coefficient, and regression line angle. Like acs, bvs is
designed to be used with redirection. A sample data file
bvs.dat is provided.

cdh: computes a continuous-data histogram in tabu-
lar (not graphical) format for a set of continuous data. The
table displays the midpoint, data-point count, proportion,
and density for each bin, as well as the overall sample size,
mean, and standard deviation. The minimum and maxi-
mum data values and the number of bins are hard-coded
in cdh.c and as given are tuned for the data set provided
in the file uvs.dat. To use cdh on a different data set,
you should modify the minimum, maximum, and number
of bins appropriately (perhaps using uvs to gain insight)
and then recompile. Like the other provided utilities, cdh
is designed to be used with redirection. The provided data
file uvs.dat can be used as an example.

ddh: computes a discrete-data histogram in tabular
(not graphical) format for a set of discrete data. The table
displays each discrete-data value and corresponding count
and proportion, as well as the overall sample size, mean, and
standard deviation. Unlike cdh, ddh requires no parameter
modification. If the data is not discrete, cdh should be used
instead. Like the other provided utilities, ddh is designed
to be used with redirection. A sample data file ddh.dat
is provided.

estimate: computes a confidence interval estimate
for a given set of data. More specifically, this utility
reads sample data, either continuous or discrete with one
data point per line, and computes an interval estimate for
that (unknown) larger set of data from which the sample
was drawn. The utility uses Welford’s one-pass algorithm
(Welford 1962) to compute the sample mean and standard
deviation. The level of confidence (95% by default) is
hard-coded in estimate.c—modify as appropriate and
recompile. Like the other provided utilities, estimate is
designed to be used with redirection.

uvs: computes univariate statistics for a given set
of data. More specifically, this utility reads sample data,
either continuous or discrete with one data point per line,
and computes the mean, standard deviation, minimum, and
maximum. The utility uses Welford’s one-pass algorithm
(Welford 1962). Like the other provided utilities, uvs is
designed to be used with redirection. A sample data file
uvs.dat is provided. In addition, uvs (as well as the
other utilities, though less conveniently) can be used with
keyboard input: execute the utility (e.g., ./uvs), enter the
data one value per line, and signify end-of-file at the end
of the input (Control-d in Unix/Linux).

4 SUMMARY

For the software provided with workshop, those programs
in the Monte Carlo and discrete-event simulation groups are
236
not general-purpose, but are intended as instructional tools
for learning the concepts of simulation and as references in
the use of the provided libraries and utilities. The library
programs and the utility programs are general-purpose and
may be used with any simulation programs you may develop.
For further information, please contact either of the authors
of this paper.

REFERENCES

L’Ecuyer, P. 1999. Good parameters and implementations
for combined multiple recursive random number gen-
erators. Operations Research 47 (1): 159–164.

Leemis, L. M., and S. K. Park. 2006. Discrete-event simu-
lation: A first course. Upper Saddle River, NJ: Pearson
Prentice Hall.

Park, S. K., and K. W. Miller. 1988. Random number
generators: Good ones are hard to find. Communications
of the ACM 31 (10): 1192–1201.

Welford, B. P. 1962. Note on a method for calculting cor-
rected sums of squares and products. Technometrics 4
(3): 419–420.

AUTHOR BIOGRAPHIES

BARRY LAWSON is Assistant Professor of Computer
Science in the Department of Mathematics and Computer
Science at University of Richmond. He received Ph.D.
and M.S. degrees in Computer Science from the College
of William & Mary, and a B.S. degree in Mathematics
and Computer Information Systems from University of Vir-
ginia’s College at Wise. His current research interests in-
clude computer security, parallel and distributed computing,
scheduling, performance analysis, and discrete-event sim-
ulation. He previously worked in the Simulation Systems
Branch laboratory at NASA Langley in Hampton, VA. His
email address is 〈blawson@richmond.edu〉.

LAWRENCE LEEMIS is a professor in the Mathemat-
ics Department at the College of William & Mary. He
received his B.S. and M.S. degrees in Mathematics and
his Ph.D. in Industrial Engineering from Purdue University.
He has also taught at Baylor University, The University of
Oklahoma, and Purdue University. His consulting, short
course, and research contract work includes contracts with
AT&T, NASA/Langley Research Center, Delco Electronics,
Department of Defense (Army, Navy), Air Logistic Com-
mand, ICASE, Komag, Federal Aviation Administration,
Tinker Air Force Base, Woodmizer, Magnetic Peripher-
als, and Argonne National Laboratory. His research and
teaching interests are in reliability and simulation. He is a
member of ASA, IIE, and INFORMS. His email address is
〈leemis@math.wm.edu〉.

mailto:blawson@richmond.edu
mailto:leemis@math.wm.edu

	INTRODUCTION
	SOFTWARE INSTALLATION AND EXECUTION
	Obtaining the Software
	Compiling and Executing

	SOFTWARE OVERVIEW
	Libraries
	Monte Carlo Simulations
	Discrete-Event Simulations
	Utilities

	SUMMARY

