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ABSTRACT

We present the basic concepts of experimental design, the
types of goals it can address, and why it is such an important
and useful tool for simulation. A well-designed experiment
allows the analyst to examine many more factors than would
otherwise be possible, while providing insights that cannot
be gleaned from trial-and-error approaches or by sampling
factors one at a time. We focus on experiments that can cut
down the sampling requirements of some classic designs
by orders of magnitude, yet make it possible and practical
to develop a better understanding of a complex simulation
model. Designs we have found particularly useful for sim-
ulation experiments are illustrated using simple simulation
models, and we provide links to other resources for those
wishing to learn more. Ideally, this tutorial will leave you
excited about experimental designs—and prepared to use
them—in your upcoming simulation studies.

1 INTRODUCTION

The process of building, verifying, and validating a simu-
lation model can be arduous, but once it is complete, then
it is time to have the model work for you. One extremely
effective way of accomplishing this is to use experimental
designs to help explore your simulation model.

The field called Design of Experiments (DOE) has been
around for a long time. Many of the classic experimental
designs can be used in simulation studies. We discuss a few
in this paper to explain the concepts and motivate the use of
experimental design (see also Chapter 12 of Law and Kelton
2000, or Chapter 12 of Law 2006). However, the environ-
ments in which real-world experiments are performed can be
quite different from the simulation environment, so a frame-
work specifically geared toward simulation experiments is
beneficial.

Before undertaking a simulation experiment, it is useful
to think about why this the experiment is needed. Simulation
analysts and their clients might seek to (i) develop a basic
841-4244-1306-0/07/$25.00 ©2007 IEEE
understanding of a particular simulation model or system, (ii)
find robust decisions or policies, or (iii) compare the merits
of various decisions or policies (Kleijnen et al. 2005). The
goal will influence the way the study should be conducted.

We focus on setting up single-stage experiments to
address the first goal, and touch briefly on the second. Al-
though the examples in this paper are very simple simulation
models, the same types of designs have been extremely use-
ful for investigating more complex simulation models in a
variety of application areas. For a detailed discussion of the
philosophy and tactics of simulation experiments, a more
extensive catalog of potential designs (including sequential
approaches), and a comprehensive list of references, see
Kleijnen et al. (2005). Related topics not covered in this
tutorial are ranking and selection or multiple comparison
procedures (see, e.g., Goldsman, Kim, and Nelson 2005)
or “optimization for simulation” (Fu 2002).

The benefits of experimental design are tremendous.
Once you realize how much insight and information can
be obtained in a relatively short amount of time from a
well-designed experiment, DOE should become a regular
part of the way you approach your simulation projects.

2 NUTS AND BOLTS

Some useful tools will help you gain a great deal of informa-
tion in a short amount of time. This includes the time you
spend setting up experiments and consolidating the results,
and the computer time spent running your simulation.

2.1 Terminology and Notation

In DOE terms, experimental designs indicate how to vary
the settings of factors (sometimes called variables) to see
whether and how they affect the response. A factor can be
qualitative or quantitative. Potential factors in simulation
experiments include the input parameters or distributional
parameters of a simulation model. For example, a simple
G/G/1 queueing system might have both quantitative fac-
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tors (such as the mean inter-arrival and service times) and
qualitative factors (such as LIFO, FIFO, or priority class
processing, preemptive or non-preemptive service rules).

Different types of simulation studies involve different
types of experimental units. For a Monte Carlo simulation,
the experimental unit is a single observation. For discrete-
event stochastic simulation studies, it more often is a run or
a batch, yielding an averaged or aggregated output value.
The run is the appropriate experimental unit for terminating
simulations. If the measure of interest is the time (or
number of events) until termination, then the run’s output
is already in the form of a single number. When runs form
the experimental units for non-terminating simulations, and
steady-state performance measures are of interest, care must
be taken to delete data from the simulation’s warm-up period
before performing the averaging or aggregation.

Mathematically, let X1, . . . ,Xk denote the k factors in our
experiment, and let Y denote a response of interest. Some-
times graphical methods are the best way to gain insight
about the Y ’s, but often we are interested in constructing
response surface metamodels that approximate the relation-
ships between the factors and the responses with statistical
models (typically regression models).

Unless otherwise stated, we will assume that the Xi’s
are all quantitative. A main-effects model means we assume

Y = β0 +
k

∑
i=1

βiXi + ε, (1)

where the ε’s are independent random errors. Ordinary least
squares regression assumes that the ε’s are also identically
distributed, but the regression coefficients are still unbiased
estimators even if the underlying variance is not constant.

“Quadratic effects” means we will include terms like X2
1

as potential explanatory variables forY . Similarly, “two-way
interactions” are terms like X1X2. A second-order model
includes both quadratic effects and two-way interactions,
although it is best to fit this equation after centering the
quadratic and interaction terms, as in (2):

Y = β0 +
k

∑
i=1

βiXi +
k

∑
i=1

βi,i(Xi−X i)2 (2)

+
k−1

∑
i=1

k

∑
j=i+1

βi, j(Xi−X i)(X j −X j)+ ε.

In general, a design is a matrix where every column
corresponds to a factor, and the entries within the column
are settings for this factor. Each row represents a particular
combination of factor levels, and is called a design point.
If the row entries correspond to the actual settings that will
be used, these are called natural levels. Coding the levels is
a convenient way to characterize a design. Different codes
are possible, but for quantitative data the low and high levels
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are often coded as −1 and +1, respectively. Table 1 shows
a simple experiment, in both natural and coded levels, that
could be conducted on a G/G/1 queue.

Table 1: Simple experimental design for a G/G/1 queue.
Natural Levels Coded Levels

Interarrival Service Interarrival Service
Design Rate Rate Rate Rate
Point λ µ λ µ

1 16 20 −1 −1
2 18 20 +1 −1
3 16 22 −1 0
4 18 22 +1 0
5 16 24 −1 +1
6 18 24 +1 +1

Each repetition of the whole design matrix is called a
replication. Let N be the number of design points, and b
be the number of replications. Then the total number of
experimental units, whether runs or batches, is Ntot = Nb.

2.2 Pitfalls to Avoid

Two common types of simulation studies are not well-
designed experiments. The first can occur if several people
each suggest an “interesting” combination of factor settings,
so a handful of design points end up being explored where
many levels change simultaneously. Consider an agent-
based simulation model of the children’s game of capture-
the-flag, where an agent attempts to sneak up on the other
team’s flag, grab it, and run away. Suppose that only two
design points are used, corresponding to different settings for
speed (X1) and stealth (X2), with the results in Figure 1. One
subject-matter expert might claim these results show that
high stealth is of primary importance, another that speed is
the key to success, and a third that they are equally important.
There is no way to resolve these differences of opinion
without collecting more data. In statistical terms, the effects
of stealth and speed are said to be confounded. In practice,
simulation models easily have tens or hundreds of potential
factors. A handful of haphazardly chosen scenarios, or a
trial-and-error approach, can use up a great deal of time
without addressing the fundamental questions.
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Figure 1: Confounded factor effects for capture-the-flag.



Sanchez
The second type of study that can be problematic occurs
when people start with a “baseline” scenario and vary one
factor at a time. Revisiting the capture-the-flag example,
suppose the baseline corresponds to low stealth and low
speed. Varying each factor, in turn, to its high level yields
the results of Figure 2. It appears that neither factor is
important, so someone using the simulation results to decide
whether to play the game might just go home instead.

Speed
Low           
High
Low

   

  Success?               
No
No
No

 Stealth
Low           
Low
High  

Speed

St
ea

lth

Figure 2: One-at-a-time sampling for capture-the-flag.

However, if all four combinations of speed and stealth
(low/low, low/high, high/low, and high/high) are sampled, it
is clear that success requires both high speed and high stealth.
This means the factors interact—and if there are interactions,
one-at-a-time sampling will never uncover them!

The pitfalls of using a poor design seem obvious on
this toy problem, but the same mistakes are made far too
often in larger studies of more complex models. When only
a few variations from a baseline are conducted, there may
be many factors that change but a few that subject matter
experts think are “key.” If they are mistaken, changes in
performance from the baseline scenario may be attributed
to the wrong factors. Similarly, many analysts change one
factor at a time from their baseline scenario. In doing so,
they fail to understand that this approach implicitly assumes
that there are no interaction effects. This assumption may
be unreasonable unless the region of exploration is small.

2.3 Example: Why Projects are Always Late

One well-known problem in operations research is called
project management. A set of tasks are performed, in which
some tasks must be completed before others can begin. A
precedence diagram (Figure 3) represents these relationships
graphically. The tasks relate to one another in terms of the
job completion time. Each node on the diagram corresponds
to a task that must be done, and an arrow from node A
to node B indicates that task A must be completed before
task B can begin. By convention, “Start project” and “End
project” tasks are specified so that every task is on at least
one path from the beginning to the end.

Along with the precedence information, we must keep
track of the times required to complete the tasks. The mean
completion times appear above the nodes in Figure 3. This
graph is so simple that—if all tasks take their average time
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to complete—the project clearly cannot finish in under 27
days, since the path A-E-F-G-H requires 27 days to finish.
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15 7 0

E

Figure 3: Project management precedence diagram.

A simple technique called PERT (Program Evalua-
tion Review Technique) makes it easy to identify this so-
called critical path for even larger networks. A proba-
bilistic version of PERT takes into account the variabil-
ity along the critical path (Hillier and Lieberman 2005).
Given the task time means and standard deviations in Ta-
ble 2 and assuming task times are independent, the mean
and variance on path Cp ={A, E, F, G, H} (ignoring
all other tasks) are µtot = ∑i∈C µi = 5 + 15 + 7 = 27 and
σ2

tot = ∑i∈C σ2
i = 22 + 32 + 12 = 14. If the individual task

time distributions are nearly normal, or if many tasks lie
on the critical path, then the central limit theorem can
be invoked. Quantiles from the normal distribution can
then estimate the probabilities of completing (or failing to
complete) the project by specified points in time.

Table 2: Task time distributional parameters.
µi σi µi σi

Task i (days) (days) Task i (days) (days)
A (Start) 0 0 E 5 2
B 3 0.5 F 15 3
C 1 0.1 G 7 1
D 1 0.2 H (End) 0 0

What might go wrong with these PERT calculations?
Sometimes we might not get the full benefit if a task on
path Cp finishes early. For this example, if tasks F and
G are expedited, or by chance their completion times are
less than expected, this will benefit the project. However,
suppose we spend only one day on E but all other tasks take
their average times. The “new” critical path (A-B-F-G-H)
takes 25 days. We shorten a “bottleneck” task by four days
but only save two days on the overall project. PERT/CPM
does not account for variations of the critical path itself.

If we knew more about the task time distributions, we
could perform a simple Monte Carlo simulation by randomly
generating task completion times based on the task means,
standard deviations, and normality assumptions, and using
the precedence diagram to determine the project completion
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time. A frequency distribution of the project completion
times, as well the proportion of time each task appears on the
critical path, could be built by replicating the experiment.
These might provide useful insights to a project manager.

It is rare in practice that we “know” such detail about
the inputs. A validated simulation model should reflect the
essential characteristics of the real-world system, but the
very act of modeling means that simplifying assumptions
will be made. For our example, we have implicitly assumed
independence among the task times, specific distributions
for the task time variability (normal), as well as specific
parameters for these distributions (the µi’s and σi’s). Instead,
the project manager and the simulation analyst may try to
determine “reasonable” low and high values for the task
means and standard deviations.

Real-world projects often have many more tasks and
more complicated precedence structures than that of of
Figure 3. So, consider a more complex project with 26 tasks
(AA-ZZ), of which 19 are considered to have deterministic
task times (ranging from 100 minutes to 1,000 minutes).
Information about the low and high levels for the task
time distributional parameters for the other seven tasks are
provided in Table 3. For now, we retain the normality and
independence assumptions for the task times.

Table 3: Low and high factor settings for project manage-
ment factors.

Range Range
i µi σi i µi σi

BB 640-660 10-16 QQ 9-39 1-3
EE 1200-1600 50-200 SS 900-1100 0-30
FF 280-320 4-10 TT 280-320 4-10
PP 670-700 0-2

In the next sections, we show how treating some or
all of these as factors in well-designed experiments allows
us to explore the system, gain insights about which factors
or interactions have the greatest influence, or seek robust
solutions. Although this example is a terminating simulation,
the designs can also be used for truncated runs or batches
when exploring a steady-state system simulation.

3 USEFUL DESIGNS

3.1 What Works When

Many designs are available in the literature. We focus on a
few basic types that we have found particularly useful for
simulation experiments. Factorial or gridded designs are
straightforward to construct and readily explainable—even
to those without statistical backgrounds. Coarse grids (2k

factorials) are most efficient if we can assume that the simu-
lation response is well-fit by a model with only linear main
effects and interactions, while fine grids provide greater
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detail about the response and greater flexibility for con-
structing metamodels of the responses. When the number
of factors is large, then more efficient designs are required.
We have found Latin hypercubes to be good general-purpose
designs for exploring complex simulation models when little
is known about the response surfaces. Designs called res-
olution 5 2k fractional factorials (R5-FFs) allow the linear
main effects and interactions of many factors to be investi-
gated simultaneously; they are potential choices either when
factors have only two qualitative settings, or when prac-
tical considerations dictate that only a few levels be used
for quantitative input factors. Expanding these R5-FFs to
central composite designs provides some information about
nonlinear behavior in simulation response surfaces.

Factorials (or gridded designs) are perhaps the easiest
to discuss: they examine all possible combinations of the
factor levels for each of the Xi’s. A shorthand notation for
the design is mk, which means k factors are investigated,
each at m levels, in a total of mk design points. We can
write designs where different sets of factors are investigated
at different numbers of levels as, e.g., mk1

1 ×mk2
2 . These are

sometimes called crossed designs. For example, the design
in Table 1 is a 21×31 factorial experiment.

3.2 2k Factorial Designs (Course Grids)

The simplest factorial design is a 2k because it requires
only two levels for each factor. These can be low and high,
often −1 and +1 (or − and +). 2k designs are very easy to
construct. Start by calculating the number of rows N = 2k.
The first column alternates −1 and +1, the second column
alternates −1 and +1 in groups of 2, the third column
alternates in groups of 4, and so forth by powers of 2. If
you are using a spreadsheet, you can easily move from a
design for k factors to a design for k+1 factors by copying
the 2k design, pasting it below to obtain a 2k × k matrix,
and then adding a column for factor k +1 with the first 2k

values set to −1 and the second set of 2k values set to +1.
Conceptually, 2k factorial designs sample at the corners of
a hypercube defined by the factors’ low and high settings.
Figure 4 shows examples for 22 and 23 designs. Envisioning
a 24 or larger design is left to the reader.

Factorial designs have several nice properties. They
let us examine more than one factor at a time, so they can
be used to identify important interaction effects. They are
also orthogonal designs: the pairwise correlation between
any two columns (factors) is equal to zero. This simplifies
the analysis of the output (Y ’s) we get from running our
experiment, because estimates of the factors’ effects β̂i’s
and their contribution to the explanatory power (R2) of
the regression metamodel will not depend on what other
explanatory terms are placed in the regression metamodel.

Any statistical software package (e.g., JMP, Minitab,
SAS, S-plus, SPSS, etc.) will allow you to to fit regression
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Figure 4: 22 and 23 factorial designs.

models with main effects and interaction terms. If you
must do your analysis in Excel, you will have to manually
construct appropriate columns for the interaction terms.
When working in coded levels, the interaction columns are
found by multiplying the columns for the associated main
effects, as Table 4 shows for a 23 factorial (the headings
indicate the factor numbers.) When working in natural
levels, it is best to subtract the means before creating the
interaction columns, as in (2). Note that the X’s in (2) are
the average values from the design—they do not necessarily
correspond to factor means in the real-world setting.

Table 4: Terms for a 23 factorial design.
Design Term
Point 1 2 3 1,2 1,3 2,3 1,2,3

1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

From Table 4, there are seven different terms (three
main effects, three two-way interactions, and one three-way
interaction) that we could consider estimating from a 23

factorial experiment. But since we also want to estimate the
intercept (overall mean), that means there are eight things
we could try to estimate from eight data points. That will not
work—we will always need at least one degree of freedom
(d.f.) for estimating error (and preferably, a few more).

A similar relationship holds as we increase the number
of factors k. There will be k main effects, (k choose 2)
two-way interactions, (k choose 3) three-way interactions,
and so forth, up to a single k-way interaction. Adding all
these up yields 2k−1 terms plus the intercept. Once again,
there will not be any d.f. left over for error.

So, what do people do with a factorial design? One
possibility is to replicate the design to get more d.f. for
error. Estimating eight effects from eight observations (ex-
perimental units) is not possible, but estimating eight effects
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from 16 observations is simple. Replication also makes it
easier to detect smaller effects by reducing the underlying
standard errors associated with the β ’s.

Another option is to make simplifying assumptions. The
most common approach is to assume some higher-order
interactions do not exist. In the 23 factorial of Table 4, one
d.f. would be available for estimating error if the three-way
interaction could safely be ignored. We could then fit a
second-order regression model to the results. Similarly, if
we have data for a single replication of a 24 factorial design
but can assume there is no four-way interaction we have
one d.f. for error; if we can assume there are no three-way
or four-way interactions, we have five d.f. for error.

Making simplifying assumptions sounds dangerous, but
it is often a good approach. Over the years, statisticians
conducting field experiments have found that often, if there
are interactions present, the main effects also show up
unless you “just happen” to set the low and high levels so
the effects cancel. There is also a rule of thumb stating that
the magnitudes of two-way interactions are at most about
1/3 the size of main effects, and the magnitudes of three-way
interactions are at most about 1/3 the size of the two-way
interactions, etc. Whether or not this holds for experiments
on simulations of complex systems is not yet certain. We
may expect to find stronger interactions in a combat model
or a supply chain simulation than when growing potatoes.

Now we revisit the project management example. Sup-
pose we decide to run an experiment where we vary the
means for tasks BB, EE, FF, and QQ, and leave all other
potential factors (µi’s and σi’s) at their middle levels. With
four factors, there are 16 runs and 15 effects (four main ef-
fects, six two-way interactions, four three-way interactions,
and one four-way interaction). We could estimate all but
one of these effects from single replication of the exper-
iment, or all these effects if two or more replications are
made. Once one or more replications of this basic design
are conducted, and the resulting response Y is analyzed,
we can build regression models or use graphical methods
to estimate various factor and interaction effects.

3.3 mk Factorial Designs (Finer Grids)

Examining each of the factors at only two levels (the low
and high values of interest) means we have no idea how the
simulation behaves for factor combinations in the interior of
the experimental region. Finer grids can reveal complexities
in the landscape. When each factor has three levels, the
convention is to use -1, 0 and 1 (or−, 0, and +) for the coded
levels. Consider the capture-the-flag example once more.
Figure 5 shows the (notional) results of two experiments: a
22 factorial (on the left) and an 112 factorial (on the right).
For the 22 factorial, all that can be said is that when speed
and stealth are both high, the agent is successful. Much
more information is conveyed by the 112 factorial: here we
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Figure 5: 22 and 112 factorial experiments for capture-the-
flag.

The larger the value of m for an mk factorial design, the
better its space-filling properties. A scatterplot matrix of
the design points shows projections of the full design onto
each pair of factors. Consider the graph in Figure 6 for a
54 factorial. Each subplot has four points in the corners,
three additional points along each edge, and nine points in
the interior. The corresponding subplots for a 24 factorial
would each reveal only four points, one at each corner. The
bad news is that the finer grid requires 625 design points
instead of 16. Figure 6 provides information about the
design, not the output, but once the simulation has been run
the task of fitting a regression metamodel to the output is
straightforward. Adding columns to your (replicated) design
matrix will allow you to match the inputs to the outputs.
Start by fitting main-effects metamodels, then see if adding
(centered) quadratic terms will improve your metamodel, or
explore higher-order terms. Surface plots and contour plots
of the average behavior can help you view the results as a
function of two factors at a time. These graphical methods
allow you to focus on interesting features of the response
surface landscape (such as thresholds, peaks, or flat regions)
without assuming a specific form for the regression model.
Regression trees, interaction plots, contour plots, and parallel
plots are also useful for exploring the data. Examples can
be found in Sanchez and Lucas (2002); Cioppa, Lucas, and
Sanchez (2004); or Kleijnen et al. (2005).

Despite the greater detail provided, and the ease of
interpreting the results, fine grids are not good experimental
designs for more than a handful of factors because of
their massive data requirements. Even 2k designs have
this problem, as Table 5 shows.

Considering the number of high-order interactions we
could fit but may not believe are important (relative to main
effects and two-way or possibly three-way interactions),
this seems like a lot of wasted effort. It means we need
89
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Figure 6: Scatterplot matrix for a 54 factorial design.

Table 5: Data requirements for factorial designs.
No. of
factors 10k factorial 5k factorial 2k factorial

1 10 5 2
2 102 = 100 52 = 25 22 = 4
3 103 = 1,000 53 = 125 23 = 8
5 100,000 3,125 32

10 10 billion 9,765,625 1,024
20 don’t even 9.5×109 1,048,576
40 think of it! 9.1×1021 1.0×109

marter, more efficient types of experimental designs if we
re interested in exploring many factors.

.4 Latin Hypercube Designs

atin hypercube (LH) sampling provides a flexible way
f constructing efficient designs for quantitative factors.
hey have some of the space-filling properties of factorial
esigns with fine grids, but require orders of magnitude less
ampling. Once again, let k denote the number of factors,
nd let N ≥ k denote the number of design points. Our
onvention for factor levels in LH designs is that the low and
igh levels for factor Xi are coded as 1 and N, respectively,
nd the set of coded factor levels are {1,2, . . . ,N}.

For a random LH design, each column is randomly
ermuted. In one replication, each of the k factors will be
ampled exactly once at each of its N levels. Table 7 shows
n example of a random LH for k = 2 and N = 11. Using
his experimental design for our capture-the-flag simulation
ields the results of Figure 7. Compare this design to those
f Figure 5. Unlike the 22 factorial design, the LH design
rovides some information about what happens in the center
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of the experimental region. We do not get the same detailed
information that the 112 provides about the boundaries
between regions of poor, fair, and good performance, but
we do find that success occurs when both speed and stealth
are high, that high stealth and moderate speed yield mixed
results, and that if either speed or stealth is low the agent is
unsuccessful. This happens with a fraction of the sampling
cost (N = 11 vs. N = 121 for the 112 factorial design).

Speed
  1
  3
  7
  2
  5
  6

Stealth
 11
  5
  7
  3
10
  4

Speed
10
  4
11
  8
  9

Stealth
  1
  2
  8
  9
  6

Speed
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Figure 7: Random Latin hypercube for capture-the-flag.

The benefits of LH sampling are greatest for large k.
The smallest LH designs are square, so the number of design
points grows linearly with k. Suppose our simulation runs
in one second. Each replication of a 40-factor experiment
would take under a minute using an LH design, but over
348 centuries using a 240 factorial design.

Random LH designs have good orthogonality properties
if N is much larger than k, but for smaller designs some
factors might have high pairwise correlations. One approach
is to generate many random LH designs and then choose a
good one. Alternatively, Cioppa and Lucas (2007) construct
nearly orthogonal Latin hypercube (NOLH) designs that
have good space-filling and orthogonality properties for
small or moderate k. Table 6 lists the number of design
points for NOLHs with k ≤ 29. These are dramatically less
than the numbers for gridded designs in Table 5.

Table 6: Data requirements for nearly orthogonal Latin hy-
percube designs.

No. of Factors No. of Design Points
2–7 17
8–11 33

12–16 65
17–22 129
23–29 257

A scatterplot matrix of a NOLH for four factors in 17
design points is shown in Figure 8. The two-dimensional
space-filling behavior compares favorably with that of the
54 design (requiring 625 design points) of Figure 6.

Consider the project management simulation once more.
Instead of limiting the study to the four factors representing
the mean completion times for tasks BB, EE, FF, and QQ,
we could instead examine all seven means in a NOLH design
with 17 design points. Alternatively, we could vary four
90
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Figure 8: Scatterplot matrix for a nearly orthogonal Latin
hypercube design with four factors in 17 runs.

means and four standard deviations in a NOLH design with
33 design points, or all seven means and all seven standard
deviations in a NOLH with 65 design points.

Replicating the design allows us to determine whether or
not a constant error variance is a reasonable characterization
of the simulation’s performance, and is highly recommended.
If we have the time and budget for even more sampling, then
several Latin hypercubes can be stacked to obtain a larger
design with better space-filling properties. Examples for
agent-based simulations appear in Allen, Buss and Sanchez
(2004), Kleijnen et al. (2005), or Cioppa and Lucas (2006).

3.5 2k−p Resolution 5 Fractional Factorial Designs

While Latin hypercubes are very flexible, they are not the
only designs useful for simulation experiments involving
many factors. Sometimes many factors take on only a few
levels. Traffic at both rush-hour and off-peak times might
be of interest. We might have a few types of equipment
that could be used to manufacture a particular part, or a few
different rules for handling tasks of different priorities. A
project manager might be able to expedite a specific task.
LH designs work best when most factors have many levels.

Instead, we can consider varations of gridded designs.
If we are willing to assume that some high-order interactions
are not important, we can cut down (perhaps dramatically)
the number of runs required. This will be illustrated using
a 2k factorial, but the same ideas hold for other situations.
Consider the 23 design in Table 1, and suppose that we
are willing to assume that no interactions exist. We could
call the X1X2X3 column X4, and investigate four factors in
23 = 8 runs instead of four factors in 16 runs! This is called
a 24−1 fractional factorial.
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Better yet, as long as we are assuming no interactions,
we can squeeze a few more factors into the study. Take
Table 4, which shows all the interaction patterns for a 23

factorial, and substitute in a new factor for each interaction
term. The resulting design (Table 7) is called a 27−4 frac-
tional factorial, because the base design varies seven factors
in only 27−4 = 8 runs instead of 27 = 128 runs! X4 uses the
column that would correspond to an X1X2 interaction, X5
uses the column that would correspond to an X1X3 interac-
tion, and similarly for X6 and X7. The design is said to be
saturated since we cannot squeeze in any other factors. If
we ignore the last column completely (i.e., we do not have
a factor X7) then we can examine six factors in only eight
runs. If we take b = 2 replications, we can examine seven
factors in only 16 runs.

Table 7: Terms for a 27−4 fractional factorial design.
Des. X1 X2 X3 X4 X5 X6 X7
Pt. (1,2) (1,3) (2,3) (1,2,3)
1 −1 −1 −1 +1 +1 +1 −1
2 +1 −1 −1 −1 −1 +1 +1
3 −1 +1 −1 −1 +1 −1 +1
4 +1 +1 −1 +1 −1 −1 −1
5 −1 −1 +1 +1 −1 −1 +1
6 +1 −1 +1 −1 +1 −1 −1
7 −1 +1 +1 −1 −1 +1 −1
8 +1 +1 +1 +1 +1 +1 +1

Graphically, fractional factorial designs sample at a
carefully-chosen fraction of the corner points on the hy-
percube. Figure 9 shows the sampling for a 23−1 factorial
design, i.e., investigating three factors, each at two levels,
in only 23−1 = 4 runs. There are two points on each of the
left and right faces of the cube, and each of these faces
has one instance of X2 at each level and one instance of
X3 at each level, so we can isolate the effect for factor X1.
Similarly, averaging the results for the front and back faces
allows us to estimate the effect for factor X2, and averaging
the results for the top and bottom faces allows us to estimate
the effect for factor X3.

X2

X1

X3

Figure 9: 23−1 fractional factorial.
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Saturated or nearly-saturated fractional factorials are
very efficient (relative to full factorial designs) when there
are many factors. For example, 64 runs could be used for
a single replication of a design involving 63 factors, or two
replications of a design involving 32 factors. Saturated or
nearly saturated fractional factorials are also very easy to
construct. However, these designs will not do a good job of
revealing the underlying structure of the response surface
if there truly are strong interactions but we ignore them
when setting up the experiment. A compromise is to use
R5 fractional factorials. These allow two-way interactions
to be explored but can require many fewer design points.

It is easy to create a 2k−1 factorial (called a half fraction)
by setting up the first 2k−1 columns as if we just had k−1
factors, and then constructing a column for the last factor by
taking the interaction (product) of the first k−1 columns.
Except for the special cases when k ≤ 4, we will also be
able to estimate two-way interactions with the 2k−1 designs.
Unfortunately, a half-fraction is still inefficient if k is large.
Until recently it was difficult to find a very efficient R5
fractional factorial for more than about a dozen factors. The
largest R5 fractional factorial in Montgomery (2000) is a
210−3; the largest in Box, Hunter, and Hunter (1978) and
NIST/Sematech (2005) is a 211−4. Sanchez and Sanchez
(2005) recently developed a method, based on discrete-
valued Walsh functions, for rapidly constructing very large
R5 fractional factorials—a short Java program generates
designs up to a 2120−105 in under a minute. These allow all
main effects and two-way interactions to be fit, and may
be more useful for simulation analysts than saturated or
nearly-saturated designs.

3.6 Central Composite Designs

Because 2k factorials or fractional factorials sample each
factor at only two levels, they are very efficient at identifying
slopes for main effects or two-way interactions. Unfortu-
nately, sampling at only two levels means the analyst has
no idea about what happens to the simulation’s response
in the middle of the factor ranges. Going to a 3k factorial
would let us estimate quadratic effects, but it takes quite a
bit more data—especially if k is large!

Another classic design that lets the analyst estimate
all full second-order models (i.e., main effects, two-way
interactions, and quadratic effects) is called a central com-
posite design (CCD). Start with a 2k factorial or R5 2k−p

fractional factorial design. Then add a center point and two
“star points” for each of the factors. In the coded designs,
if −1 and +1 are the low and high levels, respectively,
then the center point occurs at (0,0, ...,0), the first pair of
star points are (−c,0, ...,0) and (c,0, ...,0); the second pair
of star points are (0,−c,0, ...,0) and (0,+c,0, ...,0), and
so on. A graphical depiction of a CCD for three factors



Sanchez
Factorial or Fractional
Factorial

Central Composite
Design

Star  Points+ =
Figure 10: Construction of central composite designs.
appears in Figure 10. If c = 1 the star points will be on the
face of the cube, but other values of c are possible.

Although the CCD adds more star points when there
are more factors, using a fractional factorial as the basic
design means the CCD has dramatically fewer design points
than a 3k factorial design for the same number of factors.
The additional requirements are O(k). Some examples are
given in Table 8, using the efficient R5 fractional factorials
of Sanchez and Sanchez (2005) as the base designs for the
CCDs. Once again, it is clear that a brute force approach
is impossible when k is large, but efficient experimental
designs allow the analyst to conduct an experiment.

Table 8: Data requirements for 3-level designs.
CCD 3k

No. of No. of No. of
k Terms Design Pts Design Pts
2 5 10 9
5 20 28 243

10 65 152 59,049
30 495 2,110 2.1×1014

70 2,555 16,526 2.5×1033

120 7,380 33,010 1.8×1057

3.7 Crossed and Combined Designs

So far, we have discussed designs for the first of the stated
goals: developing a basic understanding of a particular
model or system. The second goal was that of finding robust
decisions or policies. A robust design approach (Taguchi
1987, Sanchez 2000) means that the factors are classified into
two groups: decision factors, which represent factors that are
controllable in the real world setting the simulation models;
and noise factors, which are uncontrollable or controllable
only at great cost in the real world, but potentially affect the
system’s performance. A third group is sometimes added,
consisting of simulation-specific factors like the choices of
random number streams, batch sizes, run lengths, and more.
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The robust design philosophy means that the decision
should not be based solely on mean performance and how
close it is to a user-specified target value, but also on
the performance variability. Redefining the performance
measure to reflect the trade-off between a good mean and
a small variance is one approach. Alternatives that often
provide more guidance to the decision-maker are to examine
the response mean and response variability at each design
point separately, or to the fit separate models of the response
mean and response variability. Regardless, the expectation
is taken across the noise space.

One way this can be accomplished is by constructing
a combined design with columns for all of the decision and
noise factors (Sanchez et al. 1996). For example, suppose
the decision factors are the means and standard deviations
for tasks BB, EE, FF, and QQ in the project management
scenario, perhaps because different workers, equipment, or
procedures could be used. Further suppose the noise factors
are the means and standard deviations of tasks PP, SS, and
TT. This total of 14 factors could be examined using a NOLH
with 65 design points or a CCD with 119 design points
(replicated as needed). Examining the results in terms that
involve only the decisions factors will yield insight into
whether or not specific decision-factor combinations are
robust to uncontrollable sources of variation.

Another design choice requires more sampling but may
be easier to justify to decision-makers. Two basic designs
are chosen—one for the decision factors, and another for
the noise factors (Table 9). They need not be the same type
of design. A crossed design is then constructed by running
each of the noise factor design points for each of the decision
factor design points. Table 9 shows a portion of the design
obtained by crossing a NOLH with 33 design points (for the
decision factors) with a NOLH with 17 design points (for
the noise factors) for the project management simulation.
The base design has a total of 33×17 = 561 runs.

Whether the goal is to develop a basic understanding
of the model, or to identify robust settings for decision
factors, crossed designs can be useful when a few factors
take on a handful of discrete levels. The capture-the-flag
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Table 9: Crossed design for project management simulation.
Crossed Decision Factors Noise Factors

Design Point Design Point µB µE · · · σQ Design Point µP µS · · · σT
1 1 680 1238 · · · 2.4 1 679 1100 · · · 9.6
2 1 680 1238 · · · 2.4 2 672 950 · · · 5.9
...

...
...

...
...

...
...

...
...

...
17 1 680 1238 · · · 2.4 17 683 925 · · · 6.3
18 2 676 1600 · · · 1.9 1 679 1100 · · · 9.6
19 2 676 1600 · · · 1.9 2 672 950 · · · 5.9
...

...
...

...
...

...
...

...
...

...
34 2 676 1600 · · · 1.9 17 683 925 · · · 6.3
...

...
...

...
...

...
...

...
...

...
544 33 648 1350 · · · 1.5 1 679 1100 · · · 9.6
545 33 648 1350 · · · 1.5 2 672 950 · · · 5.9

...
...

...
...

...
...

...
...

...
...

561 33 648 1350 · · · 1.5 17 683 925 · · · 6.3
simulation could be run in dusk or night settings, e.g., by
crossing a 21 design for time of day with an 112 design
for speed and stealth. The project management simulation
could be run by crossing a NOLH for the 14 task time
means and standard deviations with a 33 design that varies
the task time distributions (normal, uniform, and symmetric
triangular) for three of the tasks.

4 DISCUSSION

Designs like the ones described in this paper have as-
sisted the U.S. military and several allied countries in a
series of international data farming workshops (Horne and
Meyer 2004; SEED Center for Data Farming 2007). In-
terdisciplinary teams of officers and analysts develop and
explore agent-based simulation models to address questions
of current interest to the U.S. military and allies, such as
network-centric operations, effective use of unmanned ve-
hicles, peace support operations, and more. Sanchez and
Lucas (2002) provide an overview of issues in modeling
and analysis aspects of agent-based simulation. Cioppa, Lu-
cas, and Sanchez (2004) discuss highlights from studies of
squad size determination, degraded communications on the
battlefield, and unmanned surface vehicles for both infor-
mation, reconnaissance and surveillance missions and force
protection scenarios. A humanitarian assistance scenario is
discussed in Kleijnen et al. (2005). Lucas et al. (2007) de-
scribe several defense and homeland security applications:
critical infrastructure protection, non-lethal capabilities in
a maritime environment, and emergency first response to a
crisis event.

The SEED Center for Data Farming at the Naval Post-
graduate School was established to advance the use of
Simulation Experiments & Efficient Design. Its web pages
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(at <harvest.nps.edu>) contain links to several types
of resources, including master’s theses where simulation ex-
periments have been used, papers and proceedings articles,
and some spreadsheet tools and Java software for creating
designs.

For more on the philosophy and tactics of designing
simulation experiments, examples of graphical methods that
facilitate gaining insight into the simulation model’s per-
formance, and an extensive literature survey, we refer the
reader to Kleijnen et al. (2005). This tutorial has touched
on a few designs that we have found particularly useful, but
other design and analysis techniques exist. Our intent was
to open your eyes to the benefits of DOE, and convince you
to make your next simulation study a simulation experiment.
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