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ABSTRACT

Managerial flexibility has value. The ability of their man-

agers to make smart decisions in the face of volatile market

and technological conditions is essential for firms in any

competitive industry. This advanced tutorial describes the

use of Monte Carlo simulation and stochastic optimization

for the valuation of real options that arise from the abilities

of managers to influence the cash flows of the projects under

their control.

Option pricing theory supplements discounted cash flow

methods of valuation by considering managerial flexibility.

Managers’ options to take actions that affect real investment

projects are comparable to options on the sale or purchase of

financial assets. Just as a financial option derives much of its

value from the potential price movements of the underlying

financial asset, a real option derives much of its value from

the potential fluctuations of the cash flows generating the

value of the investment project.

1 INTRODUCTION

Discounted cash flow (DCF) techniques are standard meth-

ods used for evaluation of capital budgeting projects. Under

DCF the expected cash inflows and outflows from a project

are stated in present value terms by using a discount rate

selected to account for the project’s risk and the time value

of money. The discounted cash flows are summed, and

investment costs are subtracted to obtain the net present

value (NPV) of the project. Theory holds that if the NPV

is positive, the project should be undertaken to increase

shareholder value.

The assumption that all investments are irreversible is

a fundamental weakness of most DCF methods. Managers

often have the ability to influence the results of a project and

have recourse to abandon a project if results are poor, while

maintaining the opportunity to expand projects if results

are better than expected. This managerial flexibility is not

valued with the traditional NPV method.
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Option pricing theory offers a supplement to the NPV

method that considers managerial flexibility in making deci-

sions regarding the real assets of the firm. Managers’ options

on real investment projects are comparable to investors’ op-

tions on financial assets, such as stocks. A financial option

is the right, without the obligation, to purchase or sell an

underlying asset within a given time for a stated price.

A financial option is itself an asset that derives its value

from (1) the underlying asset’s value, which can fluctuate

dramatically prior to the date when the opportunity expires

to purchase or sell the underlying asset, and (2) the deci-

sions made by the investor to exercise or hold the option.

Financial option pricing methods have been developed to

estimate option values from parameters characterizing the

underlying asset’s value and investor behavior.

Myers (1984) was among the first to publish in the

academic literature the notion that financial option pricing

methods could be applied to strategic issues concerning real

assets rather than just financial assets. In the practitioner

literature, Kester (1984) suggested that the traditional NPV

methods in use at that time ignored the value of important

flexibilities inherent in many investment projects and that

methods of valuing this flexibility were needed. Real options

valuation is most effective when competing projects have

similar values obtained with the traditional NPV method.

This advanced tutorial describes the use of Monte Carlo

simulation and stochastic optimization for the valuation of

real options that arise from the abilities of managers to

influence the cash flows of the projects under their control.

In the next section, we discuss methods of financial option

valuation that have appeared in the literature. In §3, we

describe how these methods have been applied to real op-

tions valuation. Some general applications of real options

valuation are presented in §4, and applications in regulated

industries such as telecommunications are presented in §5.

Section 6 concludes. See Charnes (2007) and the references

therein for more about using Monte Carlo simulation for

financial risk analysis and real option valuation.
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2 FINANCIAL OPTION VALUATION

The Nobel-prize winning breakthrough of Black and Scholes

(1973) provided an analytical solution to the value of an

option on a financial asset with a single exercise date, which

is known as a European option. Merton (1973) adapted the

model to include options on dividend paying stocks. The

Black-Scholes-Merton (BSM) price for a European call

option trading at time t is:

Ct(St ,T − t) = StΦ(d1)−Xe−r(T−t)
Φ(d2), (1)

where

d1 =
log(St/X)+

(

r−δ + 1
2
σ2

)

(T − t)

σ
√

T − t
, (2)

d2 = d1 −σ
√

T − t, (3)

St is the price of the underlying stock at time t, Φ(di) is the

cumulative distribution value for a standard normal random

variable with value di, X is the strike (exercise) price, r is

the risk-free rate of interest, δ is the dividend rate, and T

is the time of expiration.

The BSM price for a European put option trading at

time t is:

Pt(St ,T − t) = −StΦ(−d1)+Xe−r(T−t)
Φ(−d2), (4)

where d1 and d2 are given by expressions (2) and (3) above.

An American option grants its holder the right, but not

the obligation, to buy or sell a share of common stock for a

specified exercise price, X , at or anytime until the option’s

expiration at time T . Valuation of American-style options

is more difficult than pricing European options because

American options can be exercised on multiple dates. The

BSM formula yields an approximation for the value of an

American option, but in practice numerical techniques are

used to obtain closer approximations of options that can be

exercised at times other than the expiration time. The fair

value of an American option is the discounted expected value

of its future cash flows. The cash flows arise because the

option can be exercised at the next instant, or at the following

instant if not previously exercised, . . . , ad infinitum. An

American option has a higher value than an otherwise similar

European option because of its greater optionality. Thus,

the price of a European option provides an lower bound for

the price of an American option with similar parameters.

In practice, American options are usually approximated

by securities that can be exercised at only a finite number, k,

of opportunities before expiration. These types of financial

instruments are called Bermudan options. By choosing k

large enough, the computed value of a Bermudan option

will be practically equal to the value of an American option.
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The early exercise feature of Bermudan options makes their

valuation more difficult because the optimal exercise policy

must be estimated as part of the valuation. An exercise

policy is defined by a set of stock prices and dates that the

option holder uses to decide whether to exercise or hold the

option. The optimal exercise policy is one that maximizes

the discounted expected value of the future cash flows.

Publication of the BSM valuation formula for European

options led to the development of numerous other financial

option valuation methods. Cox, Ross and Rubinstein (1979)

developed a binomial lattice method for valuing American or

European financial options. When used to price a European

option, this model provides a discrete-time approximation

to the continuous-time Black-Scholes-Merton result. By

working backwards from the expiration date of an American

option, the lattice method allows valuation of American-type

options with multiple exercise dates.

Several Monte Carlo simulation methods focus on valu-

ing American options by pricing similar Bermudan options.

These methods are highlighted in the remainder of this

section.

2.1 Monte Carlo Simulation

Boyle (1977) uses Monte Carlo simulation as an alternative to

numerical integration (Parkinson 1977) and finite difference

(Schwartz 1977) methods for valuing options on financial

assets. This method is particularly advantageous when

the underlying asset follows a process characterized by

difference equations that are difficult or impossible to solve

analytically. Under this method, the distribution of terminal

stock values is determined by the process generating future

stock price movements; this process in turn determines the

distribution of future terminal option values. To obtain

an estimate of the option value at time t, a number of

sample values are generated at random from the distribution

describing the terminal (time T ) values of the option. In turn,

these terminal values are discounted and averaged over the

number of trials. Charnes (2000) uses Boyle’s technique to

price various exotic options and also demonstrates variance

reduction techniques to increase the precision of estimates

of option values obtained by Monte Carlo simulation.

Barraquand and Martineau (1995) developed a numer-

ical method for valuing American options with multiple

underlying sources of uncertainty which uses Monte Carlo

simulation. Their technique relies on partitioning the state

space of possible exercise opportunities into a tractable

number of cells, then computing an optimal cash flow man-

agement strategy that is constant over each cell. The option

value is based on the strategy with the maximum value.

Grant et al. (1997) consider how to incorporate opti-

mal early exercise in the Monte Carlo method by linking

forward-moving simulation and backward-moving dynamic

programming through an iterative search process. They
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simplify the problem by optimizing the option value with

respect to a piece-wise linear early exercise hurdle, albeit at

the expense of biasing the option value downward. After the

exercise boundary is established at each potential exercise

point, the price is estimated in a forward simulation based

on the obtained boundaries.

American-style securities can be priced using simulation

(Broadie and Glasserman 1997a) by developing a “high”

and “low” estimator, then using the average to estimate

the value of the option. While both estimators are biased,

both are also consistent, so as the number of trials in the

simulation is increased, the error bounds on the estimate

narrow.

Longstaff and Schwartz (2001) present another method

for valuing American options with simulation that utilizes

least squares regression. First, a number of paths of the

underlying asset are randomly generated and the cash flows

from a corresponding European option in the last period are

generated for each path. In the next to last period, the paths

that are ”in the money” are selected and the cash flows are

discounted to the current period. To estimate the expected

cash flows from continuing the option’s life conditional on

the stock price in the next-to-last period, the discounted

option payoffs are regressed on basis functions of the stock

price. With this conditional expectation function, the value

of immediate exercise in the next to last period and the value

from continuing the option can be compared. Using the

optimal decision, the cash flow matrix for the next-to-last

period is generated and the process is repeated. Given the

sample paths, a stopping rule is created for each sample

path. These cash flows are then discounted to the current

period and averaged over all paths to estimate the option

value.

Additional implementations of Monte Carlo simula-

tion for pricing American-style options are described by

Bossaerts (1989), Fu (1995), Fu and Hu (1995), Carriere

(1996), Raymar and Zwecher (1997), and Ibanez and Zapa-

tero (2004). Glasserman (2004) also provides a comprehen-

sive textbook covering financial option valuation methods

using Monte Carlo simulation. Stochastic dynamic program-

ming and stochastic differential equation methods have also

been presented as alternatives to pricing American-type op-

tions. These methods are similar to the aforementioned

simulation methods in that they begin by evaluating cash

flows in the last period of the option, then work recursively

to determine the option value. The next section presents

another method.

2.2 Simulation and Optimization

Fu et al. (2001) introduces a simulation-based approach

that parameterizes the early exercise curve and casts the

valuation problem as an optimization problem of maximizing

the option value with respect to the associated parameters.
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This approach simultaneously optimizes the option value

with respect to a parameter vector by iterative updates

via a stochastic approximation algorithm. This approach

is compared with two dynamic programming techniques

(Tilley 1993, Grant et al. 1997) and the stochastic mesh

and simulated tree methods of Broadie and Glasserman

(1997a, 1997b, 1998) on a test bed of several American-

style options. Wu and Fu (2003) gives further details of the

application of this technique to American-Asian options.

Charnes (2000) shows how to use stochastic optimiza-

tion to value a Bermudan put option by determining an

optional exercise rule based on the stock price at each

exercise date. This method uses commercially available

software (Glover, et al., 1996). Cobb and Charnes (2004b)

later extend this method to fit piece-wise linear and cubic

Bézier curve exercise thresholds for American options to

reduce the number of parameter estimates required.

3 REAL OPTIONS VALUATION

As methods for valuing financial options were developed,

researchers began to recognize the potential for applying

these techniques to valuation of real asset investment options.

Copeland and Keenan (1998a, 1998b) state that NPV

ignores the flexibility to defer, abandon, expand, or undergo

sequential investment. Real options valuation (ROV) is cited

as being particularly useful when decisions must be made

regarding later stages of projects and when learning options

exist. A learning option is one that, upon exercise, yields

a cash flow and another option. One difficulty in applying

ROV is that real asset investments are affected by multiple

sources of uncertainty. Such options are typically called

rainbow options. Combinations of rainbow and learning

options often exist in practice. ROV typically has the most

effectiveness when competing projects have similar values

when evaluated with traditional NPV methods.

One reason for using ROV, according to Brabazon

(1999), is that thinking about investment projects in option

terms encourages managers to decompose an investment

into its component options and risks, which can lead to

valuable insights about sources of uncertainty and how

uncertainty will be resolved over time. This mindset also

encourages managers to consider how best to enhance the

value of their investments by building in more flexibility.

Bowman and Moskowitz (2001) find that ROV is useful

because it challenges the type of investment proposals that

are submitted and encourages managers to think proactively

and creatively.

ROV has the potential to allow companies to examine

programs of capital expenditures as multi-year investments,

rather than as individual projects (Copeland 2001). These

programs of investments are typically strategic and highly

dependent on market outcomes, a decision climate under

which Miller and Park (2002) find ROV to be most useful.
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ROV and DCF may still be complementary techniques, with

DCF being suitable for basic replacement decisions.

Dixit and Pindyck (1994) and Trigeorgis (1996) pro-

vide texts that summarize much of the early work done in

applying financial options valuation methodology to real

options problems. Leslie and Michaels (1997) examine the

parameters in the Black-Scholes-Merton model and their

analogs in the context of the real options framework. These

relationships are summarized in Table 1.

Early work on real options valuation demonstrates that

if the analogous real options parameters can be estimated,

any method used to value financial options can potentially be

used to value real options. Often, many of the assumptions

must be relaxed to make the connection. Amram and

Kutilitilaka (1999), Copeland and Antikarov (2001) and Mun

(2002a, 2002b) suggest feasible methods of applying ROV

to problems in practice, providing step-by-step instructions

for creating models that can be used to value projects.

4 APPLICATIONS

This section describes specific instances where ROV has

been applied using various modeling techniques.

4.1 Black-Scholes model

Taudes et al. (2000) suggest using option pricing theory

to value software platform decisions. Using managerial

intuition and industry standards, they estimate parameters

for the Black-Scholes model and compare results to an NPV

analysis for a case study problem. Campbell (2002) uses

the Black-Scholes model to evaluate the costs of waiting to

invest, thus determining the optimal start-up date for an IS

investment project. By calculating foregone cash flows and

interest over the time the project is delayed, then discounting

these to review times over the investment horizon, a decision

rule is established. More frequent review periods were found

to increase deferral time.

4.2 Lattice models

Trigeorgis (1993) uses the binomial lattice method to demon-

strate the non-additivity in value of certain combinations of

multiple options on the same project. Factors that affect the

joint probability of exercising multiple options include type

of option, whether in or out of the money, and the order of

exercise of the options. Interactions between options can

be positive or negative, depending on these factors.

Herath and Park (2002) use a compound binomial lat-

tice model to value a multi-stage investment. This method

assumes the value pertaining to each downstream investment

and the volatility per unit time can be estimated directly

from the cash flow estimates by developing the distribution

for the rate of return; their simulation method (which is
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also suggested by Copeland and Antikarov (2001)) of es-

timating volatility uses only uncorrelated variables. Cobb

and Charnes (2004a) show that correlation between inputs

significantly affects volatility estimates created using simu-

lation. Brandão et al. (2005) also use the simulation method

for estimating project volatility, then apply this estimate to

model real options using a decision tree based on a bino-

mial lattice. Smith (2005) suggests an adaptation of the

simulation method for estimating volatility, and applies this

along with the Longstaff-Schwartz least squares method in

a binomial lattice scheme to value an oil production project

with buyout and divestiture options.

Kellogg and Charnes (2000) compare decision tree and

binomial lattice methods for calculating the value of a

biotechnology firm, including a growth option in the latter

model. A volatility parameter is selected for the binomial

lattice based on assuming a maximum value for the project

after 12 years, then solving for a volatility level that allows

cash flows to grow to this level. Including the growth option

improves the estimates of the firm’s value.

4.3 Dynamic programming

Smith and McCardle (1998) use a dynamic programming

model with mean reversion in the underlying stochastic

process for project value. Mean reversion greatly decreases

the value of waiting to develop, particularly when facing long

lead times. Moreover, because it implies narrower long-run

confidence bands with a decreased probability of sustaining

high or low future prices, mean reversion implies there is

significantly less risk and value associated with long-term

projects.

Dangl (1999) uses a dynamic programming approach to

determine optimal timing for investment based on a thresh-

old of the demand shift parameter. After the timing decision

is resolved, the decision on installed capacity is made to

maximize profit. Results indicate that increasing uncer-

tainty causes an increase in project size but also increasing

installation delays.

A model can be designed to account for technological

progress in a duopoly where firms compete in the adoption

of new technologies (Huisman and Kort 2000). In this

model, increased uncertainty delays adoption of the current

technology, which increases the probability that new tech-

nology is invented before the investment in new technology

commences. This leads to the conclusion that increased

revenue uncertainty induces a higher probability of moving

to a new technology; uncertainty raises technological level.

Huchzermeier and Loch (2001) model an R&D project

using dynamic programming. In their model, market pay-

offs are determined by a one-dimensional parameter and

performance uncertainty manifests itself in the variability

of a probability distribution; the value of managerial flexi-

bility is enhanced by an increase in market payoff. When



Cobb and Charnes
Table 1: Analogous parameters in financial and real option models. The left column lists the six parameters that serve as

inputs to the Black-Scholes-Merton (BSM) financial option pricing models given by expressions (1) and (4). The center

column lists the real option valuation (ROV) parameters corresponding to the financial option parameters in the left column.

The right column lists examples of the sources of uncertainty for the corresponding real option valuation model parameters.
BSM Parameter Analogous ROV Parameters Example Sources of Uncertainty

Stock price, S Present value of expected cash flows

from investment

Market demand for products and services, labor

supply and cost, materials supply and cost

Exercise price, X Present value of required investment

costs in real asset

Availability, timing and price of real assets to be

purchased

Stock price volatility, σ Volatility of underlying cash flows Volatility in market demand, labor cost, materials

cost, correlation of model assumptions

Time to expiration, T Period for which investment opportunity

is available

Product life cycle, competitive advantage

Dividend rate, δ Cash flows lost to competitors Product life cycle, competitive advantage, conve-

nience yield

Risk-free interest rate, r Risk-free interest rate Inflation, money market behavior
uncertainty is resolved after all decisions are made, more

variability smears out contingencies and thus reduces the

value of flexibility.

The types of investments a firm chooses will depend in

part on what it expects those investments to reveal about its

competencies, according to Bernardo and Chowdry (2002).

They develop a model that captures the value of information a

company can expect to learn after an investment and employ

a variation of the implicit finite difference method to find

an approximate solution. Their solution shows that higher

volatility does not necessarily increase option value when

the volatility results from noise that inhibits relevant signals

about firm performance.

4.4 Monte Carlo Simulation

Gamba (2002) extends the Longstaff-Schwartz least-squares

regression simulation method to determine the optimal stop-

ping time and value of three combinations of real options.

A portfolio of independent options on the same project is

examined, compound real options are valued, and mutually

exclusive, but not independent options are modelled. Analy-

sis takes place within a Cox-Ross-Ingersoll economy with

stochastic state variables. Schwartz (2002) also extends the

Longstaff-Schwartz approach to patent valuation by mod-

eling both time to completion and duration of cash flows

protected by the patent as random variables. The dynamics

of the cost to completion are described by a controlled

diffusion process which includes control and technical un-

certainty terms. The dynamics of net cash flow rate are

described by a geometric Brownian motion process and may

be correlated with the uncertainty in the expected cost to

completion of the project. Interestingly, the methodology
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finds corner solutions: invest at the maximum rate or do

not invest.

Implementation time is an irrelevant factor for financial

option pricing but one that must be considered in real options

valuation (Nembhard et al. 2002). A simulation model can be

developed to incorporate a lag time between option exercise

and the beginning of project cash flows. Nembhard et al.

(2000) present a simulation model where project values are

valued by dividing the life of the variable into four time

intervals, similar to a lattice approach.

Tseng and Barz (2002) value a power plant using a

multistage stochastic real option model and propose a solu-

tion procedure that integrates forward-moving Monte Carlo

simulation with backward-moving dynamic programming.

Prices for electricity and fuel are characterized by stochastic

uncertainties and a commitment decision must be made be-

fore unit prices are revealed. The model represents physical

constraints of the plant and the optimal decision strategy is

determined by using simulation within each period.

Cortazar (2002) compares the backward induction pro-

cedures of dynamic programming, binomial and multinomial

lattices, and finite difference procedures. Each of these pro-

cedures starts from a boundary condition and solves simul-

taneously for the asset value and optimal exercise policy. He

finds that each of these procedures properly value American

options, but that forward looking simulation cannot handle

the valuation problem because the optimal strategy is not

known in advance. He states that more research is needed

to develop methods of simulation that combine forward and

backward procedures for valuing American options.

A straightforward solution to the valuation of real op-

tions is obtained using commercially available software

in a manner similar to that used by Charnes (2000) to

value a Bermudan put option. This method is especially
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well suited to complicated situations involving many deci-

sions. The stochastic optimization algorithms built into the

software use efficient search techniques to pare down the

solution space quickly and obtain near-optimal solutions

easily, overcoming the difficulties identified by Cortazar

(2002) and others regarding using forward simulation of

project cash flows to obtain real option values. Cobb and

Charnes (2003) utilize this simulation optimization method

to price a Bermudan abandonment option on a project

that has project cash flows that follow a mean-reverting,

first-order autoregressive stochastic process. Cobb (2005)

combines this simulation-optimization method with the fi-

nancial options valuations techniques presented by Cobb

and Charnes (2004b) to parameterize a piece-wise linear

exercise threshold for a Bermudan abandonment option.

4.5 Decision analysis

Decision analysis methods have been used for capital bud-

geting, and several researchers have proposed an integration

of decision analysis tools and ROV. The combination of these

concepts may allow models that produce a solution for the

value of a project and an optimal investment decision rule

more intuitively and efficiently.

Lander (1997) and Lander and Shenoy (1999) com-

pare influence diagrams, decision trees, and binomial lat-

tice methods of valuing real options. The solved decision

tree and binomial tree yield different valuations due to the

different probabilities and discount rates used; however, the

optimal strategies suggested are usually the same. Depend-

ing on the conditional probability distributions specified, an

influence diagram model can emulate either a decision tree

or binomial model.

Real options can be valued using the opportunity loss

concept when a risk-free arbitrage method is not feasible

(Herath and Park 2001, Park and Herath 2001). Using

this approach, the expected value of perfect information

is the maximum quasi-real option value. Since perfect

information is rarely available, an approach to determining

the appropriate expected value of sample information is

explored.

De Reyck et al. (2002) achieve the same results by using

the replicating portfolio approach and constructing a decision

tree with the appropriate discount rate prevailing at each

chance node. The decision tree method is regarded as more

practical and intuitive than other ROV approaches because

the structure of the tree models managerial flexibility.

Demirer et al. (2007) recognize that the effectiveness

of ROV is affected by how well uncertainty is represented

in the model. Influence diagrams can represent uncertainty

compactly, so they are suggested as an alternative tool for

ROV. The representation of different fundamental sources

of uncertainty in influence diagrams improves the predictive

capability of the model and leads to better estimates of the
17
value of a biotechnology firm, when compared to decision

tree and binomial lattice methods.

Use of simulation for multiple-stage decision problems

within a decision analysis framework is possible, as shown

by Charnes and Shenoy (2004). They propose a forward

Monte Carlo method that generates observations at each

stage of the problem from a small set of variables in an

influence diagram. In each stage, a decision function is

determined for a selected decision variable. Such a method

may hold promise for efficient evaluation of complex real

options problems.

5 ROV IN REGULATED INDUSTRIES

Teisberg (1994) characterizes regulation in a real options

model by using three parameters: 1) the current market

value of a completed project, 2) the expected rate of fore-

gone earnings due to regulation, and 3) the fraction of cost

recovery allowed upon abandonment. Regulation that re-

stricts profits and losses effectively reduces the sensitivity of

the project value to the firm’s construction strategy (i.e. the

value of flexibility is reduced). Option effects are lessened

for a regulated firm because profit restrictions reduce the

expected value of the project and increase the incentive to

invest sooner since delay becomes more costly as profit

restrictions take hold.

Using a stochastic differential equation model, Falco

and Campo (2001) value a regulated project by adding a

mean reverting term which describes the expected rate of

change over time as influenced by regulatory and market

conditions. Regulation in this model is deemed to reduce a

project’s value when it reflects high profits and limit losses

when the value of the project is low.

ROV has the potential to assist telecommunications

firms with investment decisions because the industry is char-

acterized by high future uncertainty regarding the market

for products and services (Bhagat 1999, Trigeorgis 1999).

Economides (1999) encourages use of ROV in telecom-

munications to estimate the costs of providing services, as

required for pricing regulated services. Emmerson (1999)

and Sharkey (1999) agree and state that prices set equal to

long-run marginal costs are not sufficient to achieve effi-

ciency if only the costs of physical and financial resources

are included in the calculations. Additional price increases

to cover increased value from risky resource commitments

are necessary and could be estimated using ROV.

Jamison (1999) applies ROV to estimate costs used as

the basis for regulatory pricing decisions. Using a model

that assumes the carrier produces multiple products and

makes investment decisions subject to uncertain demand

and regulatory controls, ROV helps to improve incentives

to invest efficiently. Tardiff (1999) suggests the use of ROV

for establishing a cost basis because they can better consider

forward-looking, as opposed to historical, costs.
8
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Strauss (1999) suggests that telecommunications can

learn from applications of ROV to power plant valuation be-

cause the telecommunications and electric power industries

have similarities in their cost structures. Both industries

can benefit from a model that starts with a characteriza-

tion of market price volatility and values the ability of the

power plant (or telecommunications network) to respond to

fluctuating markets.

Use of ROV in specific telecommunications applica-

tions is not yet widespread. One application examines the

underlying drivers of the bandwidth market and applies a

real options framework to the problem of optimal timing

of investment into new capacity (d’Halluin et al. 2002).

A solution is determined using differential equations, the

results of which suggest that increases in volatility tend to

delay the investment decision; additionally, as the growth

rate in demand increases, the upgrade point occurs at a

lower percentage of current network usage.

6 CONCLUSION

Applications of financial option pricing methods to real as-

set investments have become more widespread in the past

decade. In the abstract, if the parameters required in a

financial option pricing method can be related to similar

parameters in a real asset investment problem, any method

used to value financial options can be used to value real op-

tions. Estimating these parameters, particularly the volatility

parameter, is often difficult though, because the underlying

asset is not traded. In practice, managers making decisions

on whether to exercise real options typically have no method

of observing the precise value of the underlying asset at the

time the option must be exercised.

One implicit assumption of financial options pricing

methods is that the value of the underlying asset is known

at the time the exercise decision is made, which makes the

decision rule obvious. For example, a European put option

on a traded stock will always be exercised if the market price

is less than the exercise price on the expiration date. As a

result, financial option pricing methods are most concerned

with providing a value for the option so an investor can

determine whether to invest in the option. However, real

options valuation must be concerned with determining both

a value and an optimal exercise decision rule. The decision

rule is often based on an observation of market factors or

project performance in the periods leading up to the exercise

date. In some instances, the decision rule might be based on

an updated forecast of expected future performance. Neither

market observations or updated estimates, however, provide

perfect information, so the value placed on a real option by

a method that assumes underlying asset value is observable

is an upper bound.

Given the difficulty in observing relevant information

prior to the exercise date in real options valuation, future
179
research in this area is needed on methods of determin-

ing an optimal decision rule, along with a value for the

real option if the optimal decision rule is followed. Since

multiple uncertainties are often not constant over the life

of real options, methods that do not require combination

of uncertainties into one volatility parameter show most

promise. Additionally, the risk-free arbitrage assumptions

implicit in financial options must be relaxed, as there is no

opportunity for a risk-free hedge with most real options.
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