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ABSTRACT

We start with basic terminology and concepts of modeling,
and decompose the art of modeling as a process. This
overview of the process helps clarify when we should or
should not use simulation models. We discuss some com-
mon missteps made by many inexperienced modelers, and
propose a concrete approach for avoiding those mistakes.
After a quick review random number and random variate
generation, we view the simulation model as a black-box
which transforms inputs to outputs. This helps frame the
need for designed experiments to help us gain better un-
derstanding of the system being modeled.

1 BACKGROUND AND TERMINOLOGY

We use models in an attempt to gain understanding and
insights about some aspect of the real world. There are
many excellent resources available for those who wish to
study the topic of modeling in greater depth than we do
in this tutorial. See, for example, Law and Kelton (2000),
Banks et al. (2005), Weinberg (2001), or Nise (2004).

Attempts to model reality assume a priori the existence
of some type of “ground truth,” which impartial and om-
niscient observers would agree upon. A first step towards
success in modeling is to narrow the focus to a reasonable
scope. There is a much greater chance of success for both
building a model and finding consensus about the model’s
utility when we focus our attention locally in time and space.
We will start our study of models at the level of a system.

We define a system to be a set of elements which
interact or interrelate in some fashion. Elements which
have no relationship to other elements which we classify as
members of the system cannot affect the system’s elements,
and thus are irrelevant to our goal of studying the system.
The elements that make up the system are often referred to
as entities. Note that the entities which comprise a system
need not be tangible. For instance, we can talk about a
queueing system, which is made up of customers, a queue,
and a server. The customers and server are physical entities,
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but the queue itself is a concept. In some cultures, people
waiting for a bus mimic the concept by standing in a row.
However, there are cultures where no line forms but it is
considered improper to board the bus until everybody who
was there before you has done so.

Systems can exhibit set ownership or membership with
regard to other systems. In other words, a given system
can be made up of sub-systems, and/or may in turn be a
sub-system within a larger framework.

A model is a system which we use as a surrogate for
another system. There can be many reasons for using a
model. For instance, models can enable us to study how a
prospective system will work before the real system has even
been built. In many cases, the cost of building and studying
a model is a small fraction of the cost of experimenting
with the real system. Models can also be used to mitigate
risk—it is far safer to teach a pilot how to cope with wind
sheer during landing on a flight simulator than by going
out and practicing real landings in wind sheer conditions.
Another benefit is a model’s ability to scale time or space in
a favorable manner—with a flight simulator we can create
wind sheer conditions on demand, rather than flying around
“hoping” to encounter them.

Models come in many varieties. These can include,
but are not limited to, physical duplicates (with or without
scaling) such as wind tunnel mockups; “clockwork” and cam
devices such as the Antikythera mechanism (de Solla Price
1959) or fire control computers on pre-digital battleships;
mathematical equations such as the equations of motion
found in a typical physics text; analog circuitry such as
that found in old stationary flight simulators; or computer
programs such as the ones used in modern flight simulators.
A computer simulation is a model which happens to be
a computer program. Throughout the remainder of this
paper we will use the word “simulation” to mean computer
simulation, but you should be aware that this may be a source
of miscommunication when dealing with people from other
disciplines.

In all cases, models have a common purpose—to mimic
or describe the behavior of the system being modeled. In
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most cases models simplify or abstract the real system to
reduce cost and/or focus on essential characteristics. In
fact, most of the examples in the previous paragraph work
by producing a system which mimics the behavior in an
input/output sense, but not the actual workings of the system
being studied. We should judge a model’s quality by how
well its outputs conform to observations of reality, rather
than by the amount of detail included in the model.

In practice we like models that are comprised of model
entities similar to those in the real system, and that interact
and change in ways which correspond to the interactions
and changes observed or expected in the real system. The
totality of all entities and all of their attributes is the state
of the system, so we seek to model the real system by
specifying when and how the model state should change so
as to correspond to state changes in the real system. If the
real system is deterministic (i.e., has no random elements),
we try to produce state trajectories which are similar to those
of the real system. If the real system is stochastic, we do
not need to match state trajectories directly. Instead, we try
to produce state trajectories which are plausible realizations
of what might be seen in the real system.

One huge assumption we make when modeling a system
is observability, i.e., we assume that by observing the system
for a sufficiently long time we can infer the state and quantify
the relationships between inputs and outputs. Mathematical
systems theory (Nise 2004, Weinberg 2001) shows that this
assumption is not a given. Linear systems are amongst
the simplest of systems, yet even some linear systems can
be proven to be non-observable. However, without the
assumption of observability there’s no way to proceed. If the
intended use of the model is to “tune” the system, we should
also be concerned about the related issue of controllability,
i.e., can the system be driven from its current state to the
desired state in finite time using finite inputs?

A model should be created to address a specific set of
questions. Some people believe that it is possible to build
a completely general model, which could later be used to
answer any question. At first glance this is appealing, but
after a little bit of thought it should be obvious that the only
way to achieve this would be to have the model state space
be as large as the real system’s state space. Only a replica
of the original system, complete in every detail, would have
the ability to answer any and every unanticipated question
about the system. This is the very antithesis of modeling,
since the purpose of modeling is to simplify and abstract
to gain insights.

2 AN OVERVIEW OF THE MODELING PROCESS

In practice, modeling is an iterative process with feedback.
We start by considering the real-world situation we wish
to know more about. In stage 1 of the modeling process
we should try to identify what is meant by the system
55
of interest. For instance, suppose we want to model the
operations of a manufacturing plant which makes small
boats. In reality there may be airplanes or Canadian geese
that fly overhead, but unless we’re concerned about the
impact of plane crashes or organic pollution we should
not consider these to be elements of the system. Similarly,
while raw materials, customer purchase orders, weather, and
marketing strategies will undoubtedly have an impact on our
system, if we are trying to figure out a good shop-floor layout
these can be represented as exogenous inputs, i.e., inputs
which are determined by forces outside the system. For
example, we need a stream of weather data which is similar
to what we might observe in reality, but we don’t need a
physics-based weather module which mimics atmospheric
heat transfer, humidity, convection, solar reflectivity, etc.
An historical trace of past weather patterns or a random
variate generator which adequately mimics the distribution
of observed weather will more than likely suffice. At the
end of the stage 1 process, we have a descriptive model.

Once we have decided on the scope of our model, we
will proceed to the next phase. In stage 2, we try to rigorously
describe the behaviors and interactions of all of the entities
which comprise the system. This can be accomplished
in a variety of ways, many of which are mathematical in
nature. We might describe the system as a set of differential
equations, or as a set of constraints and objectives in some
optimization formulation, or use distribution modeling from
probability or stochastic processes. We refer to the result
as a formal model.

We would like to find analytical solutions to the formal
model if it is possible to do so. If our formal model has
a high degree of conformance with the real world system
being modeled, analytic models and their solutions would
allow us to obtain insights and draw inferences about the real
system (see Figure 1). It is all too often the case, however,
that in our quest for a good model we add components
which make the formal model intractible. For example, we
can and should find analytic solutions for queueing systems
where arrival and service distributions are exponential with
constant rates. Adding real-world features in the form

Reality

Description Formal 
Model

Inference

Figure 1: A model yields insights and inferences.
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of other distributions, non-homogeneous (possibly state-
dependent) arrival and service rates, customers jockeying
or balking, servers taking breaks, machinery breaking down,
and so on, will very quickly put us into the realm of models
which cannot be solved analytically.

This is one of the places where simulation might enter
the process. In many cases we can describe the behaviors in
a system algorithmically, producing a computer simulation
as our model. If the simulation model uses randomness
as part of the modeling process, its output is a random
variable. A very common (and extremely serious!) mistake
that first-time simulators make is to run a stochastic model
one time and believe that they have found “the answer.”
The proper way to describe or analyze a stochastic system
is with statistics. In other words, we must build a statistical
model of the computer model we built from the formal
model. The resulting process is illustrated in Figure 2.

Reality

Description Formal 
Model

Computer 
Model

Statistical 
Model

Inference

Figure 2: Simulation has a longer chain of inference.

Feedback enters the modeling process in the form of
verification and validation (Sargent 2003). Verification con-
stitutes a feedback loop between the computer model and
the formal model in Figure 2. In essence it attempts to
address the question “does my computer program do what
I meant it to do?” The formal model is the expression
of your intent. Verification corresponds to the computer
science task of debugging, which is considered a very hard
problem indeed. However, validation poses an even more
challenging question—“does my computer program mimic
reality adequately?” Validation constitutes a feedback loop
between the computer model and reality. It should be clear
that the verification feedback loop is contained within the
validation loop, i.e., you cannot talk about validating a
model until you believe that it properly reflects your intent.
In general you can expect to go through multiple iterations
of verification and validation before you are satisfied with
your model.

In both Figure 1 and 2 the solid arrows represent
phases in the modeling process in which we move from one
stage to another, with all of the associated simplifications,
assumptions, and distortions that are introduced by the very
act of modeling. Comparing the two figures, the process
of doing simulation involves more stages, and therefore
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more opportunities to mess things up. Simulation modeling
involves a longer chain of inference than does analytical
modeling, which is why we generally would prefer to use
analytical solutions where possible.

As with most rules, there are exceptions. For example,
simulation can be an ideal technology for validating new
processes or procedures. Suppose that you wish to demon-
strate the superiority of a new statistical technique which
you claim is optimal when the data follow a particular dis-
tribution. With observational data you can do goodness of
fit tests to check for the desired distribution, but in practice
such tests have notoriously poor discriminating power. With
simulation you can guarantee the distribution of the inputs.

We’ll finish this section with the following recommen-
dations to modelers. Many modelers make the mistake of
equating detail with accuracy. They start with a grand vision
of a highly detailed model which mirrors every aspect of the
real world system. As a result they may run out of time or
budget before they ever get their model running. Those who
manage to create a running program end up with code bases
often measured in tens-, hundreds-, or even higher multi-
ples of thousands of lines of code. The sheer magnitude
of such programs makes verification and validation nearly
impossible. The behavior of the program is determined by
dozens to hundreds of IRKs (Independent Rheostat Knobs),
inputs whose correspondence to reality is tenuous at best
and which unethical analysts have been known to use to
“tune” a model to produce desired outcomes.

It will not surprise the astute reader to note that we
advocate a different approach.

• Start small – Begin with the simplest possible
model which captures the essence of the system
you wish to study.

• Improve incrementally – Once you have a basic
model working, you can add features to it to im-
prove the representation of reality. However, do so
in small steps. Try to prioritize your additions in
terms of greatest anticipated improvement in the
model.

• Test frequently – The objective is a model which
conforms well to reality, not one which is a dupli-
cate. After each of your incremental improvements,
check the resulting model. Does it do a better job of
modeling? Did the new addition break anything?

• Backtrack / simplify – There comes a point where
you face diminishing returns. Sometimes, an ad-
dition produces no measurable benefit. Do not
be afraid to chuck it out if it adds nothing but
complexity.

Using this approach you are more likely to achieve a func-
tioning model. If you are constrained on budget or time, you
will still have built the best model which could be achieved
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within these constraints. If you have reached the point
of diminishing returns on model investment, you produce
a model which produces answers as good as (and possi-
bly better than) those of more complex models, without
the complexity. Either way you will have built the most
economical model for your purposes.

3 DISCRETE EVENT SYSTEMS

There are many classifications of systems available. The
Winter Simulation Conference tends to focus on Discrete
Event Systems. These are systems where the state changes
occur at a discrete set of points along the time axis, rather
than continuously. The points in time corresponding to state
changes are called events. Discrete Event Simulation (DES)
models can be built with any of several world views (Nance
1981).

Much of the simulation software which is commercially
available uses the Process world view for modeling. Process
models are considered to be very accessible—the modeler
describes the sequence of resource requirements, activities,
delays, and decisions that an entity experiences as it proceeds
through the system from start to finish. The details of
how this is accomplished are similar but specific to each
simulation package.

Event scheduling is another world view which can be
used to construct DES models, and yields efficient imple-
mentations quite straightforwardly when the model is to
be written in a lower level language. DES works by ad-
vancing simulated time directly from one event to another.
Intervals of time between events are of no interest, because
by definition nothing is happening during those intervals.
Schruben (1983) created event graph notation so that simu-
lation modelers could focus on the model-specific logic of
the system to be studied. Event graphs provide a concise,
unambiguous description of both how events change the
system state and how they trigger the occurrence of further
events.

Let’s talk briefly about another type of error that mod-
elers can make. An old joke that says “to the man who
only owns a hammer, all problems look like a nail.” The
modeling equivalent of that joke is no joke at all. It is a
concept called a Type III error by Mitroff and Feathering-
ham (1974), who defined it as “the error. . . [of] choosing
the wrong problem representation. . . ” This can happen, as
in the joke, when the analyst tries to fit the problem to the
tool rather than vice-versa. You are at risk of committing
a Type III error when you find yourself trying to “trick”
your software into performing some modeling task.

Simulation languages are an example of what computer
scientists call Domain Specific Languages (DSLs) (Mernik,
Heering, and Sloane 2005). DSLs are very good at express-
ing problems within their chosen modeling framework and
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domain of expertise, but become intractable outside those
boundaries.

The alternative to DSLs is General-Purpose Program-
ming Languages (GPPLs). By definition GPPLs are Turing
complete (Brainerd and Landweber 1974), which means that
if a problem is computationally feasible it can be expressed
in a GPPL. Many people shy away from using GPPLs for
simulation, either because they do not know how simulation
actually works or because they perceive such solutions to
be very hard. It turns out to be surprisingly easy with event
graphs. See Sánchez (2006) for specifics.

4 RANDOMNESS

4.1 The Importance of Randomness in Models

Let’s do a small thought experiment. Consider a production
line in which component pieces A and B are delivered to
a robotic arm at precise one minute intervals. The robot
assembles and welds those components, taking exactly one
minute to do so. It should be clear after a moment’s thought
that if we started with no queue of components, that will
not change. Similarly, if we started with a queue of N of
each component, we will vary from N by no more than one
(depending on the synchronization of times of arrival and
time at which the robot cycles to the next assembly). In a
queueing system with purely deterministic behavior, there
is no buildup of the line as long as the arrival rate is less
than or equal to the service rate.

Now consider what happens if the robot breaks down
occasionally or the time between component arrivals varies.
Queueing theory tells us that if the arrival rate is greater
than or equal to the service rate, the queue lengths will
grow in an unbounded fashion.

The two systems in our thought experiment behave
in radically different fashions, yet the only difference be-
tween them is whether the arrival and/or service times are
deterministic or random. In other words, system behav-
ior can be drastically affected by the presence or absence
of randomness. Many beginning modelers are tempted to
simplify their model by avoiding randomness. They almost
invariably do so by replacing random variables with their
means. This can dramatically change the behavior of the
model.

4.2 Random Numbers and Random Variates

Simulationists distinguish between random numbers, which
are uniformly distributed between zero and one (U(0,1)),
and random variates, which are everything else. Given a
source of random numbers, in principle we can generate
random variates with any distribution desired (see Appendix
A). In practice, inversion of the CDF is not always an
option. For example, there’s no closed form equation for
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the CDF of a standard normal random variable, so we
can’t use inversion. In such cases, random variates can
be generated using a variety of alternate techniques such
as convolution, composition, acceptance/rejection, or by
transformations based on leveraging special relationships
between particular distributions (Banks et al. 2005, Law
and Kelton 2000, Leemis and Taber 2007).

Randomness is an essential component of many models,
so we need a source of randomness that we can draw on
within our simulation program. Let’s consider what would
constitute desirable characteristics for such a source. For
each item in the following wish list, we briefly describe
why it is desirable.

• Independence – many experiments require inde-
pendent observations. It’s much easier to induce
correlation from independent random numbers than
to achieve independence from correlated ones.

• Known distribution – we would prefer U(0,1)’s,
but using the results in Appendix A we can, in
principle, map any known distribution to uniform.
From there we can in turn map it to other distri-
butions.

• Unlimited – we should be able to draw as many
values from the source as we need, with no prior
limitations.

• Minimal storage – the source should not be a
drain on memory or other storage resources.

• Fast – we often need lots of random numbers, so
getting them should be quick.

• Portable – our ability to create and run models
should not be tied to a specific computing platform.

• Reproducible – we need to be able to repeat the
sequence of values for debugging purposes, so
colleagues can confirm our results, and for use
in covariance induction strategies (variance reduc-
tion).

Obviously some of these items are mutually incompatible.
Several solutions have been tried over the years.

At first glance, trace-driven simulation seems appealing.
That is where historical data are used directly as inputs. It’s
hard to argue about the validity of the distributions when real
data from the real-world system is used in your model. In
practice, though, this tends to be a poor solution for several
reasons. Historical data may be expensive or impossible
to extract. It certainly won’t be available in unlimited
quantities, which significantly curtails the statistical analysis
possible. Storage requirements are high. And last, but not
least, it is impossible to assess “what-if?” strategies or try
to simulate a prospective system, i.e., one which doesn’t
yet exist.

At the other end of the spectrum, people have built phys-
ical collection devices such as geiger or cosmic ray counters,
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thermal noise sensors, quantum photoelectric effects, and
even optical sensors monitoring lava lamps. Drawbacks to
using hardware based randomness include unknown distri-
butions and dependence structures, speed, portability, and
reproducibility.

The most widespread solution is the use of Pseudo-
Random Number Generators (PRNGs), which use algo-
rithms to transform internal state information into a sequence
of output values. So how do we achieve randomness with
PRNGs? The answer is, we don’t. PRNGs are computer
programs, and given the same inputs they will produce the
same output every time. They most definitely are repro-
ducible, and most definitely are not independent. On the
plus side, PRNGs can have provably uniform distributions,
can be fast and portable, and usually have minimal storage
requirements. They are not unlimited – they are based on
a finite state space and will eventually cycle after enumer-
ating all possible states. In practice this is not always a
limitation. For instance, the Mersenne Twister (Matsumoto
and Nishimura 1998) has a cycle length of 219937−1. That
is more than 105000, i.e., a one followed by five thousand
zeroes! If every atom in the universe was a computer ca-
pable of performing trillions of operations per second, and
had started using random numbers at the creation of the
universe 15 billion years ago, we still wouldn’t have used
a significant portion of a 219937−1 cycle.

We know the outcomes of a PRNG are not random,
since they are arithmetical and can be repeated on demand.
So how do we justify using them? To answer the question
let’s consider the “imitation game” proposed by Turing
(1950), and better known now as the Turing test. Roughly,
the Turing test proposed setting up two teletype devices, one
with a human at the other end and the other with a computing
device. If, with unbounded interaction, you couldn’t tell
which was which, then the machine could be viewed as an
intelligent actor. We apply the Turing test in our context
by replacing the human and the computer with a source of
“true” randomness and a PRNG. If you’re allowed to apply
any test you like and can’t distinguish between the two,
then we consider the PRNG to be a suitable substitute for
the “true” randomness. Comprehensive suites of statistical
tests have been developed and are freely available (Marsaglia
1995, Brown 2004).

Since you’re reading an introductory tutorial, under no
circumstances should you try to create your own PRNG.
That is an extremely difficult and hazardous undertaking.
Von Neumann’s infamous quote, “Anyone who considers
arithmetical methods of producing random digits is, of
course, in a state of sin” (Knuth 1981) was inspired by the
difficulties he encountered in creating the “middle-square”
method. The IBM Corporation also failed spectacularly
with RANDU, about which Knuth (1981) said (p.104) the
“. . . very name RANDU is enough to bring dismay into
the eyes and stomachs of many computer scientists!” If
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you are using a GPPL to implement your simulation, use
a PRNG which has been thoroughly tested such as the
Mersenne Twister (Matsumoto and Nishimura 1998, Mat-
sumoto 2007), ranlux (Lüscher 1994), or the combined
recursive generator by L‘Ecuyer (1996), all of which are
freely available from the Free Software Foundation (FSF)
(2007). If you are working with a commercial simulation
package a PRNG will almost certainly be provided as a
built-in function, but the wise modeler will confirm that it
is a reputable one.

4.3 Some Random Variate Generation Examples

Once we have a good source of random numbers, we can
use them to produce random variates using a variety of
techniques.

4.3.1 Inversion

Let R be a random variable with a right-triangular distribution
TRI(0,1,0), i.e., the min and mode are both zero while the
max is one. The density function is

f (r) =

{
2(1− r) 0≤ r ≤ 1
0 otherwise,

and the CDF is therefore

FR(r) =


0 r < 0
2r− r2 0≤ r ≤ 1
1 r > 1.

After adding and subtracting 1 to complete the square, we
can re-express this as

FR(r) =


0 r < 0
1− (1− r)2 0≤ r ≤ 1
1 r > 1.

(1)

To invert, we set FR(R) = U and solve for X :

FR(R) = U

1− (1−R)2 = U

(1−R)2 = 1−U

1−R =
√

1−U

R = 1−
√

1−U .

4.3.2 Convolution

Convolution is the fancy term for adding random variables.
For example, it’s well known that adding two U(0,1)’s
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yields a TRI(0,2,1) distribution. If we would like a random
variate X with a TRI(-1,1,0) distribution we can shift a
TRI(0,2,1) to the left by subtracting 1:

X = U1 +U2−1.

4.3.3 Composition

Another way to generate X is to note that it symmetrically
composed from two right-triangles,−R and R, each of which
makes up half of the distribution. Since we already know
how to generate R with inversion, it’s simple to create the
composition

X =

{
−R if U ≤ 0.5

R otherwise.

4.3.4 Special Relationships

Suppose we are interested in the distribution of the M, the
minimum of two independent U(0,1)’s. We can derive the
CDF as follows:

FM(m) = P{M ≤ m}
= 1−P{U1 > m & U2 > m}

= 1−
2

∏
i=1

(1−P{Ui ≤ m})

= 1− (1−FU (m))2

= 1− (1−m)2

since FU (u) = u for a U(0,1). Once we recognize this
as identical to equation 1, the CDF of the TRI(0,1,0) dis-
tribution, we can see that generating M and generating R
are interchangeable problems. We could generate M via
the inversion for R. Alternatively, we could generate R by
generating two U’s and selecting the minimum value. We
might choose the former if we wanted to use a correlation
induction strategy, or the latter if it was computationally
faster.

5 VIEWING YOUR MODEL AS A MODEL

Let’s now step back from the internal details of your model
and view it as a parameterized “black box,” as in Figure 3.
From that perspective your model, like other systems, trans-
forms inputs into outputs. The inputs are the parameteriza-
tions of each run of the model, e.g., for an M/M/k queueing
model the arrival rate, service rate, and number of servers.
However, we can take a broader view of what constitutes
a simulation input. Inputs also include the random number
seeds if, for instance, we wish to use common random
numbers for variance reduction.
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Figure 3: Simulation as a black box.

Extending our view even further, we can consider an
M/M/k system to be a particular case of a G/G/k system.
In that case, the choice of exponential distribution is a
parameterization, and the impact of distribution choices
could be explored. If this seems to be more trouble than
it’s worth, consider that explorations of distribution and
parameter choices can be done before you do significant
input distribution modeling. The results can help you focus
your scarce resources on those choices which matter. If
your simulation is robust to the distribution of a particular
component element, use a distribution which is easy to
implement and computationally efficient. On the other
hand, if your simulation results vary significantly based on
the choice of distribution, this is a model component which
is important for you to expend the effort to get right.

This black box view of our model highlights the po-
tential for design of experiments to greatly enhance our
understanding of the model. Please see Sanchez (2007) for
an excellent introduction to these concepts.

6 OUTPUT ANALYSIS

Once you have built your simulation model, it’s time to
make it work for you. That means analyzing its input/output
behavior to try to gain insights about the model, and by
inference about the real-world system being modeled. The
nature of your model should determine the type of analysis
you use. The choices are represented in Figure 4 as a
decision tree. The term classical statistics will be used to
describe the broad variety of statistical techniques which
assume independent observations.

If there is no randomness in your model, you can run
it once to determine “the answer.” Multiple runs will give
you no additional information. For the remainder of this
discussion, the model is assumed to have randomness.

If your model is of a static system, or has time depen-
dency but has a well-defined terminating state, you should
use replication to study it. Each iteration of a static system,
or each run of a terminating system, yields an independent
observation. These data can be collected and then analyzed
using classical statistics.
6

Start

Deterministic?

Static or 
Terminating?

Stationary ?

Cyclic / Trend ?

Run Once

Replicate

Replication/Del,
Batch means,...

Fit Cycle or Trend 
model, analyze 
residuals with...

Hey, good luck 
with that!

Y

N

Y

Y

Y

N

N

N

Figure 4: Select an appropriate analysis methodology.

If you have a dynamic non-terminating simulation, can
it be considered asymptotically covariance stationary? If
so, serial correlation in the data produced by our simulation
affects estimates of the mean (via initial bias) and of the
variance, and classical statistics cannot be used directly.
These issues were identified by Conway (1963), and over the
intervening years many researchers have developed a variety
of techniques to deal with them. The simplest of these is
replication/deletion. In replication/deletion, you first delete
some initial portion of the simulation output to remove the
effects of initialization. Averaging the remaining data yields
an unbiased estimate of the steady-state mean behavior. You
can then use replication to obtain a suitable number of these
estimates, which will be independent if the replications are
0
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independently seeded. The results are independent and
identically distributed observations which can be analyzed
with classical statistics. For more information, see any
modern simulation textbook (Law and Kelton 2000, Banks
et al. 2005) or to the output analysis tutorials in this
proceedings.

If your system is non-stationary, is it because of cyclic
or trend variations in the mean? If so, it may be possible to
explicitly fit a harmonic or asymptotic model of the mean.
The residuals from that model could then be analyzed as
covariance stationary data.

If none of the above apply, we have run out of options.
I wish you the best of fortune, and look forward to hearing
how you dealt with the problem.

7 CONCLUSIONS

Many people who are new to computer simulation place
undue emphasis on writing the simulation program. In fact,
the difficult part of a simulation study is modeling, not
programming. Type III errors are all too common, and are
costly both in terms of wasted time and effort and in terms
of incorrect inferences or conclusions regarding the real
system being modeled. Similarly, biting off more than you
can chew by starting with a model which is too large or
too detailed at the outset can waste time and effort. Too
many studies have run out of time or budget before they
even got a functioning model. Writing a good simulation
program is important, but cannot possibly succeed without
a good model at the core.

Keep your eyes firmly on the goal of your analysis. What
is it you wish to know about the real system of interest?
What are the essential characteristics and behaviors that
allow you to answer your questions? Don’t confuse large
volumes of detail with accuracy in building your model.
Start small, and add detail when and if validation shows a
need for it. Test your model frequently during development,
and focus on model elements which yield meaningful gains
in model accuracy. These are modeling principles which
apply regardless of whether you use a process or event
world view, or commercial simulation packages or a GPPL.

Modern commercially available simulation software is
of very high quality, and offers tremendous leverage for many
problem domains. However, if you find that you’re spending
all of your effort trying to “trick” the software into behaving
the way you want it to, consider the possibility that a
different implementation approach may be more productive.
Perhaps a different simulation package is more suitable for
your problem. GPPLs also represent an option for your
consideration. With the right tools it is surprisingly easy to
implement discrete event models in a GPPL, and doing so
gives you complete control over your model.

If you are using a commercial simulation package, make
sure that it is using a reasonable quality generator and that
61
you understand how to control the seeding of that generator
to achieve independence or induce dependence between your
runs, whichever is appropriate for your plan of analysis. If
you are using a GPPL, adopt a reputable implementation.
You should never try to “roll your own.” Similarly, use any
of the wide variety of published algorithms to generate the
random variates for your simulation.

Leave sufficient time for analysis of your model. A
surprising (and depressing) number of people build their
model, run it once, and claim they now know “the answer.” If
your simulation involves randomness, you must use statistics
to analyze it. The appropriate statistical analysis depends on
the characteristics of your model, and using inappropriate
techniques can invalidate your analysis.

Lastly, use designed experiments. These techniques
should be applied not only during the final analysis phase,
but also during the course of model development. They
can help you focus your efforts most productively to during
modeling, and maximize the amount of information you
can extract from your model during analysis. Design of
experiments should be in every analyst’s toolbox.
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A INVERSION

We assume here that the reader is familiar with basic proba-
bility theory and common notation. Recall that the definition
of the Cumulative Distribution Function (CDF) of a random
variable X is

FX (b)≡ P{X ≤ b}.

Recall also that the distribution of a random variable is
uniquely identified by its CDF, and that a random variable
with a uniform(0,1) distribution has CDF

FU (b) =


0 for b < 0
b for 0≤ b≤ 1
1 for b > 1.

Now consider a random variable X with invertible CDF FX .
In general a function of a random variable is itself a random
variable. So what is the distribution of the random variable
Y = FX (X), i.e., what do we get when we apply its own
CDF to random variable X? The answer to that question is
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both surprising and extremely useful.

FY (b) = P{Y ≤ b}
= P{FX (X)≤ b}
= P{X ≤ F−1

X (b)}
= FX (F−1

X (b))
= b

for 0 ≤ b ≤ 1. In other words, FX (X) has a U(0,1) dis-
tribution, regardless of the distribution of X! If we have
a source for U(0,1) random numbers, we can in principle
convert them into random variates with distribution FX () as
follows:

FX (X) = U =⇒ X = F−1
X (U).
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