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ABSTRACT 

Agent-based modeling and simulation (ABMS) is a new 
approach to modeling systems comprised of autonomous, 
interacting agents. ABMS promises to have far-reaching 
effects on the way that businesses use computers to support 
decision-making and researchers use electronic laborato-
ries to support their research. Some have gone so far as to 
contend that ABMS “is a third way of doing science,” in 
addition to traditional deductive and inductive reasoning 
(Axelrod 1997b). Computational advances have made pos-
sible a growing number of agent-based models across a va-
riety of application domains. Applications range from 
modeling agent behavior in the stock market, supply 
chains, and consumer markets, to predicting the spread of 
epidemics, the threat of bio-warfare, and the factors re-
sponsible for the fall of ancient civilizations. This tutorial 
describes the theoretical and practical foundations of 
ABMS, identifies toolkits and methods for developing 
agent models, and illustrates the development of a simple 
agent-based model of shopper behavior using spreadsheets.  

1 INTRODUCTION 

Agent-based Modeling and Simulation (ABMS) is a new 
modeling paradigm and is one of the most exciting practi-
cal developments in modeling since the invention of rela-
tional databases (North and Macal, 2007). ABMS promises 
to have far-reaching effects on the way that businesses use 
computers to support decision-making and researchers use 
electronic laboratories to support their research. The goals 
of this tutorial are to show how ABMS is: 
 

• Useful: Why ABMS is a good and even better 
modeling approach in many cases, 

• Usable: How we are progressively advancing to 
usable ABMS systems, with better software de-
velopment environments and more application 
experiences, and  
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• Used: How ABMS is being used to solve practical 
problems.  

 
This tutorial is organized into two parts.  The first part 

is a tutorial on how to think about ABMS. The background 
on ABMS and its motivating principles are described to 
illustrate its main concepts and to indicate the state-of-the-
art. The second part is a tutorial on how to do ABMS. 
Practical applications of ABMS are described, ABMS 
toolkits are presented, and the development of a simple 
agent-based model of shopper behavior using spreadsheets 
is illustrated. 

2 HOW TO THINK ABOUT ABMS 

2.1 What Is An Agent?   

Although there is no universal agreement on the precise 
definition of the term “agent,” definitions tend to agree on 
more points than they disagree. Some modelers consider 
any type of independent component (software, model, in-
dividual, etc.) to be an agent (Bonabeau 2001); an inde-
pendent component’s behavior can range from primitive 
reactive decision rules to complex adaptive artificial intel-
ligence (AI). Others insist that a component’s behavior 
must be adaptive in order for it to be considered an agent. 
The agent label is reserved for components that can in 
some sense learn from their environments and change their 
behaviors in response to their experiences. Casti (1997) ar-
gues that agents should contain both base-level rules for 
behavior as well as a higher-level set of “rules to change 
the rules.” The base-level rules provide responses to the 
environment while the “rules to change the rules” provide 
adaptation. Jennings (2000) provides a computer science 
view of agency emphasizing the essential characteristic of 
autonomous behavior. The fundamental feature of an agent 
is the capability of the component to make independent de-
cisions. This requires agents to be active rather than purely 
passive.  
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From a practical modeling standpoint, we consider 

agents to have certain characteristics (Figure 1):  
 
• An agent is identifiable, a discrete individual with 

a set of characteristics and rules governing its be-
haviors and decision-making capability. Agents 
are self-contained. The discreteness requirement 
implies that an agent has a boundary and one can 
easily determine whether something is part of an 
agent, is not part of an agent, or is a shared char-
acteristic. 

• An agent is autonomous and self-directed. An 
agent can function independently in its environ-
ment and in its dealings with other agents, at least 
over a limited range of situations that are of inter-
est.  

• An agent is situated, living in an environment 
with which it interacts with other agents. Agents 
have protocols for interaction with other agents, 
such as for communication, and the capability to 
respond to the environment. Agents have the abil-
ity to recognize and distinguish the traits of other 
agents.   

• An agent may be goal-directed, having goals to 
achieve (not necessarily objectives to maximize) 
with respect to its behaviors. This allows an agent 
to compare the outcome of its behavior relative to 
its goals. 

• An agent is flexible, having the ability to learn 
and adapt its behaviors based on experience. This 
requires some form of memory. An agent may 
have rules that modify its rules of behavior. 

 

 
Figure 1: An Agent 

 
Unlike particle systems (idealized gas particles for ex-

ample) which are the subject of the field of particle simula-
tion, agents are diverse, heterogeneous, and dynamic in 
their attributes and behavioral rules. Behavioral rules vary 
in their sophistication, how much information is considered 
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in the agent decisions (cognitive “load”), the agent’s inter-
nal models of the external world including the possible re-
actions or behaviors of other agents, and the extent of 
memory of past events the agent retains and uses in its de-
cisions. Agents also vary by their attributes and accumu-
lated resources.  

Agent-based modeling is known by many names. 
ABM (agent-based modeling), ABS (agent-based systems), 
and IBM (individual-based modeling) are all widely-used 
acronyms, but “ABMS” will be used throughout this dis-
cussion. The term “agent” has connotations other than 
ABMS as well. ABMS agents are different from the typical 
agents found in mobile agent systems. “Mobile agents” are 
light-weight software proxies that roam over the world-
wide web and perform various functions for users and to 
some extent can behave autonomously.  

ABMS has strong roots in the fields of multi-agent 
systems (MAS) and robotics from the field of AI. But 
ABMS is not only tied to designing and understanding “ar-
tificial” agents. Its main roots are in modeling human so-
cial and organizational behavior and individual decision-
making (Bonabeau 2001). With this, comes the need to 
represent social interaction, collaboration, group behavior, 
and the emergence of higher order social structures.  

2.2 The Need for Agent Based Modeling 

Why is agent-based modeling becoming so widespread? 
The answer is because we live in an increasingly complex 
world. First, the systems that we need to analyze and 
model are becoming more complex in terms of their inter-
dependencies. Traditional modeling tools are no longer as 
applicable as they once were. An example application area 
is the deregulation of the electric power industry. Second, 
some systems have always been too complex for us to ade-
quately model. Modeling economic markets has tradition-
ally relied on the notions of perfect markets, homogeneous 
agents, and long-run equilibrium because these assump-
tions made the problems analytically and computationally 
tractable. We are beginning to be able to relax some of 
these assumptions and take a more realistic view of these 
economic systems through ABMS. Third, data are becom-
ing organized into databases at finer levels of granularity. 
Micro-data can now support micro-simulations. And 
fourth, but most importantly, computational power is ad-
vancing rapidly. We can now compute large-scale micro-
simulation models that would not have been plausible just 
a couple of years ago. 

2.3 Background on ABMS 

ABMS has connections to many other fields including 
complexity science, systems science, Systems Dynamics, 
computer science, management science, the social sciences 
in general, and traditional modeling and simulation. ABMS 
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draws on these fields for its theoretical foundations, its 
conceptual world view and philosophy, and for applicable 
modeling techniques.  

ABMS has its direct historical roots in complex adap-
tive systems (CAS) and the underlying notion that “sys-
tems are built from the ground-up,” in contrast to the top-
down systems view taken by Systems Dynamics. CAS 
concerns itself with the question of how complex behaviors 
arise in nature among myopic, autonomous agents. In addi-
tion, ABMS tends to be descriptive, with the intent of 
modeling the actual or plausible behavior of individuals, 
rather than normative such as traditional operations re-
search (OR), which seeks to optimize and identify optimal 
behaviors.  

The field of CAS was originally motivated by investi-
gations into adaptation and emergence of biological sys-
tems. CAS have the ability to self-organize and dynami-
cally reorganize their components in ways better suited to 
survive and excel in their environments, and this adaptive 
ability occurs, remarkably, over an enormous range of 
scales. John Holland, a pioneer in the field, identifies prop-
erties and mechanisms common to all CAS (Holland 1995) 
such as (1) Aggregation: allows groups to form, (2) Non-
linearity: invalidates simple extrapolation, (3) Flows: allow 
the transfer and transformation of resources and informa-
tion, and (4) Diversity: allows agents to behave differently 
from one another and often leads to the system property of 
robustness. CAS mechanisms are: (1) Tagging: allows 
agents to be named and recognized, (2) Internal models: 
allows agents to reason about their worlds, and (3) Build-
ing blocks: allows components and whole systems to be 
composed of many levels of simpler components. These 
CAS properties and mechanisms provide a useful reference 
for designing agent-based models.  

2.3.1 Simple Rules Result in Emergent Organization 
and Complex Behaviors 

The Boids simulation is a good example of how interacting 
agents, characterized by simple behavioral rules, lead to 
emergent and seemingly organized behavior at the system 
level (Reynolds 2006). Agent behavior is reminiscent of 
schooling or flocking behavior in fish or birds. In the Boids 
model, each agent has three rules governing its movement:  
 

1. Cohesion: each agent steers toward the average 
position of its nearby “flockmates,”  

2. Separation: each agent steers to avoid crowding 
local flockmates, and 

3. Alignment: each agent steers towards the average 
heading of local flockmates.  

 
Here, nearby or local refers to agents in the immediate 
neighborhood of an agent as defined by the straight-line 
distance. Even with only these three simple rules applied at 
97
the individual agent level and only to the agents in its 
“neighborhood”, the agents’ behaviors begins to appear 
coordinated, and a leaderless flock emerges (Figure 2).   
 Two observations are important about the Boids rules: 
(1) the rules are simple, and (2) the rules use only local in-
formation. We can make some observations from the Boids 
model that have implications for practical ABMS: (1) sus-
tainable patterns can emerge in systems that are completely 
described by simple deterministic rules based on only local 
information, and (2) patterns that develop can be extremely 
sensitive to the initial conditions.  

Based on simple rules of behavior and agent interac-
tion, natural systems seemingly exhibit collective intelli-
gence, or swarm intelligence, even without the existence of 
or the direction provided by a central authority. Natural 
systems are able to not only survive, but also to adapt and 
become better suited to their environment, effectively op-
timizing their behavior over time. How is it that an ant col-
ony can organize itself to carry out the complex tasks of 
food gathering and nest building and at the same time ex-
hibit an enormous degree of resilience if the colony is seri-
ously disrupted? Swarm intelligence has inspired practical 
optimization techniques, such as ant colony optimization 
that have been used to solve practical scheduling and rout-
ing problems (Bonabeau et al. 1999). 

 

 
(a) Initial random configuration 

 

 
(b) After 500 updates 

 
Figure 2: Boids Simulation 
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2.3.2 Agent-Based Modeling in the Sciences 

In applications of ABMS to social processes, agents repre-
sent people or groups of people, and agent relationships 
represent processes of social interaction (Gilbert and 
Troitzsch 1999). The fundamental assumption is that peo-
ple and their social interactions can be credibly modeled at 
some reasonable level of abstraction for at least specific 
and well-defined purposes, if not in general. This limited 
scope for representing agent behaviors in ABMS contrasts 
with the more general goals of AI. From an ABMS per-
spective, some important questions become immediately 
apparent: (1) how much do we know about credibly model-
ing people’s behavior?, and (2) how much do we know 
about modeling human social interaction? These two ques-
tions have spawned and to some extent reinvigorated basic 
research programs in the social sciences that have the 
promise of informing ABMS on theory and methods for 
agent representation and behavior. 

Thomas Schelling is generally credited with develop-
ing the first social agent-based simulation in which agents 
represent people and agent interactions represent a socially 
relevant process (Schelling 1978). Schelling applied cellu-
lar automata to study housing segregation patterns and 
posed the question, “is it possible to get highly segregated 
settlement patterns even if most individuals are, in fact, 
color-blind?” The Schelling model demonstrated that ghet-
tos can develop spontaneously. Interpreted more generally, 
Schelling showed that patterns can emerge that are not 
necessarily implied or even consistent with the objectives 
of the individual agents.  

Extending the notion of modeling people to growing 
entire artificial societies through agent simulation was 
taken up by Epstein and Axtell in their groundbreaking 
Sugarscape model (Epstein and Axtell 1996). In numerous 
computational experiments, Sugarscape agents emerged 
with a variety of characteristics and behaviors, highly sug-
gestive of a realistic, although rudimentary and abstract, 
society. Emergent processes were observed which Epstein 
and Axtell interpreted as death, disease, trade, wealth, sex 
and reproduction, culture, conflict and war, and external-
ities such as pollution.  

Economics is adopting agent-based modeling to an ex-
tent. Some of the classical assumptions of standard micro-
economic theory are: (1) economic agents are rational, 
which implies that agents have well-defined objectives and 
are able to optimize their behavior (the basis for the “ra-
tional agent” model used in economics and many other so-
cial science disciplines), (2) agents are homogeneous, hav-
ing identical characteristics and rules of behavior, (3) there 
are decreasing returns to scale from economic processes, 
decreasing marginal utility, decreasing marginal productiv-
ity, etc., and (4) the long-run equilibrium state of the sys-
tem is the primary information of interest. Each of these 
assumptions can be relaxed in ABMS applications to eco-
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nomic systems. First, do organizations and individuals 
really optimize? Herbert Simon, a Nobel Laureate who 
pioneered the field of AI, developed the notion of “satis-
ficing” to describe what he observed people and organiza-
tions actually do in the real world (Simon 2001). Behav-
ioral economics is a relatively new field that incorporates 
experimental findings on psychology and cognitive aspects 
of agent decision making to determine people’s actual eco-
nomic and decision making behavior. Second, that agent 
diversity universally occurs in the real-world is a key ob-
servation of complexity science. Many natural organiza-
tions from ecologies to industries are characterized by 
populations whose diversity gives rise to its stability and 
robustness. Third, “positive feedback loops” and “increas-
ing returns” have been identified as underlying dynamic 
processes of rapid exponential growth in economic systems 
(Arthur et al. 1997). Positive feedback can create self-
sustaining processes that quickly take a system away from 
its starting point to a faraway state. Fourth, long-run equi-
librium states are not the only results of interest. The tran-
sient states that are encountered along the way to a long-
run state are often of interest. Furthermore, not all systems 
come to an equilibrium (Axtell 2000). The field of Agent-
based Computational Economics (ACE) has grown up 
around the application of ABMS to economic systems 
(Tesfatsion 2002, 2005). 

Archaeologists and anthropologists are developing 
large-scale agent-based simulations of ancient civilizations 
to help explain their growth and decline, based on archaeo-
logical data. ABMS has been applied to help understand 
the social and environmental factors responsible for the 
disappearance of the Anasazi in the southwestern U.S. 
(Koehler et al. 2005) and to explain the prosperity of an-
cient cities in Mesopotamia (Wilkinson et al. 2007).  

Sociologists are doing agent-based modeling as well. 
Macy and Willer (2002) consider agent-based modeling as 
an approach to modeling the social life of interacting, 
adaptive social agents. Cognitive science has had its own 
notion of agency, and social cognitive science is extending 
these ideas to social settings. Agent-based models of “emo-
tion, cognition, and social behavior” are being developed 
by cognitive scientists and others (Gratch and Marsella 
2001). These synthetic social agents model the influence of 
emotion and cognition on social behavior (Gratch and 
Marsella 2001). Computational social science is becoming 
a subfield in the social sciences (Sallach and Macal 2001).  

2.3.3 Topologies as a Basis for Social Interaction 

As much as modeling agent behaviors, agent modeling 
concerns itself with modeling agent interactions. The pri-
mary issues of modeling agent interaction are (1) who is 
connected to who and, (2) the mechanisms governing the 
nature of the interactions. Cellular automata represent 
agent interaction patterns and available local information 
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by using a grid or lattice, and the cells immediately sur-
rounding an agent are its neighborhood. Other agent inter-
action topologies, such as networks, allow an agent’s 
neighborhood to be defined more generally and may more 
accurately describe social agents’ interaction patterns.  

Social Network Analysis (SNA) is a field with a long 
history that studies the characterization and analysis of so-
cial structure and interaction through network representa-
tions. Traditionally, SNA has focused on static networks, 
i.e., networks that do not change their structure over time 
or as a result of agent behavior. Recently, much progress 
has been made in understanding the processes of growth 
and change of real-world networks (Barabási 2002). Dy-
namic network analysis (DNA) is a new field that incorpo-
rates the mechanisms of network growth and change based 
on agent interaction processes (NRC 2003). Understanding 
the agent rules that govern how networks are structured 
and grow, how quickly information is communicated 
through networks, and the kinds of relationships that net-
works embody are important aspects of “network ABMS.”  

2.3.4 Modeling Agent Processes 

Identifying the social interaction mechanisms for how co-
operative behavior emerges among individuals and groups 
is an interesting question with practical implications. Evo-
lutionary Game Theory is related to traditional game the-
ory and takes into account the repeated interactions of the 
players and their effect on strategies. Axelrod has shown 
that a simple Tit-For-Tat strategy of reciprocal behavior 
toward individuals is enough to establish sustainable coop-
erative behavior (Axelrod 1997a). The broader need is for 
a generative type of social science in which the processes 
from which social structure emerges can be understood as 
the necessary result of social interactions (Epstein 2007, 
Sallach 2003).  

3 ABMS APPLICATIONS 

Practical agent-based modeling and simulation is actively 
being applied in many areas (Table 1). ABS applications 
range from modeling agent behavior in the stock market 
(LeBaron 2002) and supply chains (Fang, Kimbrough et al. 
2002, Macal 2004a), to predicting the spread of epidemics 
(Huang, Sun et al. 2004) and the threat of bio-warfare 
(Carley 2006), from modeling the growth and decline of 
ancient civilizations (Kohler, Gumerman et al. 2005) to 
modeling the complexities of the human immune system 
(Folcik and Orosz 2006) and the deregulation of electric 
power markets (Cirillo 2006), just to name a few. 

 ABMS applications range across a continuum, from 
small, elegant, minimalist models to large-scale decision 
support systems. Minimalist models are based on a set of 
idealized assumptions, designed to capture only the most 
salient features of a system. These are exploratory elec-
99
tronic laboratories in which a wide range of assumptions 
can be varied over a large number of simulations. Decision 
support models tend to be large-scale applications, de-
signed to answer a broad range of real-world policy ques-
tions. These models are distinguished by including real 
data and having passed some degree of validation testing to 
establish credibility in their results.  

 
Table 1: Agent-based Modeling Applications 

4 ABMS SOFTWARE AND TOOLKITS 

Agent-based modeling can be done using general, all-
purpose software or programming languages, or it can be 
done using specially designed software and toolkits that 
address the special requirements of modeling agents. Agent 
modeling can be done in the small, on the desktop, or in 
the large, using large-scale computing cluster, or in can be 
done at any scale in-between these extremes. Projects often 
begin small, using one of the desktop ABMS tools, and 
then grow in stages into the larger-scale ABMS toolkits. 
Often one begins developing their first agent model using 
the approach that one is most familiar with, or the ap-
proach that one finds easiest to learn given their back-
ground and experience.  

We distinguish several approaches to building ABMS 
applications in terms of the scale of the software that one 
can apply according to the following continuum: 
 
Desktop Computing for ABMS Application Development:• 
• Spreadsheets: Excel using the macro programming 

language VBA 
• Dedicated Agent-based Prototyping Environments: 

Repast Simphony, NetLogo, StarLogo 

Business and Organizations 

• Manufacturing Operations 
• Supply chains 
• Consumer markets 
• Insurance industry 

 
Economics 

• Artificial financial markets 
• Trade networks 
 

Infrastructure 

• Transportation/traffic 
• Electric power markets 
• Hydrogen infrastructure 
 

Crowds 

• Pedestrian movement 
• Evacuation modeling 

Society and Culture 

• Ancient civilizations 
• Civil disobedience 
• Social determinants of 

terrorism 
• Organizational networks  
 

Military 

• Command & control 
• Force-on-force 
 

Biology 

• Population dynamics 
• Ecological networks 
• Animal group behavior 
• Cell behavior and sub 

cellular processes 
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• General Computational Mathematics Systems: 
MATLAB, Mathematica 

 
Large-Scale (Scalable) Agent Development Environments: 
• Repast 
• Swarm 
• MASON 
• AnyLogic 
 
General Programming Languages:  
• Python 
• Java 
• C++ 
 

Desktop ABMS can be used to learn agent modeling, 
prototype basic agent behaviors, and perform limited 
analyses. Desktop agent-based models can be simple, de-
signed and developed in a period of a few days by a single 
computer-literate modeler using tools learned in a few days 
or weeks. Desktop agent modeling can be used to explore 
the potential of ABMS with relatively minor time and 
training investments, especially if one is already familiar 
with the tool.  

Spreadsheets, such as Microsoft Excel, are in many 
ways the simplest approach to modeling. It is easier to de-
velop models with spreadsheets than with many of the 
other tools, but the resulting models generally allow lim-
ited agent diversity, restrict agent behaviors, and have poor 
scalability compared to the other approaches. Some useful 
agent models have been developed using spreadsheet mod-
els (Bower and Bunn 2000). In the next section we de-
scribe an implementation of a spatial shopper agent model 
in spreadsheets.  

Special-purpose agent tools, such as NetLogo, and 
StarLogo, provide special facilities focused on agent mod-
eling. The most directly visible common trait shared by the 
various prototyping environments is that they are designed 
to get first-time users started as quickly as possible. Net-
Logo is a free ABMS environment (Wilensky 1999) devel-
oped at Northwestern University’s Center for Connected 
Learning and Computer-Based Modeling 
(http://ccl.northwestern.edu/netlogo/). The NetLogo lan-
guage uses a modified version of the Logo programming 
language (Harvey 1997). NetLogo is designed to provide a 
basic computational laboratory for teaching complex adap-
tive systems concepts. NetLogo was originally developed 
to support teaching, but it can be used to develop a wide 
range of applications. NetLogo provides a graphical envi-
ronment to create programs that control graphic “turtles” 
that reside in a world of “patches” that is monitored by an 
“observer.” NetLogo is particularly well suited for artificial 
life projects. NetLogo includes an innovative participatory 
ABMS feature called HubNet (Wilensky and Stroup 1999), 
which allows groups of people to interactively engage in 
simulation runs alongside of computational agents.  
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General-purpose desktop computational mathematics 
system (CMS) with an integrated development environ-
ment, such as MATLAB and Mathematica, can be used to 
develop agent models, with at least limited capabilities. 
The basic requirements are a full scripting language capa-
bility combined with array or list-processing capabilities 
for efficiency. Computational mathematics systems are 
structured in two main parts: (1) the user interface that al-
lows dynamic user interaction, and (2) the underlying 
computational engine, or kernel, that performs the compu-
tations according to the user’s instructions. The underlying 
computational engine is written in the C programming lan-
guage for these systems, but C coding is unseen by the 
user. The interpreted nature of these systems avoids the 
compilation and linking steps required in traditional pro-
gramming languages. Computational mathematics systems 
have advantages derived from both the mathematical and 
interactive orientations of these tools. CMS environments 
have rich mathematical functions, and nearly any mathe-
matical relation, map, or function that can be numerically 
calculated is available within these tools or their add-on 
libraries. In some cases, the tools even support symbolic 
processing and manipulation, which is useful for systems 
of equations that can be solved analytically (Macal 2004b). 
If a CMS environment is already familiar, this can be a 
good place to start agent-based modeling.  

Many large-scale ABMS software environments are 
now freely available. These include Repast (North et al. 
2006), Swarm (SDG 2006; Minar et al. 1996), NetLogo 
(NetLogo 2006) and MASON (GMU 2006) among many 
others. Proprietary toolkits are also available such as Any-
Logic (2006). A recent review and comparison of Java-
based agent modeling toolkits is provided by Tobias and 
Hoffman (2004). 

Swarm was the first ABMS software development en-
vironment launched in 1994 at the Santa Fe Institute. 
Swarm was originally written in Objective C and was later 
fitted with a Java interface. Following the original Swarm 
innovation, the Repast (REcursive Porous Agent Simula-
tion Toolkit) toolkit was developed as a pure Java imple-
mentation (North et al., 2006). Repast has been used exten-
sively in social simulation applications (North and Macal 
2005). Repast is a widely used free and open source agent-
based modeling and simulation toolkit (ROAD 2007). Re-
past Simphony (Repast S) is the latest version of Repast, 
designed to provide visual point-and-click tools for agent 
model design, agent behavior specification, model execu-
tion, and results examination. The Repast S agent model 
designer is being developed to allow users to visually spec-
ify the logical structure of their models, the spatial (e.g., 
geographic maps and networks) structure of their models, 
the kinds of agents in their models, and the behaviors of 
the agents themselves. Once their models are specified, us-
ers can use the point-and-click Repast S runtime environ-
ment to execute model runs as well as visualize and store 
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results. In addition, the Repast S runtime environment in-
cludes automated results analysis connections to a variety 
of spreadsheet, visualization, data mining, and statistical 
analysis tools, virtually all of which are free and open 
source. 

5 SPREADSHEET  SHOPPER AGENT MODEL  

The Shopper Agent Model illustrates the main aspects of 
agent simulation using a spreadsheet environment, albeit in 
a highly simplified way for the purposes of introducing the 
components of and the structure of an ABMS. The model 
illustrates the use of (1) agent behaviors and, (2) the speci-
fication of agent interactions with other agents and with the 
environment. Developing spreadsheet models involves 
more than simply copying and pasting agents into a 
spreadsheet environment. Other functions typically found 
in agent-based models must also be addressed such as time 
management, input data setup, output results collection or 
logging, and run specification. The Shopper Agent Model 
is inspired by John Casti’s SimStore model (Casti 2001).  

5.1 Shopper Agent Model Concept 

For simplicity, we assume each shopper is shopping for 
one item. The model can be easily extended to consider 
shoppers shopping for an arbitrary number of items if de-
sired. Shoppers begin their trip at the front entrance of the 
store. The first time a shopper visits the store, they do not 
know where their item is located, and must mill through 
the store to find their item. Once they find the item, they 
may remember the location on their next visit, but their 
memories are imperfect. If a shopper does not remember 
the item location, they mill through the store. If a shopper 
knows the location of their item, they head in its general 
direction. Movements of shoppers are impeded by the need 
to avoid bumping into other shoppers and the store shelves. 
Once a shopper finds their item of interest, they head to the 
checkout counters. Shoppers have limited knowledge of 
where the counters are located and which counters have the 
shorter checkout lines until they get near the counters. 
Shoppers leave the store through the main exit after check 
out. Shoppers return to the store for another purchase trip 
on a periodic basis. 

5.2 Shopper Agent Workbook  

The shopper agent workbook consists of four spreadsheets 
and an Excel macro sheet. The four spreadsheets are as fol-
lows:  

1. Agent Environment: Defines the physical layout of the 
store using cells. 

2. Agents: Defines agents, as rows in spreadsheet, and 
their attributes. 
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3. Time Series Output Log: Records and charts average 
shopper frustration over time for the course of the 
simulation. 

4. Aggregate Output Log: Records statistics on the simu-
lation, such as successful trips. 

5.2.1 Agent Environment 

The retail shopping model has a full store floor plan (Fig-
ure 3). The floor plan is composed of spreadsheet cells 
marked with colors and text as follows: 

 
Figure 3: Store Layout in Excel Spreadsheet 

 
• Walls are indicated by black cells,  
• Shelves are indicated by gray cells,  
• Items for sale are denoted by the letters A through 

Z,  
• Checkout counters are indicated by “$”, and  
• Entry and exit doors are shown by arrows. 

 

The numbers down the far left column and across the 
top row (black background) represent relative cell coordi-
nates. Using relative cell coordinates simplifies many cal-
culations. For example, the cell at relative row 7 and rela-
tive column 3 (Excel cell E9) contains item A. Agents 
navigate the store using a named range, [Environment], lo-
cated at relative location (0, 0)  (Excel cell B2). For exam-
ple, Agent 4 is located at relative location row 5 and col-
umn 5 (Excel cell G7).  
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5.2.2 Agents 

The Agents worksheet defines the agents. Agents are the 
rows in the spreadsheet and agent attributes are denoted in 
the columns.  

• Name 
• Active Status (Yes, No) 
• Location (Row, Column) 
• Symbol 
• Status (Checkout, Browsing, Waiting, …) 
• Target Item 
• Target Location (Row, Column) 
• Remembered Item 
• Remembered Item Location (Row, Column) 
• Frustration (number between 0 and 1) 
• Number of items found 
• Number of trips made 
 
Some of the agent attributes, are static and do not 

change as the simulation progresses. Some attributes are 
dynamic, and are updated during the simulation. Static at-
tributes are Name, Symbol, Target Item, and Target Loca-
tion. All other attributes are dynamic.  

Shopper Frustration. Shoppers who have a hard time 
finding their item of interest become frustrated and eventu-
ally leave the store without purchasing an item. Several 
factors may be responsible for a shopper being unable to 
find their item in a reasonable amount of time and becom-
ing frustrated, such as limited knowledge of their item’s 
location, crowds slowing their progress, and a complex 
store layout that extends search time. Shoppers’ frustration 
drops when they find their item of interest. Shoppers re-
member their frustration from previous trips when they re-
turn to the store.  

Agent States. Agents are characterized by their status 
or “state” which denotes what they are trying to do at any 
given time. Shopper agents can be in one of five possible 
states: 

 
• Waiting: Shopper is waiting to enter the store. 
• Browsing: Shopper is moving through the store 

and looking for the desired item. 
• Found: Shopper just found the desired item. 
• Checkout: Shopper is looking for a checkout 

counter. 
• Leaving: Shopper is looking for the exit door.  
 
The Agent State Transition diagram shows the possi-

ble transitions between the states of each shopper agent 
(Figure 4). For example, the shopper is initialized in the 
“Browsing” state, moving through the store in search of its 
desired item. Either the shopper finds the item, and transi-
tions to the “Found” state, or becomes frustrated and enters 
the “Checkout” state without an item. In this case, the 
shopper is looking for a checkout counter in order to exit 
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the store. The names on the arrow links indicate the name 
of a function associated with the workbook’s macro (see 
below).  

Agent interaction is limited in the model, but illustra-
tive. Agents interaction consists of an agent inspecting the 
adjacent cells at each time step and determining whether 
other agents occupy adjacent cells. The agent selects an 
available cell to move into that is not occupied by another 
agent. At this point in the simulation logic, one could im-
plement more significant forms of agent interaction. 

 

 
Figure 4: Agent State Transition Diagram 

 

5.2.3 Output Log Worksheet 

The Time Series Output Log worksheet records the aver-
age frustration level for all shoppers in the store and graphs 
the frustration level over the simulation time (Figure 5). 
The graph is initially constructed manually within the 
spreadsheet and is then updated and dynamically displayed 
as the simulation progresses.  
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Figure 5: Time Series Output Log Worksheet 

5.2.4 Aggregate Output Log worksheet  

The Aggregate Output Log worksheet computes and re-
ports on the important statistics of the simulation regarding 
the shopper agents experiences in the store (Figure 6).  

 

 
Figure 6: Aggregate Output Log Worksheet 

5.3 Shopper Agent Model Structure 

The basic structure of the Shopper Agent Model is shown 
in Figure 7. The basic functions are (1) initialization of the 
data and agents in the model, (2) a loop over all the time 
periods in the model and, within this, another loop that 
loops over all the agents in the model, and (3) a summary 
of the statistics generated by the simulation. This loop-
within-loop structure is the simplest way to implement 
time-stepping and agent interactions in a model. Essen-
tially all shoppers execute their behaviors in the same se-
quential order at each time step, and time steps are uniform 
in length. Most real-world agent-based models implement 
a more complex structure for scheduling events and agent 
interactions, which would be a capability provided by an 
agent-based toolkit. The behavior of each shopper agent 
are embedded within the Shop function, as indicated in the 
figure.  
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A program written as an Excel macro simulates the 
tiem stepping and the agent states. The Excel macro is a 
program written in the VBA language and associated with 
the Shopper Agent workbook. (VBA is Visual Basic for 
Applications, the macro programming language for Excel 
and other Microsoft Office applications.). Readers pro-
gramming in VBA may benefit from a good book on Excel 
macro programming such as Simon (2002). 

 

 
Figure 7: Structure of Shopper Agent Model  

 
The Shop function is the most complex part of the pro-

gram. It directs the agent behavior, state transitions, and 
the process of shopper movement throughout the store. 
Shop calls a collection of simple functions that performs 
various tasks such as changing the agent state (see Figure 
8). 

 

 
Figure 8: Structure of Subroutine Shop  
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The VBA code that implements Subroutine Shop is 

shown in Figure 9 to provide an idea of the complexity of 
the code. The complete macro is comprised of 18 subrou-
tines consisting of 200 lines of executable code. Spatial 
reasoning on the part of the agents is accomplished through 
the use of named ranges, relative cell references, and off-
sets. A complete description of the model implementation 
and code is included in North and Macal (2007). 

 
 

 
 

' The main shopper shopping routine. 
Sub Shop(shopper As Range) 
 
  ' Check to see if we have found the 
target. 
  If (shopper.Offset(0, 5) = "Waiting") 
Then 
   
    ' Check to see if our wait is over. 
    Call CheckWait(shopper) 
   
  ' Check to see if the shopper is at 
the door 
  ' and ready to leave the store. 
  ElseIf ((shopper.Offset(0, 2) = 1) And 
_ 
    (shopper.Offset(0, 3) = 4)) Then 
       
    ' Note the finished trip. 
    Call FinishTrip(shopper) 
       
  ' Check to see if we have found the 
target. 
  ElseIf (shopper.Offset(0, 5) = 
"Found") Then 
       
    ' Check the target item. 
    Call CheckTarget(shopper) 
       
  ' Check to see if the shopper should 
leave the store. 
  ElseIf (shopper.Offset(0, 5) = "Leav-
ing") Then 
       
    ' Move towards the door. 
    Call MoveTowardsTheDoor(shopper) 
       
  ' Check to see if we are frustrated or 
distracted. 
  ElseIf (shopper.Offset(0, 12) > Rnd()) 
Then 
       
    ' Move randomly. 
    Call MoveRandomly(shopper) 
         
  Else 
         
    ' Move towards the target using the 
    ' Manhattan distance. 
    Call MoveTowardsTheTarget(shopper) 
         
  End If 
       
  ' Check to see if what we are looking 
for is nearby. 
  Call LookAround(shopper) 
       
End Sub 
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Figure 9: VBA Code for Subroutine Shop  

5.4 Extending the Shopper Agent Model 

The Shopper Agent Model as presented here is a simple 
example of an agent-based model. The model illustrates 
the basic elements of agent representation, interaction, and 
scheduling of agent actions and events. The model includes 
a modularized representation for both agent attributes (in 
the Agents spreadsheet) and for agent behaviors (as im-
plemented in the Shop subroutine of the VBA code). More 
sophisticated agent behaviors, such as agent learning and 
adaptation, can readily be implemented in the same 
framework presented here, but this would require more 
VBA code to be written. Agent interaction is implemented 
in this spatial model by using cell references specific to 
spreadsheets so that agents can sense neighboring agents in 
adjacent cells. In principal, this logic can be extended in 
the VBA code to consider more sophisticated types of 
agent interaction, such as agent communication, contention 
for resources such as items or floor space, and agent rec-
ognition of acquaintances.  

Although VBA is technically object-oriented in nature, 
the VBA code that is developed for the model is largely 
procedural in nature, that is, operations are implemented on 
a step-by-step basis. Other types of coding would be re-
quired for desktop (such as stylized languages) or large-
scale (generally, object-oriented) agent-based environ-
ments.  

As the scale of the Shopper Agent Model is increased, 
the spreadsheet implementation of the model may become 
relatively inefficient, as more agents are added to the 
model, as agent behaviors become more complex, or as the 
scheduling of agent interactions become more complicated. 
At this point, it may be desirable to move to one of the 
desktop or large-scale environments having facilities spe-
cifically designed for agent-based simulation.  

6 WHY AND WHEN ABMS 

We conclude by offering some ideas on the situations for 
which agent-based modeling can offer distinct advantages 
to conventional simulation approaches. When is it benefi-
cial to think in terms of agents?  

 
• When there is a natural representation as agents 
• When there are decisions and behaviors that can 

be defined discretely (with boundaries) 
• When it is important that agents adapt and change 

their behaviors 
• When it is important that agents learn and engage 

in dynamic strategic behaviors 
• When it is important that agents have a dynamic 

relationships with other agents, and agent rela-
tionships form and dissolve 
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• When it is important that agents form organiza-

tions, and adaptation and learning are important at 
the organization level 

• When it is important that agents have a spatial 
component to their behaviors and interactions 

• When the past is no predictor of the future 
• When scaling-up to arbitrary levels is important 
• When process structural change needs to be a re-

sult of the model, rather than a model input  
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