
Proceedings of the 2007 Winter Simulation Conference
S. G. Henderson, B. Biller, M.-H. Hsieh, J. Shortle, J. D. Tew, and R. R. Barton, eds.

AGENT-BASED MODELING AND SIMULATION: DESKTOP ABMS

Charles M. Macal
Michael J. North

Center for Complex Adaptive Agent Systems Simulation (CAS2)

Decision & Information Sciences Division
Argonne National Laboratory
Argonne, IL 60439, U.S.A.

ABSTRACT

Agent-based modeling and simulation (ABMS) is a new
approach to modeling systems comprised of autonomous,
interacting agents. ABMS promises to have far-reaching
effects on the way that businesses use computers to support
decision-making and researchers use electronic laborato-
ries to support their research. Some have gone so far as to
contend that ABMS “is a third way of doing science,” in
addition to traditional deductive and inductive reasoning
(Axelrod 1997b). Computational advances have made pos-
sible a growing number of agent-based models across a va-
riety of application domains. Applications range from
modeling agent behavior in the stock market, supply
chains, and consumer markets, to predicting the spread of
epidemics, the threat of bio-warfare, and the factors re-
sponsible for the fall of ancient civilizations. This tutorial
describes the theoretical and practical foundations of
ABMS, identifies toolkits and methods for developing
agent models, and illustrates the development of a simple
agent-based model of shopper behavior using spreadsheets.

1 INTRODUCTION

Agent-based Modeling and Simulation (ABMS) is a new
modeling paradigm and is one of the most exciting practi-
cal developments in modeling since the invention of rela-
tional databases (North and Macal, 2007). ABMS promises
to have far-reaching effects on the way that businesses use
computers to support decision-making and researchers use
electronic laboratories to support their research. The goals
of this tutorial are to show how ABMS is:

• Useful: Why ABMS is a good and even better
modeling approach in many cases,

• Usable: How we are progressively advancing to
usable ABMS systems, with better software de-
velopment environments and more application
experiences, and
951-4244-1306-0/07/$25.00 ©2007 IEEE
• Used: How ABMS is being used to solve practical
problems.

This tutorial is organized into two parts. The first part

is a tutorial on how to think about ABMS. The background
on ABMS and its motivating principles are described to
illustrate its main concepts and to indicate the state-of-the-
art. The second part is a tutorial on how to do ABMS.
Practical applications of ABMS are described, ABMS
toolkits are presented, and the development of a simple
agent-based model of shopper behavior using spreadsheets
is illustrated.

2 HOW TO THINK ABOUT ABMS

2.1 What Is An Agent?

Although there is no universal agreement on the precise
definition of the term “agent,” definitions tend to agree on
more points than they disagree. Some modelers consider
any type of independent component (software, model, in-
dividual, etc.) to be an agent (Bonabeau 2001); an inde-
pendent component’s behavior can range from primitive
reactive decision rules to complex adaptive artificial intel-
ligence (AI). Others insist that a component’s behavior
must be adaptive in order for it to be considered an agent.
The agent label is reserved for components that can in
some sense learn from their environments and change their
behaviors in response to their experiences. Casti (1997) ar-
gues that agents should contain both base-level rules for
behavior as well as a higher-level set of “rules to change
the rules.” The base-level rules provide responses to the
environment while the “rules to change the rules” provide
adaptation. Jennings (2000) provides a computer science
view of agency emphasizing the essential characteristic of
autonomous behavior. The fundamental feature of an agent
is the capability of the component to make independent de-
cisions. This requires agents to be active rather than purely
passive.

Macal and North

From a practical modeling standpoint, we consider

agents to have certain characteristics (Figure 1):

• An agent is identifiable, a discrete individual with

a set of characteristics and rules governing its be-
haviors and decision-making capability. Agents
are self-contained. The discreteness requirement
implies that an agent has a boundary and one can
easily determine whether something is part of an
agent, is not part of an agent, or is a shared char-
acteristic.

• An agent is autonomous and self-directed. An
agent can function independently in its environ-
ment and in its dealings with other agents, at least
over a limited range of situations that are of inter-
est.

• An agent is situated, living in an environment
with which it interacts with other agents. Agents
have protocols for interaction with other agents,
such as for communication, and the capability to
respond to the environment. Agents have the abil-
ity to recognize and distinguish the traits of other
agents.

• An agent may be goal-directed, having goals to
achieve (not necessarily objectives to maximize)
with respect to its behaviors. This allows an agent
to compare the outcome of its behavior relative to
its goals.

• An agent is flexible, having the ability to learn
and adapt its behaviors based on experience. This
requires some form of memory. An agent may
have rules that modify its rules of behavior.

Figure 1: An Agent

Unlike particle systems (idealized gas particles for ex-

ample) which are the subject of the field of particle simula-
tion, agents are diverse, heterogeneous, and dynamic in
their attributes and behavioral rules. Behavioral rules vary
in their sophistication, how much information is considered
96
in the agent decisions (cognitive “load”), the agent’s inter-
nal models of the external world including the possible re-
actions or behaviors of other agents, and the extent of
memory of past events the agent retains and uses in its de-
cisions. Agents also vary by their attributes and accumu-
lated resources.

Agent-based modeling is known by many names.
ABM (agent-based modeling), ABS (agent-based systems),
and IBM (individual-based modeling) are all widely-used
acronyms, but “ABMS” will be used throughout this dis-
cussion. The term “agent” has connotations other than
ABMS as well. ABMS agents are different from the typical
agents found in mobile agent systems. “Mobile agents” are
light-weight software proxies that roam over the world-
wide web and perform various functions for users and to
some extent can behave autonomously.

ABMS has strong roots in the fields of multi-agent
systems (MAS) and robotics from the field of AI. But
ABMS is not only tied to designing and understanding “ar-
tificial” agents. Its main roots are in modeling human so-
cial and organizational behavior and individual decision-
making (Bonabeau 2001). With this, comes the need to
represent social interaction, collaboration, group behavior,
and the emergence of higher order social structures.

2.2 The Need for Agent Based Modeling

Why is agent-based modeling becoming so widespread?
The answer is because we live in an increasingly complex
world. First, the systems that we need to analyze and
model are becoming more complex in terms of their inter-
dependencies. Traditional modeling tools are no longer as
applicable as they once were. An example application area
is the deregulation of the electric power industry. Second,
some systems have always been too complex for us to ade-
quately model. Modeling economic markets has tradition-
ally relied on the notions of perfect markets, homogeneous
agents, and long-run equilibrium because these assump-
tions made the problems analytically and computationally
tractable. We are beginning to be able to relax some of
these assumptions and take a more realistic view of these
economic systems through ABMS. Third, data are becom-
ing organized into databases at finer levels of granularity.
Micro-data can now support micro-simulations. And
fourth, but most importantly, computational power is ad-
vancing rapidly. We can now compute large-scale micro-
simulation models that would not have been plausible just
a couple of years ago.

2.3 Background on ABMS

ABMS has connections to many other fields including
complexity science, systems science, Systems Dynamics,
computer science, management science, the social sciences
in general, and traditional modeling and simulation. ABMS

Macal and North

draws on these fields for its theoretical foundations, its
conceptual world view and philosophy, and for applicable
modeling techniques.

ABMS has its direct historical roots in complex adap-
tive systems (CAS) and the underlying notion that “sys-
tems are built from the ground-up,” in contrast to the top-
down systems view taken by Systems Dynamics. CAS
concerns itself with the question of how complex behaviors
arise in nature among myopic, autonomous agents. In addi-
tion, ABMS tends to be descriptive, with the intent of
modeling the actual or plausible behavior of individuals,
rather than normative such as traditional operations re-
search (OR), which seeks to optimize and identify optimal
behaviors.

The field of CAS was originally motivated by investi-
gations into adaptation and emergence of biological sys-
tems. CAS have the ability to self-organize and dynami-
cally reorganize their components in ways better suited to
survive and excel in their environments, and this adaptive
ability occurs, remarkably, over an enormous range of
scales. John Holland, a pioneer in the field, identifies prop-
erties and mechanisms common to all CAS (Holland 1995)
such as (1) Aggregation: allows groups to form, (2) Non-
linearity: invalidates simple extrapolation, (3) Flows: allow
the transfer and transformation of resources and informa-
tion, and (4) Diversity: allows agents to behave differently
from one another and often leads to the system property of
robustness. CAS mechanisms are: (1) Tagging: allows
agents to be named and recognized, (2) Internal models:
allows agents to reason about their worlds, and (3) Build-
ing blocks: allows components and whole systems to be
composed of many levels of simpler components. These
CAS properties and mechanisms provide a useful reference
for designing agent-based models.

2.3.1 Simple Rules Result in Emergent Organization
and Complex Behaviors

The Boids simulation is a good example of how interacting
agents, characterized by simple behavioral rules, lead to
emergent and seemingly organized behavior at the system
level (Reynolds 2006). Agent behavior is reminiscent of
schooling or flocking behavior in fish or birds. In the Boids
model, each agent has three rules governing its movement:

1. Cohesion: each agent steers toward the average
position of its nearby “flockmates,”

2. Separation: each agent steers to avoid crowding
local flockmates, and

3. Alignment: each agent steers towards the average
heading of local flockmates.

Here, nearby or local refers to agents in the immediate
neighborhood of an agent as defined by the straight-line
distance. Even with only these three simple rules applied at
97
the individual agent level and only to the agents in its
“neighborhood”, the agents’ behaviors begins to appear
coordinated, and a leaderless flock emerges (Figure 2).
 Two observations are important about the Boids rules:
(1) the rules are simple, and (2) the rules use only local in-
formation. We can make some observations from the Boids
model that have implications for practical ABMS: (1) sus-
tainable patterns can emerge in systems that are completely
described by simple deterministic rules based on only local
information, and (2) patterns that develop can be extremely
sensitive to the initial conditions.

Based on simple rules of behavior and agent interac-
tion, natural systems seemingly exhibit collective intelli-
gence, or swarm intelligence, even without the existence of
or the direction provided by a central authority. Natural
systems are able to not only survive, but also to adapt and
become better suited to their environment, effectively op-
timizing their behavior over time. How is it that an ant col-
ony can organize itself to carry out the complex tasks of
food gathering and nest building and at the same time ex-
hibit an enormous degree of resilience if the colony is seri-
ously disrupted? Swarm intelligence has inspired practical
optimization techniques, such as ant colony optimization
that have been used to solve practical scheduling and rout-
ing problems (Bonabeau et al. 1999).

(a) Initial random configuration

(b) After 500 updates

Figure 2: Boids Simulation

Macal and North

2.3.2 Agent-Based Modeling in the Sciences

In applications of ABMS to social processes, agents repre-
sent people or groups of people, and agent relationships
represent processes of social interaction (Gilbert and
Troitzsch 1999). The fundamental assumption is that peo-
ple and their social interactions can be credibly modeled at
some reasonable level of abstraction for at least specific
and well-defined purposes, if not in general. This limited
scope for representing agent behaviors in ABMS contrasts
with the more general goals of AI. From an ABMS per-
spective, some important questions become immediately
apparent: (1) how much do we know about credibly model-
ing people’s behavior?, and (2) how much do we know
about modeling human social interaction? These two ques-
tions have spawned and to some extent reinvigorated basic
research programs in the social sciences that have the
promise of informing ABMS on theory and methods for
agent representation and behavior.

Thomas Schelling is generally credited with develop-
ing the first social agent-based simulation in which agents
represent people and agent interactions represent a socially
relevant process (Schelling 1978). Schelling applied cellu-
lar automata to study housing segregation patterns and
posed the question, “is it possible to get highly segregated
settlement patterns even if most individuals are, in fact,
color-blind?” The Schelling model demonstrated that ghet-
tos can develop spontaneously. Interpreted more generally,
Schelling showed that patterns can emerge that are not
necessarily implied or even consistent with the objectives
of the individual agents.

Extending the notion of modeling people to growing
entire artificial societies through agent simulation was
taken up by Epstein and Axtell in their groundbreaking
Sugarscape model (Epstein and Axtell 1996). In numerous
computational experiments, Sugarscape agents emerged
with a variety of characteristics and behaviors, highly sug-
gestive of a realistic, although rudimentary and abstract,
society. Emergent processes were observed which Epstein
and Axtell interpreted as death, disease, trade, wealth, sex
and reproduction, culture, conflict and war, and external-
ities such as pollution.

Economics is adopting agent-based modeling to an ex-
tent. Some of the classical assumptions of standard micro-
economic theory are: (1) economic agents are rational,
which implies that agents have well-defined objectives and
are able to optimize their behavior (the basis for the “ra-
tional agent” model used in economics and many other so-
cial science disciplines), (2) agents are homogeneous, hav-
ing identical characteristics and rules of behavior, (3) there
are decreasing returns to scale from economic processes,
decreasing marginal utility, decreasing marginal productiv-
ity, etc., and (4) the long-run equilibrium state of the sys-
tem is the primary information of interest. Each of these
assumptions can be relaxed in ABMS applications to eco-
98
nomic systems. First, do organizations and individuals
really optimize? Herbert Simon, a Nobel Laureate who
pioneered the field of AI, developed the notion of “satis-
ficing” to describe what he observed people and organiza-
tions actually do in the real world (Simon 2001). Behav-
ioral economics is a relatively new field that incorporates
experimental findings on psychology and cognitive aspects
of agent decision making to determine people’s actual eco-
nomic and decision making behavior. Second, that agent
diversity universally occurs in the real-world is a key ob-
servation of complexity science. Many natural organiza-
tions from ecologies to industries are characterized by
populations whose diversity gives rise to its stability and
robustness. Third, “positive feedback loops” and “increas-
ing returns” have been identified as underlying dynamic
processes of rapid exponential growth in economic systems
(Arthur et al. 1997). Positive feedback can create self-
sustaining processes that quickly take a system away from
its starting point to a faraway state. Fourth, long-run equi-
librium states are not the only results of interest. The tran-
sient states that are encountered along the way to a long-
run state are often of interest. Furthermore, not all systems
come to an equilibrium (Axtell 2000). The field of Agent-
based Computational Economics (ACE) has grown up
around the application of ABMS to economic systems
(Tesfatsion 2002, 2005).

Archaeologists and anthropologists are developing
large-scale agent-based simulations of ancient civilizations
to help explain their growth and decline, based on archaeo-
logical data. ABMS has been applied to help understand
the social and environmental factors responsible for the
disappearance of the Anasazi in the southwestern U.S.
(Koehler et al. 2005) and to explain the prosperity of an-
cient cities in Mesopotamia (Wilkinson et al. 2007).

Sociologists are doing agent-based modeling as well.
Macy and Willer (2002) consider agent-based modeling as
an approach to modeling the social life of interacting,
adaptive social agents. Cognitive science has had its own
notion of agency, and social cognitive science is extending
these ideas to social settings. Agent-based models of “emo-
tion, cognition, and social behavior” are being developed
by cognitive scientists and others (Gratch and Marsella
2001). These synthetic social agents model the influence of
emotion and cognition on social behavior (Gratch and
Marsella 2001). Computational social science is becoming
a subfield in the social sciences (Sallach and Macal 2001).

2.3.3 Topologies as a Basis for Social Interaction

As much as modeling agent behaviors, agent modeling
concerns itself with modeling agent interactions. The pri-
mary issues of modeling agent interaction are (1) who is
connected to who and, (2) the mechanisms governing the
nature of the interactions. Cellular automata represent
agent interaction patterns and available local information

Macal and North

by using a grid or lattice, and the cells immediately sur-
rounding an agent are its neighborhood. Other agent inter-
action topologies, such as networks, allow an agent’s
neighborhood to be defined more generally and may more
accurately describe social agents’ interaction patterns.

Social Network Analysis (SNA) is a field with a long
history that studies the characterization and analysis of so-
cial structure and interaction through network representa-
tions. Traditionally, SNA has focused on static networks,
i.e., networks that do not change their structure over time
or as a result of agent behavior. Recently, much progress
has been made in understanding the processes of growth
and change of real-world networks (Barabási 2002). Dy-
namic network analysis (DNA) is a new field that incorpo-
rates the mechanisms of network growth and change based
on agent interaction processes (NRC 2003). Understanding
the agent rules that govern how networks are structured
and grow, how quickly information is communicated
through networks, and the kinds of relationships that net-
works embody are important aspects of “network ABMS.”

2.3.4 Modeling Agent Processes

Identifying the social interaction mechanisms for how co-
operative behavior emerges among individuals and groups
is an interesting question with practical implications. Evo-
lutionary Game Theory is related to traditional game the-
ory and takes into account the repeated interactions of the
players and their effect on strategies. Axelrod has shown
that a simple Tit-For-Tat strategy of reciprocal behavior
toward individuals is enough to establish sustainable coop-
erative behavior (Axelrod 1997a). The broader need is for
a generative type of social science in which the processes
from which social structure emerges can be understood as
the necessary result of social interactions (Epstein 2007,
Sallach 2003).

3 ABMS APPLICATIONS

Practical agent-based modeling and simulation is actively
being applied in many areas (Table 1). ABS applications
range from modeling agent behavior in the stock market
(LeBaron 2002) and supply chains (Fang, Kimbrough et al.
2002, Macal 2004a), to predicting the spread of epidemics
(Huang, Sun et al. 2004) and the threat of bio-warfare
(Carley 2006), from modeling the growth and decline of
ancient civilizations (Kohler, Gumerman et al. 2005) to
modeling the complexities of the human immune system
(Folcik and Orosz 2006) and the deregulation of electric
power markets (Cirillo 2006), just to name a few.

 ABMS applications range across a continuum, from
small, elegant, minimalist models to large-scale decision
support systems. Minimalist models are based on a set of
idealized assumptions, designed to capture only the most
salient features of a system. These are exploratory elec-
99
tronic laboratories in which a wide range of assumptions
can be varied over a large number of simulations. Decision
support models tend to be large-scale applications, de-
signed to answer a broad range of real-world policy ques-
tions. These models are distinguished by including real
data and having passed some degree of validation testing to
establish credibility in their results.

Table 1: Agent-based Modeling Applications

4 ABMS SOFTWARE AND TOOLKITS

Agent-based modeling can be done using general, all-
purpose software or programming languages, or it can be
done using specially designed software and toolkits that
address the special requirements of modeling agents. Agent
modeling can be done in the small, on the desktop, or in
the large, using large-scale computing cluster, or in can be
done at any scale in-between these extremes. Projects often
begin small, using one of the desktop ABMS tools, and
then grow in stages into the larger-scale ABMS toolkits.
Often one begins developing their first agent model using
the approach that one is most familiar with, or the ap-
proach that one finds easiest to learn given their back-
ground and experience.

We distinguish several approaches to building ABMS
applications in terms of the scale of the software that one
can apply according to the following continuum:

Desktop Computing for ABMS Application Development:•
• Spreadsheets: Excel using the macro programming

language VBA
• Dedicated Agent-based Prototyping Environments:

Repast Simphony, NetLogo, StarLogo

Business and Organizations

• Manufacturing Operations
• Supply chains
• Consumer markets
• Insurance industry

Economics

• Artificial financial markets
• Trade networks

Infrastructure

• Transportation/traffic
• Electric power markets
• Hydrogen infrastructure

Crowds

• Pedestrian movement
• Evacuation modeling

Society and Culture

• Ancient civilizations
• Civil disobedience
• Social determinants of

terrorism
• Organizational networks

Military

• Command & control
• Force-on-force

Biology

• Population dynamics
• Ecological networks
• Animal group behavior
• Cell behavior and sub

cellular processes

Macal and North

• General Computational Mathematics Systems:
MATLAB, Mathematica

Large-Scale (Scalable) Agent Development Environments:
• Repast
• Swarm
• MASON
• AnyLogic

General Programming Languages:
• Python
• Java
• C++

Desktop ABMS can be used to learn agent modeling,
prototype basic agent behaviors, and perform limited
analyses. Desktop agent-based models can be simple, de-
signed and developed in a period of a few days by a single
computer-literate modeler using tools learned in a few days
or weeks. Desktop agent modeling can be used to explore
the potential of ABMS with relatively minor time and
training investments, especially if one is already familiar
with the tool.

Spreadsheets, such as Microsoft Excel, are in many
ways the simplest approach to modeling. It is easier to de-
velop models with spreadsheets than with many of the
other tools, but the resulting models generally allow lim-
ited agent diversity, restrict agent behaviors, and have poor
scalability compared to the other approaches. Some useful
agent models have been developed using spreadsheet mod-
els (Bower and Bunn 2000). In the next section we de-
scribe an implementation of a spatial shopper agent model
in spreadsheets.

Special-purpose agent tools, such as NetLogo, and
StarLogo, provide special facilities focused on agent mod-
eling. The most directly visible common trait shared by the
various prototyping environments is that they are designed
to get first-time users started as quickly as possible. Net-
Logo is a free ABMS environment (Wilensky 1999) devel-
oped at Northwestern University’s Center for Connected
Learning and Computer-Based Modeling
(http://ccl.northwestern.edu/netlogo/). The NetLogo lan-
guage uses a modified version of the Logo programming
language (Harvey 1997). NetLogo is designed to provide a
basic computational laboratory for teaching complex adap-
tive systems concepts. NetLogo was originally developed
to support teaching, but it can be used to develop a wide
range of applications. NetLogo provides a graphical envi-
ronment to create programs that control graphic “turtles”
that reside in a world of “patches” that is monitored by an
“observer.” NetLogo is particularly well suited for artificial
life projects. NetLogo includes an innovative participatory
ABMS feature called HubNet (Wilensky and Stroup 1999),
which allows groups of people to interactively engage in
simulation runs alongside of computational agents.
100
General-purpose desktop computational mathematics
system (CMS) with an integrated development environ-
ment, such as MATLAB and Mathematica, can be used to
develop agent models, with at least limited capabilities.
The basic requirements are a full scripting language capa-
bility combined with array or list-processing capabilities
for efficiency. Computational mathematics systems are
structured in two main parts: (1) the user interface that al-
lows dynamic user interaction, and (2) the underlying
computational engine, or kernel, that performs the compu-
tations according to the user’s instructions. The underlying
computational engine is written in the C programming lan-
guage for these systems, but C coding is unseen by the
user. The interpreted nature of these systems avoids the
compilation and linking steps required in traditional pro-
gramming languages. Computational mathematics systems
have advantages derived from both the mathematical and
interactive orientations of these tools. CMS environments
have rich mathematical functions, and nearly any mathe-
matical relation, map, or function that can be numerically
calculated is available within these tools or their add-on
libraries. In some cases, the tools even support symbolic
processing and manipulation, which is useful for systems
of equations that can be solved analytically (Macal 2004b).
If a CMS environment is already familiar, this can be a
good place to start agent-based modeling.

Many large-scale ABMS software environments are
now freely available. These include Repast (North et al.
2006), Swarm (SDG 2006; Minar et al. 1996), NetLogo
(NetLogo 2006) and MASON (GMU 2006) among many
others. Proprietary toolkits are also available such as Any-
Logic (2006). A recent review and comparison of Java-
based agent modeling toolkits is provided by Tobias and
Hoffman (2004).

Swarm was the first ABMS software development en-
vironment launched in 1994 at the Santa Fe Institute.
Swarm was originally written in Objective C and was later
fitted with a Java interface. Following the original Swarm
innovation, the Repast (REcursive Porous Agent Simula-
tion Toolkit) toolkit was developed as a pure Java imple-
mentation (North et al., 2006). Repast has been used exten-
sively in social simulation applications (North and Macal
2005). Repast is a widely used free and open source agent-
based modeling and simulation toolkit (ROAD 2007). Re-
past Simphony (Repast S) is the latest version of Repast,
designed to provide visual point-and-click tools for agent
model design, agent behavior specification, model execu-
tion, and results examination. The Repast S agent model
designer is being developed to allow users to visually spec-
ify the logical structure of their models, the spatial (e.g.,
geographic maps and networks) structure of their models,
the kinds of agents in their models, and the behaviors of
the agents themselves. Once their models are specified, us-
ers can use the point-and-click Repast S runtime environ-
ment to execute model runs as well as visualize and store

Macal and North

results. In addition, the Repast S runtime environment in-
cludes automated results analysis connections to a variety
of spreadsheet, visualization, data mining, and statistical
analysis tools, virtually all of which are free and open
source.

5 SPREADSHEET SHOPPER AGENT MODEL

The Shopper Agent Model illustrates the main aspects of
agent simulation using a spreadsheet environment, albeit in
a highly simplified way for the purposes of introducing the
components of and the structure of an ABMS. The model
illustrates the use of (1) agent behaviors and, (2) the speci-
fication of agent interactions with other agents and with the
environment. Developing spreadsheet models involves
more than simply copying and pasting agents into a
spreadsheet environment. Other functions typically found
in agent-based models must also be addressed such as time
management, input data setup, output results collection or
logging, and run specification. The Shopper Agent Model
is inspired by John Casti’s SimStore model (Casti 2001).

5.1 Shopper Agent Model Concept

For simplicity, we assume each shopper is shopping for
one item. The model can be easily extended to consider
shoppers shopping for an arbitrary number of items if de-
sired. Shoppers begin their trip at the front entrance of the
store. The first time a shopper visits the store, they do not
know where their item is located, and must mill through
the store to find their item. Once they find the item, they
may remember the location on their next visit, but their
memories are imperfect. If a shopper does not remember
the item location, they mill through the store. If a shopper
knows the location of their item, they head in its general
direction. Movements of shoppers are impeded by the need
to avoid bumping into other shoppers and the store shelves.
Once a shopper finds their item of interest, they head to the
checkout counters. Shoppers have limited knowledge of
where the counters are located and which counters have the
shorter checkout lines until they get near the counters.
Shoppers leave the store through the main exit after check
out. Shoppers return to the store for another purchase trip
on a periodic basis.

5.2 Shopper Agent Workbook

The shopper agent workbook consists of four spreadsheets
and an Excel macro sheet. The four spreadsheets are as fol-
lows:

1. Agent Environment: Defines the physical layout of the
store using cells.

2. Agents: Defines agents, as rows in spreadsheet, and
their attributes.
101
3. Time Series Output Log: Records and charts average
shopper frustration over time for the course of the
simulation.

4. Aggregate Output Log: Records statistics on the simu-
lation, such as successful trips.

5.2.1 Agent Environment

The retail shopping model has a full store floor plan (Fig-
ure 3). The floor plan is composed of spreadsheet cells
marked with colors and text as follows:

Figure 3: Store Layout in Excel Spreadsheet

• Walls are indicated by black cells,
• Shelves are indicated by gray cells,
• Items for sale are denoted by the letters A through

Z,
• Checkout counters are indicated by “$”, and
• Entry and exit doors are shown by arrows.

The numbers down the far left column and across the
top row (black background) represent relative cell coordi-
nates. Using relative cell coordinates simplifies many cal-
culations. For example, the cell at relative row 7 and rela-
tive column 3 (Excel cell E9) contains item A. Agents
navigate the store using a named range, [Environment], lo-
cated at relative location (0, 0) (Excel cell B2). For exam-
ple, Agent 4 is located at relative location row 5 and col-
umn 5 (Excel cell G7).

Macal and North

5.2.2 Agents

The Agents worksheet defines the agents. Agents are the
rows in the spreadsheet and agent attributes are denoted in
the columns.

• Name
• Active Status (Yes, No)
• Location (Row, Column)
• Symbol
• Status (Checkout, Browsing, Waiting, …)
• Target Item
• Target Location (Row, Column)
• Remembered Item
• Remembered Item Location (Row, Column)
• Frustration (number between 0 and 1)
• Number of items found
• Number of trips made

Some of the agent attributes, are static and do not

change as the simulation progresses. Some attributes are
dynamic, and are updated during the simulation. Static at-
tributes are Name, Symbol, Target Item, and Target Loca-
tion. All other attributes are dynamic.

Shopper Frustration. Shoppers who have a hard time
finding their item of interest become frustrated and eventu-
ally leave the store without purchasing an item. Several
factors may be responsible for a shopper being unable to
find their item in a reasonable amount of time and becom-
ing frustrated, such as limited knowledge of their item’s
location, crowds slowing their progress, and a complex
store layout that extends search time. Shoppers’ frustration
drops when they find their item of interest. Shoppers re-
member their frustration from previous trips when they re-
turn to the store.

Agent States. Agents are characterized by their status
or “state” which denotes what they are trying to do at any
given time. Shopper agents can be in one of five possible
states:

• Waiting: Shopper is waiting to enter the store.
• Browsing: Shopper is moving through the store

and looking for the desired item.
• Found: Shopper just found the desired item.
• Checkout: Shopper is looking for a checkout

counter.
• Leaving: Shopper is looking for the exit door.

The Agent State Transition diagram shows the possi-

ble transitions between the states of each shopper agent
(Figure 4). For example, the shopper is initialized in the
“Browsing” state, moving through the store in search of its
desired item. Either the shopper finds the item, and transi-
tions to the “Found” state, or becomes frustrated and enters
the “Checkout” state without an item. In this case, the
shopper is looking for a checkout counter in order to exit
102
the store. The names on the arrow links indicate the name
of a function associated with the workbook’s macro (see
below).

Agent interaction is limited in the model, but illustra-
tive. Agents interaction consists of an agent inspecting the
adjacent cells at each time step and determining whether
other agents occupy adjacent cells. The agent selects an
available cell to move into that is not occupied by another
agent. At this point in the simulation logic, one could im-
plement more significant forms of agent interaction.

Figure 4: Agent State Transition Diagram

5.2.3 Output Log Worksheet

The Time Series Output Log worksheet records the aver-
age frustration level for all shoppers in the store and graphs
the frustration level over the simulation time (Figure 5).
The graph is initially constructed manually within the
spreadsheet and is then updated and dynamically displayed
as the simulation progresses.

Macal and North

Figure 5: Time Series Output Log Worksheet

5.2.4 Aggregate Output Log worksheet

The Aggregate Output Log worksheet computes and re-
ports on the important statistics of the simulation regarding
the shopper agents experiences in the store (Figure 6).

Figure 6: Aggregate Output Log Worksheet

5.3 Shopper Agent Model Structure

The basic structure of the Shopper Agent Model is shown
in Figure 7. The basic functions are (1) initialization of the
data and agents in the model, (2) a loop over all the time
periods in the model and, within this, another loop that
loops over all the agents in the model, and (3) a summary
of the statistics generated by the simulation. This loop-
within-loop structure is the simplest way to implement
time-stepping and agent interactions in a model. Essen-
tially all shoppers execute their behaviors in the same se-
quential order at each time step, and time steps are uniform
in length. Most real-world agent-based models implement
a more complex structure for scheduling events and agent
interactions, which would be a capability provided by an
agent-based toolkit. The behavior of each shopper agent
are embedded within the Shop function, as indicated in the
figure.
103
A program written as an Excel macro simulates the
tiem stepping and the agent states. The Excel macro is a
program written in the VBA language and associated with
the Shopper Agent workbook. (VBA is Visual Basic for
Applications, the macro programming language for Excel
and other Microsoft Office applications.). Readers pro-
gramming in VBA may benefit from a good book on Excel
macro programming such as Simon (2002).

Figure 7: Structure of Shopper Agent Model

The Shop function is the most complex part of the pro-

gram. It directs the agent behavior, state transitions, and
the process of shopper movement throughout the store.
Shop calls a collection of simple functions that performs
various tasks such as changing the agent state (see Figure
8).

Figure 8: Structure of Subroutine Shop

Macal and North

The VBA code that implements Subroutine Shop is

shown in Figure 9 to provide an idea of the complexity of
the code. The complete macro is comprised of 18 subrou-
tines consisting of 200 lines of executable code. Spatial
reasoning on the part of the agents is accomplished through
the use of named ranges, relative cell references, and off-
sets. A complete description of the model implementation
and code is included in North and Macal (2007).

' The main shopper shopping routine.
Sub Shop(shopper As Range)

 ' Check to see if we have found the
target.
 If (shopper.Offset(0, 5) = "Waiting")
Then

 ' Check to see if our wait is over.
 Call CheckWait(shopper)

 ' Check to see if the shopper is at
the door
 ' and ready to leave the store.
 ElseIf ((shopper.Offset(0, 2) = 1) And
_
 (shopper.Offset(0, 3) = 4)) Then

 ' Note the finished trip.
 Call FinishTrip(shopper)

 ' Check to see if we have found the
target.
 ElseIf (shopper.Offset(0, 5) =
"Found") Then

 ' Check the target item.
 Call CheckTarget(shopper)

 ' Check to see if the shopper should
leave the store.
 ElseIf (shopper.Offset(0, 5) = "Leav-
ing") Then

 ' Move towards the door.
 Call MoveTowardsTheDoor(shopper)

 ' Check to see if we are frustrated or
distracted.
 ElseIf (shopper.Offset(0, 12) > Rnd())
Then

 ' Move randomly.
 Call MoveRandomly(shopper)

 Else

 ' Move towards the target using the
 ' Manhattan distance.
 Call MoveTowardsTheTarget(shopper)

 End If

 ' Check to see if what we are looking
for is nearby.
 Call LookAround(shopper)

End Sub
104
Figure 9: VBA Code for Subroutine Shop

5.4 Extending the Shopper Agent Model

The Shopper Agent Model as presented here is a simple
example of an agent-based model. The model illustrates
the basic elements of agent representation, interaction, and
scheduling of agent actions and events. The model includes
a modularized representation for both agent attributes (in
the Agents spreadsheet) and for agent behaviors (as im-
plemented in the Shop subroutine of the VBA code). More
sophisticated agent behaviors, such as agent learning and
adaptation, can readily be implemented in the same
framework presented here, but this would require more
VBA code to be written. Agent interaction is implemented
in this spatial model by using cell references specific to
spreadsheets so that agents can sense neighboring agents in
adjacent cells. In principal, this logic can be extended in
the VBA code to consider more sophisticated types of
agent interaction, such as agent communication, contention
for resources such as items or floor space, and agent rec-
ognition of acquaintances.

Although VBA is technically object-oriented in nature,
the VBA code that is developed for the model is largely
procedural in nature, that is, operations are implemented on
a step-by-step basis. Other types of coding would be re-
quired for desktop (such as stylized languages) or large-
scale (generally, object-oriented) agent-based environ-
ments.

As the scale of the Shopper Agent Model is increased,
the spreadsheet implementation of the model may become
relatively inefficient, as more agents are added to the
model, as agent behaviors become more complex, or as the
scheduling of agent interactions become more complicated.
At this point, it may be desirable to move to one of the
desktop or large-scale environments having facilities spe-
cifically designed for agent-based simulation.

6 WHY AND WHEN ABMS

We conclude by offering some ideas on the situations for
which agent-based modeling can offer distinct advantages
to conventional simulation approaches. When is it benefi-
cial to think in terms of agents?

• When there is a natural representation as agents
• When there are decisions and behaviors that can

be defined discretely (with boundaries)
• When it is important that agents adapt and change

their behaviors
• When it is important that agents learn and engage

in dynamic strategic behaviors
• When it is important that agents have a dynamic

relationships with other agents, and agent rela-
tionships form and dissolve

Macal and North

• When it is important that agents form organiza-

tions, and adaptation and learning are important at
the organization level

• When it is important that agents have a spatial
component to their behaviors and interactions

• When the past is no predictor of the future
• When scaling-up to arbitrary levels is important
• When process structural change needs to be a re-

sult of the model, rather than a model input

ACKNOWLEDGMENTS

This work was supported by the U.S. Department of En-
ergy under contract number DE-AC02-06CH11357.

REFERENCES

AnyLogic. 2006. <http://www.xjtek.com/>.
Arthur, W. B. et al. Eds. 1997. The economy as an evolving

complex system II, SFI Studies in the Sciences of
Complexity, Addison Wesley: Reading, MA.

Axelrod, R. 1997a. The complexity of cooperation: agent-
based models of competition and collaboration,
Princeton, NJ: Princeton University Press.

Axelrod, R. 1997b. “Advancing the art of simulation in the
social sciences,” in Conte., R., Hegselmann, R. and
Terna, P. (eds.): Simulating social phenomena, Berlin:
Springer-Verlag: 21-40.

Axtell, R. 2000. Why agents? On the varied motivations
for agent computing in the social sciences, Working
Paper 17, Center on Social and Economic Dynamics,
Brookings Institution, Washington, D.C.

Barabási, A.-L. 2002. Linked: the new science of networks,
Cambridge, MA: Perseus Pub.

Bonabeau, E. 2001. Agent-based modeling: methods and
techniques for simulating human systems. In Proc.
National Academy of Sciences 99(3): 7280-7287.

Bonabeau, E., M. Dorigo and G. Theraulaz. 1999. Swarm
intelligence: from natural to artificial systems, Ox-
ford: Oxford University Press.

Booch, G., J. Rumbaugh and I. Jacobson. 1998. The Uni-
fied Modeling Language User Guide, Addison-
Wesley:New York.

Bower, J. and D. Bunn. 2000. Model-Based Comparisons
of Pool and Bilateral Markets for Electricity. The En-
ergy Journal 21(3):1–29.

Carley, K. 2006. BioDefense through City Level Multi-
Agent Modeling of Bio and Chemical Threats. Arizona
Spring Biosurveillance Workshop, Tucson, Arizona.

Casti, J. 1997. Would-be worlds: how simulation is chang-
ing the world of science, New York: Wiley.

Casti, J. 2001. Bizsim: The World of Business - in a Box,
Complexity International, 08:6 <http://www.com
plexity.org.au/ci/vol08/casti01/>.
105
Cirillo, R., P. Thimmapuram, T. Veselka, V. Koritarov, G.
Conzelmann, C. Macal, G. Boyd, M. North, T. Over-
bye and X. Cheng. 2006. Evaluating the Potential Im-
pact of Transmission Constraints on the Operation of
a Competitive Electricity Market in Illinois, Argonne
National Laboratory, Argonne, IL, ANL-06/16 (report
prepared for the Illinois Commerce Commission),
April.

Epstein, J. M. 2007. Generative Social Science: Studies in
Agent-Based Computational Modeling, Princeton Uni-
versity Press:Princeton, NJ.

Epstein, J. M. and R. Axtell. 1996. Growing artificial so-
cieties: social science from the bottom up, Cambridge,
MA: MIT Press.

Fang, C., S. O. Kimbrough, et al. (2002). "On Adaptive
Emergence of Trust Behavior in the Game of Stag
Hunt,” Group Decision and Negotiation," 11(6): 449–
467.

Folcik, V. and C. G. Orosz (2006). An Agent-based Model
Demonstrates That the Immune System Behaves Like
a Complex System and a Scale-Free Network.
SwarmFest 2006, University of Notre Dame, South
Bend, IN, June.

Gilbert, N. and K. G. Troitzsch. 1999. Simulation for the
Social Scientist, Buckingham UK: Open University
Press:

GMU (George Mason University). 2006. MASON home
page, <http://cs.gmu.edu/~eclab/pro
jects/mason/>.

Gratch, Jonathan, and Stacy Marsella. 2001. Tears and
fears: modeling emotions and emotional behaviors in
synthetic agents, In Proc. 5th International Confer-
ence on Autonomous Agents, 278-285.

Harvey, B. 1997. Computer Science Logo Style, MIT
Press: Boston, Massachusetts USA

Holland, J. H. 1995. Hidden order: how adaptation builds
complexity, Addison-Wesley:Reading, Mass.

Huang, C. Y., C. T. Sun, et al. (2004). "Simulating SARS:
Small-world epidemiological modeling and public
health policy assessments." JASSS - Journal of Artifi-
cial Societies And Social Simulation 7(4): 100-131.

Jennings, N. R. 2000. On agent-based software engineer-
ing, Artificial Intelligence, 117:277-296.

Kohler, T. A., G. J. Gumerman and R. G. Reynolds. 2005.
Simulating ancient societies, Scientific American, July.

Law, A. M. and D. W. Kelton. 2000. Simulation modeling
and analysis, 3rd ed. New York: McGraw-Hill.

LeBaron, B. 2002. Short-memory traders and their impact
on group learning in financial markets. Proc. National
Academy of Sciences 99(90003): 7201-7206.

Macal, C. 2004a. Emergent structures from trust relation-
ships in supply chains, in Proc. Agent 2004: Conf. on
Social Dynamics, Eds., C. Macal, D. Sallach and M.
North, Chicago, IL, Oct. 7-9, 743-760, Argonne Na-
tional Laboratory.

Macal and North

Macal, C. M. 2004b. Agent-Based Modeling and Social
Simulation with Mathematica and MATLAB, in Proc.
Agent 2004 Conference on Social Dynamics: Interac-
tion, Reflexivity and Emergence, Macal, C. M., D. L.
Sallach, and M. J. North (eds.), Chicago, IL, Oct. 7-9,
available at <http://www.agent2004.anl.gov>,
pp. 185-204.

Macy, M. W., and R. Willer. 2002. From factors to actors:
computational sociology and agent-based modeling,
Annual Review of Sociology 28:143-166.

NetLogo. 2007. NetLogo home page, <http://ccl.
northwestern.edu/netlogo>.

North, M. J., N. T. Collier, and J. R. Vos. 2006. Experi-
ences in Creating Three Implementations of the Repast
Agent Modeling Toolkit, ACM Transactions on Mod-
eling and Computer Simulation, 16(1):1-25, January.

North, M. J. and C. M. Macal. 2005. Escaping the acci-
dents of history: an overview of artificial life modeling
with Repast, in Artificial Life Models in Software,
Eds., A. Adamatzky and M. Komosinski, Springer-
Verlag: Dordrecht, Netherlands.

North, M. J., and C. M. Macal. 2007. Managing Business
Complexity: Discovering Strategic Solutions With
Agent-Based Modeling And Simulation, Oxford Uni-
versity Press: Oxford, U.K.

NRC (National Research Council). 2003. Dynamic social
network modeling and analysis: workshop summary
and papers, R. Brieger, K. Carley, and P. Pattison,
Committee on Human Factors, Washington, DC: Na-
tional Academies Press.

Reynolds, Craig. 2006. Boids,
<http://www.red3d.com/cwr/boids/>.

ROAD (Repast Organization for Architecture and Design).
2004. Repast Home Page, Available at
<http://repast.sourceforge.net/>.

Sallach, D., 2003. Social theory and agent architectures:
prospective issues in rapid-discovery social science,
Social Science Computer Review 21:179-195.Minar,
N., R. Burkhart, et al. 1996. The Swarm simulation
system, a toolkit for building multi-agent simulations,
<http://www.santafe.edu/projects/swa
rm/overview/overview.html>.

Sallach, D. and C. Macal. 2001. The simulation of social
agents: an introduction, Social Science Computer Re-
view 19(3):245–248.

Schelling, T. C. 1978. Micromotives and macrobehavior,
New York: Norton.

SDG (Swarm Development Group). 2006. Swarm Devel-
opment Group home page,
<http://www.swarm.org>.

Simon, H. 2001. The sciences of the artificial, Cambridge,
MA: MIT Press.

Simon, J. 2002. Excel Programming, Wiley Publishing:
Hoboken, NJ.
106
Tesfatsion, L. 2002. Agent-Based Computational Econom-
ics: Growing Economies from the Bottom Up, Artifi-
cial Life, 8(1):55-82.

Tesfatsion, L. 2005. Agent-based Computational Econom-
ics (ACE) home page. <http://www.econ.
iastate.edu/tesfatsi/ace.htm>.

Tobias, R. and C. Hofmann. 2004. Evaluation of free Java-
libraries for social-scientific agent based simulation,
Journal of Artificial Societies and Social Simulation,
7(1), Jan. 31.

Wilensky, U., 1999, Netlogo, Center for Connected Learn-
ing and Computer-Based Modeling, Northwestern
University:Evanston, IL USA, <http://ccl.
northwestern.edu/netlogo/>.

Wilensky, U. and W. Stroup. 1999. Hubnet, Center for
Connected Learning and Computer-Based Modeling,
Northwestern University: Evanston, IL USA,
<http://ccl.northwestern.edu/ps/>.

Wilkinson, T. J., M. Gibson, J. H. Christiansen, M. Widell,
D. Schloen, N. Kouchoukos, C. Woods, J. Sanders,
K.-L. Simunich, M. Altaweel, J. A. Ur, C. Hritz, J.
Lauinger, T. Paulette and J. Tenney. 2007. Modeling
Settlement Systems in a Dynamic Environment, in The
Model-Based Archaeology of Socionatural Systems,
Kohler, T. A. and S. E. v. d. Leeuw, eds., pp. 175-208,
School for Advanced Research Press: Santa Fe, NM.

AUTHOR BIOGRAPHIES

CHARLES M. MACAL, Ph.D., P.E., is the Director,
Center for Complex Adaptive Agent Systems Simulation
(CAS2), Argonne National Laboratory. He is a member of
the INFORMS-Simulation Society, Society for Computer
Simulation Int’l., the Systems Dynamics Society and a
founding member of NAACSOS. Charles has a Ph.D. in
Industrial Engineering & Management Sciences from
Northwestern University. Contact: <macal@anl.gov>.

MICHAEL J. NORTH, M.B.A., Ph.D., is the Deputy Di-
rector of CAS2 at Argonne. Michael has over 15 years of
experience developing advanced modeling and simulation
applications for the federal government, international
agencies, private industry, and academia. Michael has a
Ph.D. in Computer Science from the Illinois Institute of
Technology. Contact: <north@anl.gov>.

