
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

THE SIMULATION POWER OF AUTOMOD

Todd LeBaron
Craig Jacobsen

Applied Materials
Manufacturing Automation Services

5245 Yeager Road, Suite 100
Salt Lake City, Utah 84116, U.S.A.
ABSTRACT

Decision making in industry continues to become more
complicated. Customers are more demanding, competition
is more fierce, and costs for labor and raw materials con-
tinue to rise. Managers need state-of-the-art tools to help in
planning, design, and operations of their facilities. Simula-
tion provides a virtual factory where ideas can be tested
and performance improved. The AutoMod product suite
from Applied Materials has been used on thousands of pro-
jects to help engineers and managers make the best deci-
sions possible. AutoMod supports hierarchical model con-
struction. This architecture allows users to reuse model
objects in other models, decreasing the time required to
build a model. In addition, recent enhancements to Auto-
mod’s material handling template systems have increased
modeling accuracy and ease-of-use. These latest advances
have helped make AutoMod one of the most widely used
simulation software packages.

1 INTRODUCTION

AutoMod is unique in the world of simulation tools. It al-
lows users to construct models of any size and complexity
that can be used for planning and design, for day-to-day
operations analysis, and for controls development and test-
ing. AutoMod combines concurrent 3-D graphics, shown
in Figure 1, with a comprehensive set of templates and ob-
jects for modeling many different applications. Because of
AutoMod’s capacity for detail, it has become the tool of
choice for serious simulation practitioners who need to
maximize the return on their simulation investment.
 The flexibility of AutoMod is noteworthy. The archi-
tecture allows for the reuse of model objects, thus reducing
the time it takes to build a model. AutoMod can also be
linked to other software through ActiveX to help create
simulation tools tailored for plant managers, area supervi-
2101-4244-1306-0/07/$25.00 ©2007 IEEE
sors, or operators on the floor. Simulation technology is
being applied to more than just planning and design, and
AutoMod meets that challenge with functionality to sup-
port a wide range of applications.

Figure 1: AutoMod’s concurrent 3-D graphics

The AutoMod product suite includes:

AutoMod. Model builder and execution environment.
AutoStat. Statistical analysis and optimization tool.
AutoView. Animation tool with AVI support. Pro-
duces dynamic walk-thoughs.
Model Communications Module (MCM). Protocols
for linking to third-party software, including OLE for
Process Control (OPC), for control systems testing.

 AutoMod contains templates for several types of mate-
rial movement systems. AutoMod’s movement systems al-
low users to model both manual material movement and
movement by automated equipment. Movement systems
include:

LeBaron and Jacobsen
Path movers (path-based vehicle systems, such as lift
trucks, AGVs, and human movers)
Conveyors (including belt and roller types)
Automated storage and retrieval systems (ASRS)
Robots (user-defined kinematics)
Bridge cranes
Power and free chain conveyors

To define movement systems, you simply define the
system elements, such as paths and stations, and then fill in
operating parameters like velocity and acceleration. Auto-
Mod then automatically creates the corresponding control
logic for the devices. Statistical performance reports and 3-
D animation are created automatically, providing a realistic
and statistically accurate view of a facility. Model anima-
tion can be viewed from any angle or perspective in real
time, providing visualization capabilities unmatched in
other simulation tools.

AutoMod’s key strengths are as follows:

Easy-to-configure material movement systems
The power and flexibility to model complex systems
accurately
Unlimited model size
A high-performance simulation engine
Best-in-class statistical analysis features
A graphic environment for geometry creation
Hierarchical model construction
True-to-scale graphical import from CAD tools

The animation provided in AutoMod models is con-
current. This means the graphics run real-time with the
simulation model. The model execution environment is
very interactive; you can stop and start the simulation, or
you can run without animation in an accelerated time scale.
You can also select objects from the animation screen and
view detailed statistics about these objects and the system
being modeled. Statistics can be viewed at any time during
a simulation run. These model execution features make it
easier to verify and validate models of complex systems.
These features also provide a forum for communication
about system performance among project team members
and management.

2 AUTOMOD INTERFACE

An AutoMod model consists of one or more systems or-
ganized in one or more sub-models. A system can be either
a process system, in which flow and control logic are de-
fined, or a material movement system. Each model con-
tains at least one process system and may contain any
number of movement systems. Automod supports hierar-
chical model construction so users can integrate pre-tested
211
sub-models into new models, reducing the time it takes to
build a model. Processes contain logic to control the flow
of manufacturing materials and to issue control messages,
thereby meeting the exact needs of your operation. Model
entities (loads) compete for resources or wait for user-
specified times. Loads can move among processes either
directly or by using movement systems.

All inter-arrival and event times can be either repre-
sented by deterministic values or derived randomly from
one of many statistical distributions. AutoMod’s interface
is Windows-based, using pop-up and pull-down menus,
dialog boxes, selection lists, and an editor for developing
process logic.

3 AUTOMOD’S WORLDVIEW

Any number of movement systems can be defined in an
AutoMod model, and process systems connect the move-
ment systems to the logical flow of products. In a process
system, loads (products, parts, and so forth) move among
processes (locations) and compete for resources (equip-
ment, operators, and queues). The load is the active entity,
executing action statements that are connected to the proc-
esses. Typical action statements give users the ability to:

Claim and use machines and operators
Move into queues or onto vehicles
Create new loads
Change load types (graphical representation)
Wait on user-defined delay lists
Increment or decrement counters or variables
Set variable values
Read from data files, Excel workbooks, or databases
Send to other processes
Make conditional tests
Call user defined subroutines and functions
Perform mathematical calculations

Figure 2 shows the process system palette for Auto-
Mod. The palette is organized in a top-down manner with
the most commonly defined elements at the top.

LeBaron and Jacobsen
Figure 2: AutoMod’s process system palette

In short, Automod provides the framework to accu-
rately model any real-world system—including distribution
centers, warehouses, assembly lines, airports, semiconduc-
tor fabs, special equipment, and electronics assembly
plants.

3.1 Processes

The process system is the backbone of an AutoMod model,
providing the general-purpose simulation features required
for modeling a wide range of real-world problems. While
material movement is important, it is not always critical in
manufacturing. Simply moving a product around a manu-
facturing facility adds no value to the product. Machines
and people perform operations that add value. The Auto-
Mod process system is where these operations and control
logic are defined.

 AutoMod’s process system uses a simulation lan-
guage based on action statements. Action statements com-
bine the power of a structured language with English-like,
manufacturing-oriented syntax. AutoMod models are not
limited in any way, so model logic can be of any size and
212
complexity. The power and flexibility of the AutoMod
language makes it easy to model almost any real-world
situation.

AutoMod processes are where actions are performed
or decisions are made. For example, an inspection opera-
tion could be represented as a process in AutoMod. From
the final assembly process, parts would travel to the in-
spection process, where an inspector (resource) would in-
spect the parts. Processes can have a physical location, but
this is not a requirement.

3.2 Loads

Loads are the active entities in AutoMod. They can be cre-
ated in many ways, with either deterministic or probabilis-
tic generation. The rate at which loads arrive at a process
can be read from an external data file or attached to a sta-
tistical distribution. AutoMod has predefined random dis-
tributions that can be used to fit most real-world random
events. Loads are given types, such as RedCar or PartA,
and they can have attributes such as color, stock keeping
unit (SKU), priority, and time in the system. Attributes can
be accessed and modified through AutoMod’s action state-
ments.
 Loads have 3-D shapes and dimensions, like most
other entities in AutoMod. Load graphics can be changed
on the fly with actions like:

set load type to RedCar
scale boxA by x 2 y 2 z 2
/*multiplies each dimension by 2*/
set this load color to blue

3.3 Resources

Resources represent machines, operators, fixtures, contain-
ers, and any other finite-capacity objects. There are two de-
fault categories for a resource’s state: working (busy or
idle) and available (up or down). During the animation,
state colors indicate the status of each resource. Statistics
are automatically collected for every resource in a model.

Loads use resources for specified processing times.
These times can be deterministic or probabilistic, using
AutoMod’s built-in statistical distributions to simulate ran-
domness. Processing times may vary by part, or they may
apply to all parts using a particular resource. Resources can
also be preempted if a high-priority load needs immediate
attention.

Resources can have downtimes, which are defined by
MTTF (mean time to fail) and MTTR (mean time to re-
pair). These times can use AutoMod’s statistical distribu-
tions to represent random failures. Though MTTF is by de-
fault based on simulation time, it can also be based on parts
processed or machine running time.

LeBaron and Jacobsen
Resource cycles can be created and attached to spe-
cific resources to indicate when or how often events such
as random failures or preventive maintenance occur, or to
model shift schedules.

3.4 States

The user can define states other than the default states.
These states might be used to represent conditions such as
blocked, starved, preventive maintenance, offline, and so
forth. The state of a resource can then be changed using
AutoMod actions so that statistics can be tracked for each
state. In addition, state monitors can be defined and used to
track states for entities other than resources, such as vehi-
cles, conveyors, or particular areas of a facility.

3.5 Queues and Order Lists

Queues in AutoMod are both graphical and statistical ele-
ments. Queues have a user-defined capacity that can be set
at build time, changed through code, or changed through
the interface during the model run. When a queue reaches
its capacity, the next load trying to enter that queue must
wait until there is space available. Queue contents can be
shown dynamically in the animation, and loads can be
stacked in any direction in the queue. Containers can also
be defined within a queue shape, for load stacking at spe-
cific locations. For example, Figure 3 illustrates a wafer
cassette (modeled using a queue), that can hold up to 25
wafers (loads). The container defines a specific location
within the queue for each load.

Figure 3: Queue used to represent a wafer cassette

Loads in a queue or process can be sorted, and they
can by delayed until they are explicitly ordered to leave.
To determine which action should take place next, the
loads place themselves on order lists. An order list is a
logical element that provides a way to sort loads that have
been delayed. To remove a load from an order list, another
load executes an order action. Loads can be ordered to
move to another process or order list, or to simply continue
where they left off in their processing. Order lists can be
sorted by load priority or other load attributes, in ascending
or descending order. Order lists are a very efficient and
213
productive tool for tackling scheduling and sorting applica-
tions.

3.6 Blocks

Blocks control the number of entities occupying a physical
space, making them very useful for controlling path mover
vehicles. Blocks may have any capacity from one to infin-
ity and may be set by default or modified during the model
run. Both path mover vehicles (lift trucks, AGVs, electri-
fied monorails, and so forth.) and loads increment blocks
automatically when moving through the physical space de-
fined by the block. Loads can also claim blocks in process
logic, as directed by the user. Blocks can have any shape,
including combinations of the AutoMod-supported shapes
(discussed in Section 5).

3.7 Variables and Counters

Data values may be stored in an AutoMod model using
variables. Variable values are changed using the set,
inc, or dec actions as follows:

set Setup_time to 123.456
inc Vnuminsys by 1 /*Increments by 1*/
dec Vnuminsys by 1 /*Decrements by 1*/

Variables can be used in calculations or can be com-
pared to other variables. In addition to integer, real, and
string types, variables can also be used to store references
to other process system entities, such as processes, queues,
resources, order lists, counters, loads, and locations. Stor-
ing these references gives the user more power and flexi-
bility to expand and extend models to match modifications
of the actual system. AutoMod also supports arrayed enti-
ties, making it easier to model real-world systems that have
some dimensionality (a warehouse with similar operations
at multiple dock doors, for example).

Counters are similar to variables, but they must have
positive integer values. Counters can have a maximum ca-
pacity, making them useful for traffic control. When a load
tries to increment a counter that is at its capacity, the load
is delayed until another load decrements the counter. Sta-
tistics for counters are collected automatically.

3.8 Functions, Subroutines, and Source Files

Functions and subroutines help you create modular models.
This allows the models to be extended more easily. You
can define your own functions in the AutoMod or C lan-
guages, and these functions can be called from anywhere in
the AutoMod model. Subroutines help eliminate duplicate
statements.

Source files contain the logic for the model. Any
number of source files may be defined, and they are proc-

LeBaron and Jacobsen
essed differently depending on their file extension. For ex-
ample, .m files contain AutoMod logic and will be checked
by AutoMod for correctness when edited. Files with a .c
extension contain C language and will be compiled with
the model. Users may also define other source files to con-
tain input data or documentation for the model.

3.9 Labels

To make a model more understandable, AutoMod lets you
place text labels anywhere in the model’s physical space.
Labels can be static, or they can change during the simula-
tion run. Labels can rotate when the animation view
changes or can be attached to a fixed position on the
screen. In addition, at runtime you can set the label color,
attach it to a queue or other entity, or scale it using Auto-
Mod code.

3.10 Tables

Tables allow you to collect and classify statistics on any
model entity. Tables automatically indicate averages and
standard deviations, as well as maximum and minimum
values. You can define the number of table “bins,” or cate-
gories, and use the tabulate action to indicate what
values should fill which bins.

3.11 Types and Random Streams

With types you can create lists of entities such as resources
or stations, and then make complex decisions based on the
lists. Default types include integer, real, resource, location,
and so forth. You can also define your own types. For ex-
ample, you could create a variable of type Resource-
List, and then use that variable to facilitate complex de-
cision-making.

Random streams may be defined to give each element
of randomness independence from other elements. The
number of different random streams used by AutoMod
models is without limit. AutoMod uses the Combined Mul-
tiple Recursive Generator (L’Ecuyer and Touzin 2000).

3.12 Run Control

AutoMod’s run control lets you define a model’s warm-up
and steady-state periods by resetting time-persistent statis-
tics. Reports can be printed for any run control period, or
“snap.” In addition, business graph output can be automati-
cally generated. Post-processed animation periods used by
AutoView, an animation extension (discussed in Section
4), are also defined in the run control. Run control also
provides an entity tracing capability that gives you an
event-by-event account of the model run. This information
helps verify and validate a model.
214
3.13 Business Graphics

AutoMod makes it easy to define and update graphs in real
time. Graph types include bar charts, pie charts, and time-
lines. Figure 3 shows a typical timeline business graph.
Any model entity can be attached to a graph, so that you
could illustrate transporter vehicle velocity, the number of
loads on a conveyor section, the average utilization of a
machine, and so forth. Graphs can be printed or plotted to a
variety of supported output devices. Graph displays can be
controlled using the AutoMod language.

Figure 4: AutoMod timeline business graph

4 AUTOVIEW

AutoMod’s post-processed [post-processor?] animation ex-
tension lets you save and view the animation records cre-
ated by running a model. With the AutoView product you
can pre-define all views and time periods in the model
animation, and then play them back to generate presenta-
tion-quality animation files.

AutoView has single-frame capture capability to AVI-
and MPEG-format files. This allows you to create anima-
tions that can be shared with others without the need for
any additional software. Also, the single-frame capability
helps smooth the animation on larger models where hard-
ware constraints may affect animation performance.

5 GRAPHICS IN 3-D

Both dynamic and static objects can be displayed during
model execution. Figure 1 and Figure 5 show screen shots
of a typical AutoMod model during a model run. Dynamic
objects represent loads, vehicles, resources, queues, and
statistics. A static layout represents background graphics
like columns, aisle markings, and walls. Labels can iden-
tify specific areas in the facility.

LeBaron and Jacobsen
There are several ways to create a layout of the system
to be modeled. AutoMod comes with a three-dimensional
graphics editor for constructing objects from standard
graphics primitives. Graphic Primitives include Cone,
Box, Hemisphere, Trapezoid, Frustum, Cylinder, Arc, Vec-
tor (list), Set, Text, and Triad. Primitives can be selected,
combined, placed, and scaled to create any static [or dy-
namic?] entity in the facility.

AutoMod supports the true-to-scale import of CAD
format files under the IGES standard. Virtual Reality
Modeling Language (VRML) and Open Inventor graphic
format files can be imported directly. In addition, Auto-
mod supports DXF (.dxf), Stereo Lithography (.stl),
trueSpace (.coa, .cob), Wavefront (.obj), 3D Studio (.3ds),
and Lightwave (.lwo) formats.

Figure 5: AutoMod’s 3-D graphics

6 RUNTIME ENVIRONMENT

In keeping with AutoMod’s interactive features, you have
complete control of the model in the runtime environment.
You can view the model with animation on, or run with
animation turned off. AutoMod uses concurrent animation;
the simulation progresses as the animation is being up-
dated. With animation off, the simulation does not render
the animation, but it performs all simulation calculations.
The user can pause the simulation at any instant to view
statistics in pop-up windows, to take resources down, to
reset variable values for testing, to set break points or
alarms, or to control the view of the animation without
constraint.

6.1 User Interaction

AutoMod provides a comprehensive, flexible, and easy-to-
use method of interacting with a model during model exe-
cution. If the simulation project is in the experimentation
phase (where only parameter changes are made, and the
215
model needs to be re-run several times), the AutoStat tool
lets you run in batch mode without animation—
automatically changing parameters, recording results, and
generating reports and graphs.

6.2 Debugging, Reports, and Statistics

AutoMod also provides advanced debugging and trace fa-
cilities. A model can be single-stepped at any time during
the animation. Also, with breakpoints and alarms, you can
suspend the simulation when a certain event occurs or
when a specific clock time is reached.

In addition, AutoMod provides comprehensive reports.
The reports can be displayed on request at any time during
the simulation. Printed versions of the reports can also be
specified during model development. You can choose
standard, full, or no report for any AutoMod entity.

AutoMod automatically generates statistics and reports
for most entity types, including:

Movement systems
Processes
Queues
Resources
Order lists

Vehicle states are tracked during the entire model run,
and reports are generated automatically. Reports can be
sorted alphabetically or numerically for easier analysis.
You can also develop and generate custom reports from
within process procedures.

7 AUTOSTAT

AutoStat is the statistical analysis tool in the AutoMod
product family. AutoStat does extensive output analysis on
an AutoMod model, including:

Confidence intervals
Warm-up determination
Sensitivity analysis
Factor-response analysis
Design of experiments
Optimization using evolution strategies.

Figure 5 shows an example graph from AutoStat.

LeBaron and Jacobsen
Figure 5: Example graph from AutoStat

AutoStat supports running scenarios across a network
of machines. Support for multiple machines and CPUs lets
you experiment with different simulation scenarios on mul-
tiple machines and compile the results to one machine,
greatly reducing the time required for experimentation and
analysis.

The evolution strategies algorithm used by AutoStat is
well suited to finding the optimum solution without getting
“trapped” at a local optimal value. Figure 6 shows the out-
put from an optimization run. The X axis represents the
number of generations required to find the optimum, and
the Y axis gives the values for the user-defined fitness
function. The fitness function can be defined as any com-
bination of model inputs and outputs, with user-defined
weighting factors applied to each value.

Figure 6: Optimization run graph

8 MODEL COMMUNICATION MODULE

The Model Communications Module (MCM) is an exten-
sion to AutoMod that allows simulation models to commu-
nicate with other programs either locally or on a network
of machines. Some of the applications of MCM include
communications between:
216
Two or more AutoMod models
Control systems and AutoMod models
Other applications and AutoMod models.

 Communication between two or more models allows
for parallel and distributed simulation. MCM also includes
Multi-Model Sync (MMS), which keeps the event lists of
the linked models synchronized.
 [Delete this sentence (see next paragraph)?] In order to
facilitate communication, MCM enables sockets, Object
Linking and Embedding for Process Control (OPC), and
Dynamic Data Exchange (DDE) technologies. Connecting
across different platforms is achieved using sockets tech-
nology, which allows communication through strings or C
structures. Models may be easily linked to other applica-
tions using DDE. Examples of this include Excel spread-
sheets, Access databases, ergonomics programs, and con-
trol programs.

8.1 Emulation with OPC

When MCM was added to the AutoMod family, it quickly
became apparent that AutoMod users were applying the
concept to a wide range of industrial applications. Al-
though sockets technology is robust and works efficiently
across different computing platforms, other technologies
may provide better solutions for specific applications. One
of these is OPC, or Object Linking and Embedding (OLE)
for Process Control, a de facto industrial standard adhered
to by all major control systems hardware manufacturers,
including Rockwell Software, Siemens, Mitsubishi, GE,
Schneider, Modicon, and many more. This well-defined
standard makes it simple for users to link AutoMod emula-
tion models to Programmable Logic Controllers (PLC)
from almost any supplier. This enables the testing of real
control programs using an AutoMod model to provide the
same responses as the physical system. The benefits of this
are considerable:

Controls departments no longer have to wait for the
system to be installed before beginning commission-
ing tests.
Testing can be more complete and is much more con-
venient.
Tests can be run in parallel.
Operators can be trained offline on the real control
system.
Operators can see the whole system respond to their
input.

 The growing use of emulation is creating more oppor-
tunities for simulation departments to build models in col-
laboration with controls departments and increasing the
area of application for simulation technology within mate-
rials handling, production, and automation companies.

LeBaron and Jacobsen
8.2 How Emulation Differs from Simulation

Emulation is a powerful and flexible way to test the opera-
tion of industrial control programs before they are installed
on-site. While a simulation model is used in the design and
development phase of a project to produce a better solu-
tion, the role of an emulation model is much more pre-
cisely defined for the verification of the controls system.
The emulation model is used to provide the control system
with the same responses it would get from the physical sys-
tem. A simulation model is used to generate results from
different sets of operational parameters. Random number
generators are used to closely match the uncertainties of
the real system. Analysis programs are used to calculate
trends and identify anomalies. Emulation models are used
to step through a series of pre-defined sets of parameters
that are unlikely to contain random elements; a “checklist”
of situations is verified and the response of the control sys-
tem is followed to detect any malfunctions.

8.3 The Advantages of Emulation

Figure 7 shows the emulation of a paint shop. The re-
placement of the real system by a virtual one offers several
advantages:

It can be ready for use before the real system.
It can be duplicated at minimal cost.
It does not disrupt existing production.
It exists in a completely controlled environment.
It can provide an overall view that is often impossible
in the real situation.

Figure 7: Emulation exhaustively tests control systems

 An emulation model driven by a real control system
provides a convenient and safe way to perform a series of
217
standard operational tests that would otherwise have to be
carried out on-site or at test sites.

8.4 Controlling the Commissioning Environment

As automated systems are designed to operate under load-
ing conditions projected five or more years into the future,
a common commissioning problem is a lack of suitable or
sufficient loads with which to test the system. As a result,
full testing on-site may be difficult, expensive, time-
consuming, or even impossible. In addition, the commis-
sioning and start-up phases of most automation projects are
tightly scheduled, and start-up dates can easily slip. Com-
missioning problems may also be hard to trace and diag-
nose, because commissioning is often the first time the
hardware system is combined with the control system; a
missing signal, for example, could be the result of either a
control system error or a misaligned detector.
 As a result, emulation is most profitably applied dur-
ing the commissioning phase. The use of emulation allows
standard control system verification to be done outside of
the commissioning window, leaving more time for other
steps. Savings are generated as on-site costs are reduced.
Also, verification can be carried out on several identical
models simultaneously, rather than on the single real sys-
tem. And emulation allows for more complete system tests
under a wider range of conditions than would be possible
during commissioning. The obvious result of more com-
plete testing is fewer problems during ramp-up and normal
operation, and this leads to further savings on maintenance,
staff turnover, and unforeseen interventions.

9 TEACHING AUTOMOD

Teaching AutoMod has been greatly facilitated with the
second edition of the text Getting Started with AutoMod
(Banks 2004). Electronic files are available for all of the
example models in the text. These are all downloadable
from www.automod.com, as is the Student Version of
AutoMod 11.1. Additionally, professors can receive a file
with the solutions to all of the exercises in the text.

10 SUMMARY

AutoMod is a state-of-the-art simulation system that lets
you define the physical elements of a system using true-to-
scale, 3-D, CAD-like graphics and a logical portion of the
system using a powerful procedural language. A typical
user can be three to ten times more productive with Auto-
Mod than with any other simulation tool. The accuracy and
degree of detail with respect to model development is un-
equalled.
 The AutoMod architecture allows construction of very
large, complex models. In fact, the larger the project, the

LeBaron and Jacobsen
more benefits AutoMod provides over other simulation
packages.

AutoMod provides realistic, 3-D visualization. There
are no limits to the views or the size of the animation. The
degree of animation realism is also unmatched, and Auto-
Mod facilitates faster model building and better communi-
cation of model results.

The AutoMod product suite, including the AutoStat,
AutoView, and MCM extensions, gives the simulation user
a truly comprehensive solution. Through the use of Ap-
plied Materials technologies, models can become more
than design tools. Models can be used to test controls, op-
erate the facility, and plan for expansion.

REFERENCES

Banks, J. 2004. Getting Started with AutoMod. Bountiful,
UT: Brooks-PRI Automation.

L’Ecuyer, P. and R. Touzin. 2000. Fast combined multiple
recursive generators with multipliers of the form a =
+2q +2 r. In Proceedings of the 2000 Winter Simula-
tion Conference, ed. J.A. Joines, R.R. Barton, K Kang,
and P.A. Fishwick, 683-689. Piscataway, New Jersey:
Institute of Electrical and Electronic Engineers.

AUTHOR BIOGRAPHIES

TODD LEBARON has worked for Applied Materials
since 1990 and was recently made the Product Manager for
Applieds Simulation Products. He has worked as a simula-
tion analyst, conducting numerous simulation studies over
the past fifteen years in a variety of applications. He has
lead the development of the ToolSim Simulation Soft-
ware, and teaches AutoMod training courses. Mr. LeBaron
received a B.S. in Manufacturing Engineering from Brig-
ham Young University in 1988. His email address is
<todd_lebaron@amat.com>

CRAIG JACOBSEN is the project manager for simula-
tion products at Applied Materials. Over the last 12 years
he has worked as a support technician, manager of support
and training and product manager for simulation products.
Mr. Jacobsen received a B.S.E.E.T from Weber State Col-
lege in 1977, a B.S.C.S from Weber State University in
1992, and an M.B.A. from the University of Utah in 2002.
 His email address is <craig_jacobsen@amat.com>
218

