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ABSTRACT

This paper reviews statistical methods for analyzing output
data from computer simulations. Specifically, it focuses
on the estimation of steady-state system parameters. The
estimation techniques include the replication/deletion ap-
proach, the regenerative method, the batch means method,
and methods based on standardized time series.

1 INTRODUCTION

A primary goal of most simulation studies is the approxi-
mation of prescribed system parameters with the objective
of identifying parameter values that optimize some system
performance measures. Since the input processes driving
a simulation are often random, the output data are also
random and runs of the simulation program only result in
estimates of system performance measures.

A simulation study consists of several steps such as
data collection, coding and verification, model validation,
experimental design, output data analysis, and implementa-
tion. This paper reviews statistical methods for computing
confidence intervals for system performance measures from
output data. This tutorial does not aim at replacing “stan-
dard” texts, such as Fishman (2001) or Law (2006). A
comprehensive coverage of the majority of topics reviewed
herein is presented in Chapters 8, 15, and 16 of the recent
handbook edited by Henderson and Nelson (2006) and in
the entry by Alexopoulos et al. (2006b).

There are two types of simulations with regard to output
analysis:
Finite-horizon simulations. In this case the simulation
starts in a specific state and is run until some terminating
event occurs. The output process is not expected to achieve
any steady-state behavior and any parameter estimated from
the output data will be transient in the sense that its value
will depend upon the initial conditions. An example is the
simulation of a vehicle storage and distribution facility for
a week.
1501-4244-1306-0/07/$25.00 ©2007 IEEE
Steady-state simulations. The purpose of a steady-state
simulation is the study of the long-run behavior of the
system of interest. A performance measure of a system is
called a steady-state parameter if it is a characteristic of the
equilibrium distribution of an output stochastic process. An
example is the simulation of a continuously operating com-
munication system where the objective is the computation
of the mean delay of a data packet.

Section 2 discusses methods for analyzing output from
finite-horizon simulations. Section 3 presents techniques
for point and interval estimation of steady-state parameters.

2 FINITE-HORIZON SIMULATIONS

Suppose that we simulate a system until n output data
X1, X2, . . . , Xn are collected with the objective of estimat-
ing μ ≡ E(X̄n), where X̄n ≡ 1

n

∑n
i=1 Xi is the sample mean

of the data. For example, Xi may be the transit time of unit i

through a network of queues or the total time station i is busy
during the ith hour. Clearly, X̄n is an unbiased estimator for
μ. Unfortunately, the Xi are generally dependent random
variables making the estimation of the variance Var(X̄n)

a nontrivial problem. Let S2
n(X) ≡ 1

n−1

∑n
i=1(Xi − X̄n)

2

be the sample variance of the data. The presence of auto-
correlation makes the familiar estimator S2

n(X)/n a biased
estimator of Var(X̄n) (see Section 3).

To overcome this problem, one can run k independent
replications of the system simulation. Assume that run
i produces the output data Xi1, Xi2, . . . , Xin. Then the
replicate averages Yi ≡ 1

n

∑n
j=1 Xij are independent and

identically distributed (IID) random variables, their sample
mean Ȳk = 1

k

∑k
i=1 Yi is also an unbiased estimator of μ,

and their sample variance S2
k (Y ) is an unbiased estimator of

Var(X̄n). If in addition k is sufficiently large, an approximate
100(1 − α)% two-sided confidence interval (CI) for μ is

Ȳk ± tk−1,1−α/2Sk(Y )/
√

k , (1)
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where td,δ represents the δ-quantile of Student’s t distribution
with d degrees of freedom.

Alexopoulos and Seila (1998, Section 7.2.2) review
sequential procedures for determining the number of repli-
cations required to estimate μ with a fixed absolute or relative
precision. The procedure for computing an estimate Ȳk with
an absolute error satisfying Pr(|Ȳk − μ| ≤ β) ≥ 1 − α is
based on Chow and Robbins (1965). It starts with k ≥ 5
runs and stops when the halfwidth tk−1,1−α/2Sk(Y )/

√
k ≤ β.

Law (2006, pp. 501–502) describes an empirical method
for obtaining an estimate whose relative error satisfies
Pr(|Ȳk − μ|/|μ| ≤ γ ) ≥ 1 − α, with α ≤ 0.15. The
method starts with k ≥ 10 runs and stops when the relative
halfwidth tk−1,1−α/2Sk(Y )/(|Ȳk|

√
k) drops below γ /(1+γ ).

The method of replications can also be used for es-
timating performance measures other than means. Let Y

be the total cost incurred in an inventory system during a
certain time window, and let yp ≡ inf{y : Pr(Y ≤ y) ≥ p}
denote the p-quantile of Y . To estimate yp, we can make
k independent replications, denote by Yi the cost observed
during replication i, and let Y(1) < Y(2) < · · · < Y(k) be
the order statistics corresponding to the Yi . Then a point
estimate for yp is ŷp = Y(�kp�), where �·� is the ceiling
function. A CI for yp is described in Alexopoulos and Seila
(1998, Section 7.3.2).

3 STEADY-STATE ANALYSIS

We focus on methods for computing point and interval
estimators for the mean of a discrete-time stationary process.
Analogous methods for analyzing continuous-time output
data are described in a variety of texts (Fishman 2001; Law
2006). The process X ≡ {Xi} is called stationary if the joint
distribution of Xi+j1 , Xi+j2 , . . . , Xi+jk

is independent of i

for all indices j1, j2, . . . , jk and all k ≥ 1. If E(Xi) = μ,
Var(Xi) ≡ σ 2

X < ∞ for all i, and the Cov(Xi, Xi+j )

is independent of i, then X is called weakly stationary.
We denote the autocovariance function of X by Rj ≡
Cov(X1, X1+j ) (j = 0, ±1, ±2, . . .). Notice that R0 =
σ 2

X. Alexopoulos et al. (2006b) give a detailed overview
of the properties of stationary processes that are central
to simulation output analysis and proceed with a detailed
description of the majority of the methods in this section.
Clearly, the sample mean X̄n is not only unbiased for μ,
but also strongly consistent by the ergodic theorem (see
Durrett 2005).

Under the assumption that X̄n is approximately normally
distributed (which is reasonable for sufficiently large n), the
usual construction of a CI for μ requires the derivation of an
estimator for Var(X̄n). A little algebra yields (cf. Anderson
1984)

E

[
S2

n(X)

n

]
=

n
an

− 1

n − 1
Var(X̄n), (2)
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where an ≡ 1 + (2/σ 2
X)

∑n−1
j=1(1 − j/n)Rj . Then for pro-

cesses that are positively correlated (Ri > 0), equation (2)
implies that E[S2

n(X)/n] < Var(X̄n). Hence the “classical”
100(1−α)% CI for IID data X̄n ± tn−1,1−α/2Sn(X)/

√
n can

have coverage probability that can be considerably below
the nominal value 1 − α.

A common assumption facilitating the derivation of a
CI for μ is as follows:
Functional Central Limit Theorem (FCLT) Assumption.
Suppose that the series

σ 2 ≡ σ 2
X + 2

∞∑
j=1

Rj (3)

is absolutely convergent and σ 2 > 0. Let

Xn(t) ≡ 	nt
(X̄	nt
 − μ)

σ
√

n
, t ∈ [0, 1],

where 	·
 is the floor function. Then Xn(·) D−→ W , where

“
D−→ ” denotes convergence in distribution and {W(t) :

0 ≤ t ≤ 1} is a standard Brownian motion process restricted
to the interval [0, 1]. We call σ 2 the (asymptotic) variance
parameter of X.

This assumption holds under several conditions (Durrett
2005; Glynn and Iglehart 1990). Examples are a condition
involving conditional second moments of X and the stronger
ϕ-mixing condition: X is ϕ-mixing if there are ϕk ↓ 0
such that, for each k ≥ 0, A ∈ F j

−∞, and B ∈ F∞
j+k ,

| Pr(A ∩ B) − Pr(A) Pr(B)| ≤ ϕk Pr(A). Here F j
i (i ≤ j )

denotes the σ -field generated by Xi, Xi+1, . . . , Xj .

Remark 1 Contrary to popular belief, many stochastic
processes encountered in simulation output analysis are not
ϕ-mixing. Examples are autoregressive processes, regen-
erative processes (see Section 3.3) with regenerations not
occurring uniformly fast over the state space, and virtually
all open queueing networks (Glynn and Iglehart 1985).

The variance of the sample mean in terms of the auto-
covariance function is

Var(X̄n) = 1

n

[
σ 2

X + 2
n−1∑
j=1

(1 − j/n)Rj

]
. (4)

Assumption 0 < σ 2 < ∞ along with equation (4) imply
limn→∞ nVar(X̄n) = σ 2 and limn→∞ Var(X̄n) = 0; hence
X̄n is consistent (in mean square). Our focus will be on
methods for obtaining CIs for μ, which involve estimating
σ 2.

Below the “little-oh” notation f (m) = o(g(m)) means
that f (m)/g(m) → 0 as m → ∞; and the “big-oh” notation
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f (m) = O(g(m)) means that there is a positive integer m0
such that |f (m)/g(m)| ≤ C for some constant C and all
m ≥ m0.

3.1 Dealing with the Initial Conditions

Several problems arise when the process X does not start in
steady-state. For example, X̄n is not an unbiased estimator
of the mean μ. The removal of the effect of the initial
conditions is a challenging problem.

The most commonly used method for eliminating the
bias of X̄n identifies an index l and “truncates” the observa-
tions X1, . . . , Xl . Several procedures have been proposed
for the detection of a cutoff index l (see Fishman 2001;
Law 2006; Wilson and Pritsker 1978ab).

The graphical procedure of Welch (1983) uses k in-
dependent replications, with the ith replication producing
observations Xi1, Xi2, . . . , Xin, and computes the “across-
runs” averages X̃j ≡ 1

k

∑k
i=1 Xij (j = 1, . . . , n). Then for

a given time window w, the procedure plots the moving
averages

X̄j (w) =
{

1
2w+1

∑w
m=−w X̃j+m w + 1 ≤ j ≤ n − w

1
2j−1

∑j−1
m=−j+1 X̃j+m 1 ≤ j ≤ w

against j . If the plot is reasonably smooth, then l is chosen
to be the value of j beyond which the sequence of moving
averages converges. Otherwise, a different time window is
chosen and a new plot is drawn. The choice of w may be
a difficult problem for congested systems with output time
series having autocorrelation functions with long tails (see
Alexopoulos and Seila 1998, Example 7).

3.2 The Replication/Deletion Approach

This intuitive, and often recommended, approach runs k

independent replications, each of length l +n observations,
and discards the first l observations from each run. One
then uses the IID sample means Yi(l, n) ≡ 1

n

∑l+n
j=l+1 Xij

from the k runs to compute the point estimate Ȳk(l, n) ≡
1
k

∑k
i=1 Yi(l, n) and the following approximate 100(1−α)%

CI for μ:

Ȳk(l, n) ± tk−1,1−α/2Sk(Y (l, n))/
√

k, (5)

where S2
k (Y (l, n)) is the sample variance of the Yi(l, n).

The method is simple and general, but involves the
choice of three parameters, l, n and k. Here are a few
points the user should be aware of: (a) As l increases for
fixed n, the “systematic” error in each Yi(l, n) due to the
initial conditions decreases. (b) As n increases for fixed l,
the systematic and sampling errors in Yi(l, n) decrease. (c)
The systematic error in the sample means Yi(l, n) cannot
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be reduced by increasing the number of replications k. (d)
For fixed n and under some mild moment conditions that
are satisfied by a variety of simulation output processes, a
sufficient condition for the asymptotic validity of the CI (5) is
l/ ln k → ∞ as k → ∞ (Fishman 2001). This means that as
one makes more runs in an attempt to compute a narrower CI,
the truncation index l should increase faster than ln k for the
CI to achieve the nominal coverage. This requirement is hard
to implement in practice. (e) This method is also potentially
wasteful of data as the truncated portion is removed from
each replication. Additional shortcomings of this method
are presented in Alexopoulos and Goldsman (2004).

The methods in Sections 3.3–3.6 seek to overcome the
aforementioned issues. For a thorough comparison between
the methods of independent replications and nonoverlapping
batch means, see Alexopoulos and Goldsman (2004).

3.3 The Regenerative Method

This method assumes the identification of time indices at
which the process X probabilistically starts over and uses
these regeneration epochs for obtaining IID random variables
which can be used for computing point and interval estimates
for the mean μ. The method was proposed by Crane and
Iglehart (1975) and Fishman (1973, 1974). More precisely,
assume that there are (random) time indices 1 ≤ T1 <

T2 < · · · such that the portion {XTi+j : j ≥ 0} has the
same distribution for each i and is independent of the
portion prior to time Ti . The portion of the process between
two successive regeneration epochs is called a cycle. Let
Yi = ∑Ti+1−1

j=Ti
Xj and Zi = Ti+1 − Ti (i = 1, 2, . . .) and

assume that E(Zi) < ∞. Then the steady-state mean μ is
given by μ = E(Y1)/E(Z1).

Now suppose that one simulates the process X over
n cycles and collects the observations Y1, . . . , Yn and
Z1, . . . , Zn. Then μ̂ ≡ Ȳn/Z̄n is a strongly consistent
estimator of μ. Furthermore, CIs for μ can be constructed
by using the IID random variables Yi −μZi , (i = 1, . . . , n)

and the central limit theorem (see Iglehart 1975).
The regenerative method is often difficult to apply in

practice because the majority of simulations have either no
regenerative points or very long cycle lengths. Two classes
of systems this method has successfully been applied to
are inventory systems and highly reliable communications
systems with repairs.

3.4 Methods Based on Nonoverlapping Batch Means

The classical method of nonoverlapping batch means (NBM)
is a popular approach for computing point and CI estimators
for the mean μ of a stationary process. Original accounts
on the method were given by Conway (1963), Fishman
(1978), and Law and Carson (1979); see Fishman (2001)
andAlexopoulos and Goldsman (2004) for detailed coverage.
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Suppose that the sample {X1, . . . , Xn} is divided
into k contiguous batches, each consisting of m ob-
servations (for simplicity, we assume n = km). For
i = 1, . . . , k, the ith batch consists of the observations
X(i−1)m+1, X(i−1)m+2, . . . , Xim and the ith batch mean
Yi,m ≡ 1

m

∑m
j=1 X(i−1)m+j is the sample average from batch

i. The NBM-based estimator of the mean is the grand sam-
ple mean X̄n = 1

k

∑k
i=1 Yi,m = 1

n

∑n
i=1 Xi . Clearly, the

stationarity of X implies E(X̄n) = μ and the stationarity
of the batch means sequence {Yi,m : i = 1, . . . , k}.

The motivation behind the NBM method is simple.
First, under the FCLT, one can show that as m → ∞,
the batch means become uncorrelated (Law and Carson
1979) and normally distributed. Since the grand mean X̄n

is the sample average of the batch means, one has the
approximation nVar(X̄n)

.= nVar(Y1,m)/k = mVar(Y1,m).
Hence the NBM estimator for σ 2 is

N (k, m) ≡ m

k − 1

k∑
i=1

(Yi,m − X̄n)
2, (6)

which is m times the sample variance of the batch means.
An approximate 100(1 − α)% CI for μ is

X̄n ± tk−1,1−α/2

√
N (k, m)

n
. (7)

Of course, the fundamental issue is the choice of the
batch size and the number of batches. Several early studies
(e.g., Fishman 1978; Schmeiser 1982) addressed this issue,
but without the rigor of recent studies.

To motivate the description of the modern procedures,
we focus on the mean squared error (MSE) of N (k, m) and
the coverage of the CI (7). Here we let σ 2

n ≡ nVar(X̄n),
and define the constant

γ ≡ −
∞∑

j=−∞
jRj = −2

∞∑
j=1

jRj . (8)

One can show easily that E[N (k, m)] = 1
k−1 (kσ 2

m − σ 2
n ).

If in addition E(X4
1) < ∞, and the process X is ϕ-mixing

with ϕj = O(j−4−ε) for some ε > 0, then γ exists and

σ 2
n = σ 2 + γ /n + o(1/n). (9)

Combining the last two equations we obtain

E[N (k, m)] = σ 2 + (k + 1)γ /n + o(1/n). (10)

Hence, N (k, m) usually has negative first-order bias for
positively autocorrelated processes.
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Also, the additional assumptions E(X12
1 ) < ∞ and

ϕj = O(j−9) allow one to write (Chien et al. 1997)

Var[N (k, m)] = 2σ 4(k + 1)

(k − 1)2 + O( 1
km1/4 )) + O( 1

k2 ). (11)

Then, as m, k → ∞,

MSE[N (k, m)] = O( 1
km1/4 ) + O( 1

k2 ) → 0. (12)

Property (12) implies weak consistency for the estimator
N (k, m), but does not guarantee the asymptotic validity of
the CI in equation (7). Before we discuss batching rules
that yield the last property, we briefly examine how the
variance estimator N (k, m) approaches σ 2. As in Fishman
(2001, p. 251), equation (10) allows us to write

N (k, m) − σ 2 = σ 2
n − σ 2︸ ︷︷ ︸

error due to
finite n

− σ 2
n

1 − σ 2
m/σ 2

n

1 − m/n︸ ︷︷ ︸
error due to

ignoring correlations
between batch means

+ εn︸︷︷︸
error due to

random sampling

, (13)

where the error εn has mean zero and variance given by
equation (11). We call the first two terms on the right-hand
side of the last equation a systematic error; by equation
(9) this error behaves as O(1/m). On the other hand,
equation (11) implies that the standard deviation of εn

behaves as O(1/k1/2). These growth rates reveal the tradeoff
between the two types of error induced by m and k. Since
σ 2

n approaches σ 2 from below for a variety of systems
with positive autocorrelation functions, the systematic error
induces a negative bias in N (k, m) that dissipates as the
batch size increases. Then the error due to random sampling
fluctuates around zero and decreases at rate O(1/k1/2).

The recent literature contains a variety of rules for
selecting sequences of batch sizes {m	} and batch counts
{k	} as the sample size increases. The most intuitive (FNB)
rule fixes the number of batches and doubles the batch
size at each iteration. This assignment is computationally
attractive because at every iteration, pairs of existing batch
means are averaged to compute the new batch means.

Under the FCLT assumption, one can show that for

fixed k and m → ∞, N (k, m)
D−→ σ 2χ2

k−1/(k−1), where
χ2

d denotes a chi-square random variable with d degrees
of freedom; and the CI in equation (7) is asymptotically
valid (Glynn and Whitt 1991). If we assume uniform
integrability for the sequence {N 2(k, m) : m ≥ 1} (see
Billingsley 1968), we have limm→∞ E[N (k, m)] = σ 2 and
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limm→∞ Var[N (k, m)] = 2σ 4/(k−1); hence the FNB rule
does not yield a consistent variance estimator. This is in
agreement with equation (13) as the error O(k−1/2) due to
random sampling does not diminish. Therefore the CI in
equation (7) tends to be wider than CIs based on consistent
variance estimators.

Consistent Batch Means Estimation Methods

Alternative rules that yield strongly consistent estimators
for N (k, m) are based on the following assumption:
Assumption of Strong Approximation (ASA). There exists
a constant λ ∈ (0, 1/2] and a finite random variable C such
that, as n → ∞, |√n(X̄n − μ)/σ − W(n)/

√
n| ≤ Cn−λ,

w.p.1, where W is a standard Brownian motion process
defined on the same space as the standardized process {X̄n}.

A λ close to 1/2 indicates a marginal normal distri-
bution and low correlation among the Xi . Conversely, a
λ close to zero indicates the absence of at least one of
these properties (Philipp and Stout 1975). The following
theorem proposes batching assumptions which along with
ASA yield a strongly consistent estimator for σ 2. (Notice
that the batching sequences are indexed by the sample size.)

Theorem 1 (Damerdji 1994a) Suppose that the ASA
holds and that {mn} and {kn} are deterministic sequences
of batch sizes and batch counts, respectively, such that
mn → ∞, kn → ∞, n1−2λ ln(n)/mn → 0 (as n → ∞),
and

∑∞
n=1 k

−q
n < ∞ for some finite integer q ≥ 1. Then,

as n → ∞, N (kn, mn) → σ 2, w.p.1 and

Z(kn, mn) ≡
√

n(Xn − μ)√
N (kn, mn)

D−→ N(0, 1), (14)

where N(0, 1) is a standard normal random variable.

Suppose that mn
.= nθ , for some θ ∈ (0, 1). One can

verify that the conditions of Theorem 1 are satisfied if θ ∈
(1 − 2λ, 1). In particular, the square root (SQRT) rule that
uses mn

.= kn
.= √

n (θ = 1/2) yields a strongly consistent
variance estimator when 1/4 < λ < 1/2. In addition to
the derivation of a strongly consistent estimator for σ 2, the
SQRT rule induces an optimal property: Assuming that
E(X20

1 ) < ∞ and that X is ϕ-mixing with ϕj = O(j−13),
Chien (1989) showed that the CDF of the standardized
statistic Z(k, m) converges to the standard normal CDF
at the fastest possible rate. Unfortunately, the CIs for μ

that result from an implementation of the SQRT rule often
exhibit low coverage for small sample sizes (see Example
11 in Alexopoulos and Seila 1998).

Although both the FNB and SQRT rules yield asymp-
totically valid CIs for μ, each has desirable properties and
limitations. To close the gap, Fishman and Yarberry (1997)
proposed the LABATCH.2 suite of algorithms. Among the
two recommended algorithms, LBATCH and ABATCH, we
present the latter because it is more conservative with re-
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gard to the coverage of the resulting CI (7). This method
uses von Neumann’s test (von Neumann 1941) to assess the
hypothesis H0: “the batch means are IID.” The associated
test statistic is

(k, m) ≡
√

k2 − 1

k − 2

[
1 −

∑k−1
i=1 (Yi,m − Yi+1,m)2

2
∑k

i=1(Yi,m − X̄n)2

]
.

Under H0, (k, m) ·∼ N(0, 1) for large m (the batch
means become approximately normal) or large k. The

symbol “ ·∼ ” means “is approximately distributed as.” To
guard against positive correlation, one can use a one-sided
test and reject H0 at level β when (k, m) > z1−β , where
zδ is the δ-quantile of the standard normal distribution.

The ABATCH algorithm evolves as follows. For a
complete description, see Fishman (2001).

Algorithm ABATCH

• Select initial batch size m1, initial batch count k1, confi-
dence level 1 − α, and type I error β for von Neumann’s
test.
• On iteration 	 ≥ 1: Compute von Neumann’s statistic
(k	, m	). If (k	, m	) > z1−β , reject H0 and use the FNB
rule on iteration 	 + 1 with k	+1 = k	 and m	+1 = 2m	.
Otherwise, use the SQRT rule on iteration 	 + 1 with
k	+1

.= √
2k	 and m	+1

.= √
2m	.

Since the ABATCH algorithm uses random m	’s and
k	’s, Theorem 6.6 of Fishman (2001) lists additional mild
conditions that imply strong consistency for N (k	, m	) and
asymptotic validity for the CI X̄n ± z1−α/2

√
N (k	, m	)/n	

as 	 → ∞. The FNB and SQRT rules can be implemented
easily within the ABATCH algorithm by setting β = 0 or
β = 1, respectively. Two features of the LABATCH.2 suite
that are often overlooked are algorithm efficiency and low
space requirements: each algorithm requires O(n) total
time and O(log2 n) space. Although like complexities are
known for static fixed-batch-size algorithms (e.g., all the
methods in the remainder of this paper have a linear time
complexity per iteration), the dynamic setting of ABATCH
offers an important additional advantage not present in the
static approach: as the analysis evolves with increasing
sample path length, it allows a user to assess how well
the estimated variance of the sample mean stabilizes, in
linear total time. This assessment is essential to gauge
the quality of the variance parameter estimates and the CI
for the mean and requires a rather experienced user. C,
FORTRAN and SIMSCRIPT II.5 codes of LABATCH.2
can be downloaded via anonymous ftp from the site
<www.or.unc.edu/∼gfish/labatch.2.html>.

The ASAP3 method of Steiger et al. (2005) is an au-
tomated sequential NBM approach that delivers a CI for μ

satisfying user-specified requirements on absolute or relative
precision as well as coverage probability. This approach

http://www.or.unc.edu/~gfish/labatch.2.html
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takes advantage of the fact that the batch means often become
approximately multivariate normal random variables before
achieving independence. ASAP3 operates as follows. The
batch size is progressively increased until the batch means
pass the Shapiro-Wilk test for multivariate normality; and
then ASAP3 fits a first-order autoregressive (AR(1)) time
series model to the batch means. If necessary, the batch
size is further increased until the autoregressive parameter
in the AR(1) model does not significantly exceed 0.8. Next
ASAP3 computes the terms of an inverted Cornish-Fisher
expansion for the classical batch means t-ratio based on the
AR(1) parameter estimates; and finally ASAP3 delivers a
correlation-adjusted CI based on this expansion. Although
ASAP3 does not possess the computational efficiency of the
LABATCH.2 algorithms, it performs very well with regard
to conformance to the precision and coverage probability
requirements as well as with regard to the mean and vari-
ance of the half-length of the delivered CI. Related papers,
experimental results, and the ASAP3 software are accessi-
ble from the site <www.ise.ncsu.edu/jwilson>. A
detailed experimental study of sequential NBM procedures
is presented in Lada et al. (2006).

A reasonable compromise between the methods of in-
dependent replications (IR) in Section 2 and NBM has been
proposed recently by Argon and Andradóttir (2006). The
replicated batch means (RBM) method uses a few indepen-
dent replications of equal length, each containing the same
number of batches, and estimates the variance parameter
σ 2 my m times the sample variance of all batch means.
When the output process is stationary, the RBM method
appears to exhibit performance characteristics that fall be-
tween the constituent IR and NBM methods. The recent
paper by Alexopoulos et al. (2006a) studies the performance
of the RBM variance estimator in the presence of an additive
transient bias.

3.5 Estimators Based on Standardized Time Series

Now we turn to estimators based on standardized time series
(STS). We start with estimators based on the entire sample,
and then present estimators based on standardized time
series applied to batches. The STS based on the sample
{X1, . . . , Xn} is defined as

Tn(t) ≡ 	nt
(X̄n − X̄	nt
)
σ
√

n
, 0 ≤ t ≤ 1.

If X satisfies an FCLT, it can be shown that, as n → ∞,

(
√

n(X̄n − μ), σTn)
D−→ (σW(1), σB), (15)

where B is the standard Brownian bridge process on [0, 1]
defined by B(t) = W(t)−tW(1). In addition, the STS Tn(·)
is asymptotically independent of X̄n. All finite-dimensional
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joint distributions of B are normal with E[B(t)] = 0 and
Cov[B(s), B(t)] = min(s, t) − st , 0 ≤ s, t ≤ 1.

The Weighted Area Estimator

We start with the weighted area estimator (Goldsman et
al. 1990; Goldsman and Schruben 1990; Schruben 1983).
Suppose that the function f is twice continuously dif-
ferentiable on the interval [0, 1] and normalized so that
Var(

∫ 1
0 f (t)B(t) dt) = 1. Then

∫ 1
0 f (t)B(t) ∼ σN(0, 1).

The square of the weighted area under the STS is defined
by

A(f ; n) ≡
[

1

n

n∑
i=1

f (i/n)σTn(i/n)

]2

.

Under mild conditions, the continuous mapping theorem
(see Billingsley 1968, Theorem 5.1) implies

A(f ; n)
D−→ A(f ) ≡

[∫ 1

0
f (t)σB(t) dt

]2

∼ σ 2χ2
1 ,

as n → ∞. The following theorem gives expressions for the
mean and variance of the weighted area estimator A(f ; n).
Notice that the limiting variance does not depend on the
weight function f .

Theorem 2 (Goldsman et al. 1990; Foley and Golds-
man 1999) Suppose that X is ϕ-mixing and satisfies As-
sumption FCLT,

∑∞
j=1 j2|Rj | < ∞, and the sequence

{A2(f ; n) : n ≥ 1} is uniformly integrable. Then, as
n → ∞,

E[A(f ; n)] = σ 2 + [(F (1) − F̄ (1))2 + F̄ 2(1)]γ
2n

+ o(1/n)

and

Var[A(f ; n)] → Var[A(f )] = Var(σ 2χ2
1 ) = 2σ 4,

where F(s) ≡ ∫ s

0 f (t) dt (0 ≤ s ≤ 1) and F̄ (u) ≡∫ u

0 F(s) ds (0 ≤ u ≤ 1).

Example 1 Schruben (1983) studied the area estimator
with constant weight function f0(t) ≡ √

12; in this case,
Theorem 2 implies that E[A(f0; n)] = σ 2 +3γ /n+o(1/n).

If one chooses weights having F(1) = F̄ (1) = 0, the
resulting estimator is first-order unbiased for σ 2, i.e., its
bias is o(1/n). An example of a weight function yielding a
first-order unbiased estimator for σ 2 is f2(t) ≡ √

840(3t2 −
3t + 1/2) (Goldsman et al. 1990; Goldsman and Schruben
1990).

Other weights yielding first-order unbiased estimators
for σ 2 are given by the family fcos,j (t) = √

8πj cos(2πjt)

(j = 1, 2, . . .). Foley and Goldsman (1999) showed
that this orthonormal sequence produces area estima-

http://www.ise.ncsu.edu/jwilson/files/installasap3.exe
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tors A(fcos,1, n), A(fcos,2, n), . . . that are not only first-
order unbiased, but asymptotically independent; that is,
A(fcos,1), A(fcos,2), . . . are IID σ 2χ2

1 .

Batched Area Estimators

Up to now, the STS-based variance estimators have been
constructed directly from a single long run of n observations.
We now examine what happens if we (a) divide the run
into contiguous, nonoverlapping batches; (b) form an STS
estimator from each batch; and (c) take the average of the
estimators.

The STS from batch i (i = 1, . . . , k) is

Ti,m(t) ≡ 	mt
(Yi,m − Yi,	mt
)
σ
√

m
, 0 ≤ t ≤ 1,

where Yi,j ≡ 1
j

∑j
	=1 X(i−1)m+	. Under the same mild

conditions as before, one has

(
√

m(Y1,m − μ),
√

m(Y2,m − μ), . . . ,
√

m(Yk,m − μ);
σT1,m, σT2,m, . . . , σTk,m)

D−→ (σZ1, σZ2, . . . , σZk; σB0, σB1, . . . , σBk−1),

where the Zi are IID standard normal random variables and

Bs(t) ≡ W(s+t)−W(s)−t[W(s+1)−W(s)], 0 ≤ t ≤ 1

denotes a standard Brownian bridge on [s, s + 1], for s ∈
[0, k − 1]. One can easily show that the Brownian bridges
B1, B2, . . . ,Bk are independent.

The area estimator from batch i is

Ai(f ; m) ≡
[

1

m

m∑
	=1

f (	/m)σTi,m(	/m)

]2

, i = 1, . . . , k,

and the (nonoverlapping) batched area estimator for σ 2 is

A(f ; k, m) ≡ 1

k

k∑
i=1

Ai(f ; m). (16)

Since the Ti,m (i = 1, . . . , k), converge to independent
Brownian bridges as m becomes large (with k fixed), the
Ai(f ; m) are asymptotically independent as m → ∞. Then

by the discussion above, we have A(f ; k, m)
D−→ σ 2χ2

k /k,
and an approximate 100(1 − α)% CI for μ is X̄n ±
tk−1,1−α/2

√
A(f ; k, m)/n.

Theorem 2 implies

E[A(f ; k, m)] = σ 2 + [(F (1) − F̄ (1))2 + F̄ 2(1)]γ
2m

+o(1/m). (17)
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Further, if we assume uniform integrability for
{A2(f ; k, m) : m ≥ 1}, we can also make an analogous
statement concerning the variance of the batched area esti-
mator: as m → ∞,

Var[A(f ; k, m)] = k−1Var[A1(f ; m)]
→ k−1Var[A(f )] = 2σ 4/k. (18)

Equations (17) and (18) indicate that the batched area esti-
mator has a bit more bias than the area estimator obtained
from the entire sample, but smaller asymptotic variance (by
a factor of k). Sargent et al. (1992) present an extensive
experimental study for various CIs mentioned in this section.

It is worth mentioning that, under the assumptions
of Theorem 1, Damerdji (1994ab,1995) showed that the
batched area estimator A(f ; k, m) is strongly and mean-
square consistent. Methods based on NBMs and batched
area estimators have been used for computing point and CI
estimators for continuous nonlinear functions of steady-state
means (Muñoz and Glynn 1997; Chang 2004).

3.6 Methods Based on Overlapping Batches

Now we turn our attention to methods relying on overlapping
batches, starting with the method of overlapping batch means
(OBM) proposed by Meketon and Schmeiser (1984). For
given batch size m, this method uses n− b + 1 overlapping
batches to estimate μ and Var(X̄n). The first batch consists
of observations X1, . . . , Xm, the second batch consists of
X2, . . . , Xm+1, etc. The point estimator for μ remains X̄n,
but he OBM-based estimator of σ 2 is

O(k, m) = nm

(n − m + 1)(n − k)

n−m+1∑
i=1

(Y O
i,m − X̄n)

2,

where Y O
i,m ≡ 1

m

∑i+m−1
	=i X	 (i = 1, . . . , n−m+1) are the

respective batch means and k ≡ n/m is no longer the number
of batches. Actually, this estimator is almost identical to
Bartlett’s spectral estimator (see Anderson 1984).

Under conditions similar to those required to derive
equations (10) and (11) one has (Song and Schmeiser 1995)

E[O(k, m)] = σ 2 + (k2 + 1)γ

k(k − 1)m
+ o(1/m) (19)

and

Var[O(k, m)] → (4k3 − 11k2 + 4k + 6)σ 4

3(k − 1)4
.= 4σ 4

3k
, (20)

as m → ∞ (Damerdji 1995, Appendix B). Equations (10)
and (19) show that the estimators N (k, m) and O(k, m)

have the same asymptotic means (as k, m → ∞). How-
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ever, a comparison between equations (11) and (20) reveals
that Var[O(k, m)]/Var[N (k, m)] → 2/3, as k, m → ∞.
Thus, the OBM method has better (asymptotic) perfor-
mance than NBM with regard to MSE. Also, the behavior
of Var[O(k, m)] appears to be less sensitive to the choice
of the batch size than does the behavior of Var[N (k, m)]
(see Song and Schmeiser 1995, Table 1).

An approximate 100(1 − α)% CI for μ is X̄n ±
td,1−α/2

√
O(k, m)/n, with the degrees of freedom d chosen

so that O(k, m) is asymptotically σ 2χ2
d /d . Meketon and

Schmeiser (1984) use the value d = 1.5(k − 1) whereas,
based on Monte Carlo studies, Schmeiser recommends the
larger value d = 1.5(k − 1)[1 + (k − 1)−0.5−0.6k].

The OBM method can also yield a consistent variance
estimator. If X satisfies ASA, the batching sequences satisfy
the assumptions of Theorem 1, and limn→∞(k2

n/n) = 0,
then Var[O(kn, mn)] → σ 2, w.p.1 (Damerdji 1994a).

Using equations (19) and (20), one can show that
for a sample size n, the batch size that minimizes the
MSE[O(k, m)] is given by m∗ = [3γ 2n/(2σ 4)]1/3. Song
(1996) developed methods for estimating the ratio γ 2/σ 4

for a variety of processes, including moving average pro-
cesses and autoregressive processes. Then one can obtain
an estimator for m∗ by plugging the ratio estimator into the
respective formula.

Welch (1987) suggested that overlapping batch means
yield near-optimal variance reduction under partial overlap-
ping. For example, under a 75% overlap with a batch size
of 64, the first batch consists of observations X1, . . . , X64,
the second consists of observations X17, . . . , X80, etc.

Overlapping Area Estimators

To parallel the discussion in Section 3.5, we define the STS
from overlapping batch i as

T O
i,m(t) ≡ 	mt
(Y O

i,m − Y O
i,	mt
)

σ
√

m
, 0 ≤ t ≤ 1,

where Y O
i,j ≡ 1

j

∑j−1
	=0 Xi+	 (i = 1, . . . , n − m + 1). The

area estimator computed from overlapping batch i is defined
by

AO
i (f ; m) ≡

[
1

m

m∑
	=1

f (	/m)σT O
i,m(	/m)

]2

and the overlapping area estimator for σ 2 is

AO(f ; k, m) ≡ 1

n − m + 1

n−m+1∑
i=1

AO
i (f ; m). (21)

The following discussion contains results from Alex-
opoulos et al. (2007ab).
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Theorem 3 Under Assumption FCLT, as m → ∞,

AO(f ; k, m)
D−→ AO(f ; k) ≡

1

k − 1

∫ k−1

0

[
σ

∫ 1

o

f (u)Bs(u) du

]2

ds.

Clearly, the expected value of the estimator AO(f ; k, m)

matches that of its nonoverlapping counterpart. On the other
hand, contrary to equation (18), the variance of the over-
lapping area estimator does depend on the choice of the
weight function. For each weight function under consider-
ation, assume that the family {[AO(f ; k, m)]2 : m ≥ 1} is
uniformly integrable. For the constant weight function f0
in Example 1, one has

Var[AO(f0; k, m)] → Var[AO(f ; k)]
= 24k − 1

35(k − 1)2 σ 4, as m → ∞.

>From the last result and equation (18) one obtains
Var[AO(f0; k, m)]/Var[A(f0; k, m)] .= 0.343 for large k.
Alternatively, the first-order unbiased quadratic weight f2
yields

Var[AO(f ; k)] = 3514k − 4359

4290(k − 1)2 σ 4,

hence Var[AO(f2; k, m)]/Var[A(f2; k, m)] .= 0.410 for
large k. Finally, for the orthonormal family of weights
fcos,j in Example 1, one has

Var[AO(fcos,j ; k)] .= 8π2j2 + 15

12π2j2k
σ 4.

Thus, for large k, Var[AO(fcos,j ; k, m)]/Var[A(fcos,j ; k, m)] .=
0.397 for j = 1 and decreases to 1/3 as j → ∞. More-
over, these variance estimators usually achieve similar
improvements compared with the conventional estimators
N (k, m) and O(k, m).

In addition to the aforementioned results for the first two
moments of the overlapping variance estimators, and under
some additional assumptions, Alexopoulos et al. (2007ab)
obtain consistency in mean square as m, k → ∞ and present
efficient algorithms for computing these estimators with
order-of-sample-size work. Aktaran-Kalaycı et al. (2006)
present detailed expressions for the expected values of var-
ious variance estimators listed above.

Although Theorem 3 displays the asymptotic distribu-
tion of AO(f ; k, m), one wonders if there are practical
approximations to that distribution that can be used for
constructing (among others) CIs for μ and σ 2. Notice
that for sufficiently large m, AO(f ; k, m) is the average of
approximate chi-squared random variables. Using the tech-
nique of Satterthwaite (1941), one can obtain the distribution
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approximation

AO(f ; k, m) ·∼ E[AO(f ; k, m)]χ2
νeff

/
νeff,

where νeff =
[[

2E2[AO(f ; k, m)]
Var[AO(f ; k, m)]

]]
, (22)

where [[·]] denotes rounding towards the nearest integer. The
quantity νeff is called the “effective” degrees of freedom.

If AO(f ; k, m)] is a first-order unbiased estimator for
σ 2, then it follows from equation (22) that for a sufficiently
large batch size m, an approximate 100(1 −α)% CI for σ 2

is given by

νeff AO(f ; k, m)

χ2
νeff,1−α/2

≤ σ 2 ≤ νeff AO(f ; k, m)

χ2
νeff,α/2

, (23)

where χ2
d,δ denotes the δ-quantile of the χ2

d distribution.
We can also obtain an approximate CI for the mean

μ, provided the batch size m is sufficiently large (so that
the sample size n is also sufficiently large). First of all,

equation (15) implies that for large n, X̄n
·∼ N(μ, σ 2/n)

and X̄n is approximately independent of the standardized
time series formed from {X1, . . . , Xn}. It follows that for
m sufficiently large, the pivot

X̄n − μ√
AO(f ; k, m)

/
n

·∼ tνeff , (24)

with the degrees of freedom νeff given by (22). Then an
approximate 100(1 − α)% CI for μ is given by

μ ± tνeff,1−α/2

√
AO(f ; k, m)

/
n. (25)

Example 2 Consider the stationary Gaussian first-
order autoregressive (AR(1)) process defined by Xi =
0.9Xi−1 + εi for i = 1, 2, . . ., where X0 is a N(0, 1)

random variable and the εi’s are IID N(0, 1 − φ2) random
variables that are independent of X0. This process has
covariance function Rj = 0.9j for all j = 0, 1, . . ., so that
σ 2 = 19. The experimental results below come from Sec-
tions 4.1–4.3 of Alexopoulos et al. (2007a) and are based
on 1,000,000 independent sample paths, each consisting of
20,000 observations, and a batch size of m = 1000.

For the first-order unbiased overlapping area estimator
AO(f2; 20, 1000), one has E[AO(f2; 20, 1000)] ≈ σ 2 = 19
and νeff = 47. Figure 1 displays the empirical density,
represented as a polygon as detailed in Section 3.3 of Hald
(1952), and the fitted density based on (22). The excellent
fit of the scaled chi-square approximation is apparent.
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On the other hand, equation (23) yields the following
approximate 90% CI for σ 2:

0.7343AO(f2; 20, 1000) ≤ σ 2 ≤ 1.4566AO(f2; 20, 1000).

The empirical coverage of this CI, based on the same
1,000,000 sample paths, was 0.9013, which is remarkably
close to the nominal coverage.

Lastly, using νeff = 47 in equation (25), one has
the following approximate 90% CI for μ = 0: X̄n ±
0.01187

√
AO(f2; 20, 1000)/n. The empirical coverage of

the last interval was 0.8992.
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Figure 1: Empirical and Fitted Densities for the Overlapping
Area Estimator AO(f2; 20, 1000) Computed from an AR(1)
Process with φ = 0.9

Other Variance Estimation Methods

The list of estimators above is not exhaustive. The Cramér–
von Mises estimators in Goldsman et al. (1999) and Alex-
opoulos et al. (2007ab) are based on the weighted area
under the square of the STS. Antonini et al. (2007) propose
estimators based on iterative “folding” operations applied to
STSs. The purpose of the folding operation is the derivation
of STSs that are asymptotically independent (as the sample
size approaches infinity) despite the fact that they are based
on the same output data. Hence, averaging of variance esti-
mators computed from the various STSs yields an estimator
with substantially smaller mean squared error than each
of the constituents. Calvin and Nakayama (2006) propose
estimators obtained by permuting STSs, and Calvin (2007)
develops estimators based on integrated sample paths.

We end this section with a brief review of spectral
methods. Classical spectral methods (cf. Heidelberger and
Welch 1981, 1983) are based on the fact that the asymptotic
variance parameter σ 2 is equal to the value of the power
spectrum of the stochastic process X at zero frequency.
Hence, they work in the frequency domain to estimate σ 2

from the values of the associated periodogram in the vicin-
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ity of zero frequency. The WASSP method of Lada and
Wilson (2006) is based on nonoverlapping batch means and
wavelets. The method starts by selecting a data-truncation
point and and a batch size so that the truncated batch means
are approximately a stationary Gaussian process but are are
not necessarily independent. Then it computes the discrete
wavelet transform of the bias-corrected log-smoothed pe-
riodogram of the batch means. The method proceeds by
taking the inverse of the discrete wavelet transform of the
thresholded wavelet coefficients to compute estimates of
the batch means log-spectrum and σ 2. One of the real
advantages of WASSP is that is incorporates a completely
automated procedure for determining the data-truncation
point that is highly effective in eliminating initialization
bias; see Lada et al. (2007). Lada et al. (2006, 2007)
present experimental comparisons between classical NBM
methods, the ASAP3 method in Section 3.4 and WASSP.

3.7 Quantile Estimation

A variety of methods have been proposed for estimat-
ing quantiles of steady-state data (see Iglehart 1976; Seila
1982ab; Heidelberger and Lewis 1984; Chen and Kelton
2006). The methods differ in the way the variance of the
sample quantile is estimated. It should be mentioned that
quantile estimation is typically a harder problem than the
estimation of steady-state means.

3.8 Density Estimation

In addition to point and interval estimates, users are often
interested in estimating the density functions (or CDFs)
of random variables generated by a computer simulation.
Several simulation packages can generate histograms, but
such plots are often “poor” estimates of the unknown den-
sity function because their shape depends heavily on the
chosen origin and the bin width. Although the statistical
literature contains many state-of-the-art density estimation
techniques, such as those based on kernel functions, the
simulation literature (in particular texts) barely mentions
such techniques, and only within the context of indepen-
dent input data. The book chapter by Alexopoulos (2006)
attempts to close the gap between the statistical and sim-
ulation literatures by reviewing univariate kernel density
estimators based on independent samples and sample paths
of stationary dependent processes.

3.9 Multivariate Estimation

Frequently, the output from a single simulation run is used
for estimating several system parameters. The estimators of
these parameters are typically correlated. As an example,
consider the average customer delays at two stations on
a path of a queueing network. In general, Bonferroni’s
159
inequality can be used for computing a conservative confi-
dence coefficient for a set of CIs. Indeed, suppose that Di

is a 1 − α CI for the parameter μi , i = 1, . . . , m. Then
Pr[∩m

i=1{μi ∈ Di}] ≥ 1 − ∑m
i=1 αi .

This result can have serious implications as for m = 10
and αi = 0.10 the r.h.s. of the above inequality is equal to
0. If the overall confidence level must be at least 1−α, then
the αi can be chosen so that

∑m
i=1 αi = α. Multivariate

estimation methods are described in Charnes (1990, 1991)
and Chen and Seila (1987).
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